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Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions
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Magnetophoresis—the motion of magnetic particles under applied magnetic gradient—is a process of great
interest in novel applications of magnetic nanoparticles and colloids. In general, there are two main different
types of magnetophoresis processes: cooperative magnetophoresis (a fast process enhanced by particle-particle
interactions) and noncooperative magnetophoresis (driven by the motion of individual particles in magnetic
fields). In the case of noncooperative magnetophoresis, we have obtained a simple analytical solution which
allows the prediction of the magnetophoresis kinetics from particle characterization data (size and magnetization).
Our comparison with new experimental results shows good quantitative agreement. In addition, we show the
existence of a universal curve onto which all experimental results should collapse after proper rescaling. The
range of applicability of the analytical solution is discussed in light of the predictions of a magnetic aggregation
model [Soft Matter 7, 2336 (2011)].
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I. INTRODUCTION

The manipulation of magnetic particles by the use of in-
homogeneous magnetic fields (magnetophoresis) has emerged
as a topic of great interest in a wide range of research and
technological areas [1]. A broad spectrum of novel applications
has been developed based on this concept: from environmental
applications like wastewater treatments [2,3] and pollutant
removal [4] to biomedical applications like protein isolation,
drug delivery, magnetic hyperthermia for cancer treatment,
and magnetic-particle imaging [5,6].

The particles employed in these applications are mainly
superparamagnetic colloids with sizes ranging from a few
nanometers to microns and with appropriate coatings, guar-
anteeing the stability and biocompatibility of the solutions.
Superparamagnetic particles exhibit magnetizations of mag-
nitudes similar to those of ferromagnetic materials, but they
present no coercitivity nor remanence. This superparamagnetic
behavior, which is of quantum origin, is limited to nanocrystals
(NCs) of size below a critical size which depends on the
material [7]. Larger superparamagnetic particles can be ob-
tained as composite particles containing a nucleus of magnetic
nanocrystals (typically iron oxide particles like magnetite
Fe3O4 or its oxidized form maghemite γ -Fe2O3) inserted in
a matrix of nonmagnetic material (such as polystyrene [8] or
silica [9]). Since the superparamagnetic NCs contained inside
the nucleus of the colloid are well separated, the behavior
of the resulting colloid is also superparamagnetic. Thanks to
this design, large magnetic moments can be obtained without
losing the superparamagnetic response.

In this paper we study an issue that is common to some
of the aforementioned applications of magnetic particles:
the magnetic separation process. The idea behind magnetic
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separation is to take advantage of the distinctive magnetic
response of the particles in solution to remove them from
complex mixtures by the use of applied inhomogeneous
magnetic fields [10]. In applications in closed containers
[11,12], the inhomogeneous magnetic field is used to drive
the magnetic particles toward certain regions of the containing
vessel enabling the removal of the “clean” liquid phase from
the solid content. Differently, in continuous flow applications,
magnetic particles are typically deflected from the direction of
the laminar flow by a perpendicular magnetic field gradient,
depending on their magnetic susceptibility, their size, and the
flow rate. This approach is common to different field-flow
fractionation or split-flow thin fractionation techniques [13]
integrated in microfluidic devices enabling the trapping of
magnetic particles or the fractionation of magnetic particles
with different magnetic response [14].

In the different applications, magnetic particles are typ-
ically functionalized with proper chemical groups, which
are designed to bind to specific nonmagnetic components,
thus enabling the separation of nonmagnetic materials by
combining the use of magnetic particles and magnetic fields.
This combination has many advantages over traditional fixed-
bed separation methods, such as activated carbon adsorption
for organics and affinity chromatography for proteins. In
particular, the magnetic nanoparticles offer large exposed
surface areas without the use of porous materials, which
are often plagued by high mass-transfer resistances [15].
Therefore, it is not surprising that magnetic separation has
been presented as an alternative to typical centrifugation and
filtration steps in industrial processes as well as in laboratory
applications.

Traditionally, the removal of magnetic particles (plus
adsorbed biomaterial or pollutants) in solution is performed
by the so-called high-gradient magnetic separation technique
(HGMS) [11]. In an HGMS device, the dispersion containing
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the magnetic nanoparticles is pumped through a column filled
with a packed bed of stainless steel fibers of the order of a few
microns. These fibers are responsible for the high magnetic
gradients inside the column once an external magnetic field
is applied. This field can be generated in several different
ways: by permanent magnets [3], electromagnets [15], or
superconducting solenoids [16]. The HGMS technology,
initially developed for magnetic clays, has been successfully
employed [15] to capture functionalized nanoparticles with
sizes larger than ∼10 nm.

The most important drawback present in HGMS is the
loss of control over the magnetic conditions under which
the magnetic particles are removed. Basically, the exter-
nal magnetic field applied induces highly inhomogeneous
gradients in the separator. These inhomogeneous conditions
common to the HGMS approach make it difficult to develop
numerical and/or analytical solutions to the problem, which
would help in a better understanding of the magnetophoretic
mechanisms and enhancing its performance; for instance, by
means of a better design of separators or a better choice
of the magnetic particles used in specific applications. So
far, theoretical work has basically focused on the modeling
of individual dispersed magnetic nanoparticles in an HGMS
column. Most of these works have been limited to simulate
the behavior of nanoparticles around a single HGMS wire
[11,17–19] or, more recently, monitoring the absorbance of
superparamagnetic nanoparticles under the effects of a single
permanent magnet [20,21]. Unfortunately, analytical solutions
for (at least approximate) predictions of these magnetophoresis
processes are not known.

In previous works [12,22–24] we have made use of a
new concept of magnetic separation (so-called precision
magnetophoresis) to effectively remove different types of su-
perparamagnetic nanoparticles from solution. The key aspect
here is that the separation process is based on the application of
a homogeneous magnetic gradient to drive the removal of the
particles, enhancing the control of the experimental conditions.
Also, this simpler situation seems suitable for establishing a
proper framework for the development of analytical models.
Herein, we fill this gap by providing an analytical solution for
the kinetics of the magnetophoresis separation process. The
solution obtained is valid under certain restrictive but realistic
conditions, which are explicitly discussed here. We also show
the utility of the analytical model by comparing our predictions
with experimental results obtained with superparamagnetic
particles of different sizes and magnetizations. We expect that
the availability of a simple analytical model will allow for a
better understanding of the underlying physics of magnetic
separation processes and also allow a rational design of
applications.

II. THEORY OF MAGNETOPHORESIS UNDER
UNIFORM GRADIENT

First of all, let us briefly describe the magnetic separation
process that is under study. We consider here the case of a radial
magnetic gradient, as in the experiments reported in Refs.
[12,23,24]. In these experiments, an initially homogeneous
dispersion of magnetic particles is placed inside a cylindrical
cavity (of radius L) containing a uniform magnetic gradient

pointing toward the walls of the vessel. Due to the magnetic
gradient, particles move radially, reaching the vessel wall at
the end of the process. At this final stage, the remaining liquid
can be removed by pumping it from the center of the vessel,
if desired, and the separation process will be completed (see
video in [25] for a demonstration). Our objective in this section
is to obtain an analytical expression for the kinetics of this
magnetic separation process, relating separation times to basic
properties of the particles (such as size and magnetization).

As explained in previous works [12,23], the experimental
conditions consist of a dispersion of superparamagnetic
particles (nanocrystals or composites) with radius R and
magnetization per unit mass M(H ) that are immersed in a fluid
with viscosity η at temperature T . Let us assume that, under
these experimental conditions, the magnetophoretic separation
is driven by the motion of the individual particles under
the external magnetic field. In other words, we assume that
particles do not form chains induced by the dipole-dipole
interaction during the magnetic separation process (see, for
example, Refs. [14,15,26]). We also note here that many
superparamagnetic particles are designed for use in biomedical
applications [5], which strictly require no chain formation
even under strong fields [magnetic resonance imaging (MRI)
contrast agents or hyperthermia treatments].

Neglecting the interaction between particles, we can obtain
the magnetophoretic velocity of particles by noting that the
viscous drag Fvis = 6πηRv exerted by the solvent will be
equal in magnitude (and opposite in direction) to the magnetic
force over the particle [10,14,15,26]. Our approach follows the
classical work of Senyei et al. [26] but, in our case, we have
extended its validity to the nonlinear part of the magnetization
response of the particle, contrary to what is typically required
in other studies [14]. Under the effects of an external uniform
magnetic gradient, the particle will experience a magnetic
force Fmag (in our particular case, in the radial direction,
pointing toward the vessel wall) given by

Fmag = mμ0

(
∂H

∂r

)
= 4

3
πR3ρpM(H )μ0

(
∂H

∂r

)
, (1)

where ρp is the density of the particle, so its magnetic
moment is given by m(H ) = (4/3)πR3ρpM(H ). Hence, in
the stationary state the particles move with a velocity which
depends both on the local values of the field H and its gradient:

v = 2R2

9η
μ0

(
∂H

∂r

)
M(H )ρp. (2)

In order to proceed further we need to specify an analytical
expression for the magnetic response M = M(H ) of the
particles. For mathematical and conceptual simplicity, we
assume that the magnetization curve M = M(H ) is described,
to within a good approximation, by a Langevin function typical
in theoretical descriptions of superparamagnetic systems
[7,27–29]:

M(H ) = MsL[bμ0H ], L[x] = coth x − 1

x
, (3)

where Ms denotes the saturation magnetic moment per unit
mass and b−1 can be interpreted as a characteristic magnetic
field required to reach saturation. For a superparamagnetic
nanocrystal, b can be computed if Ms and R are known (see
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Ref. [28] and our supplemental material [30]). Now we can
obtain the equation of motion for the particles and study the
separation process. By combining equations (2) and (3) and
noting that the magnetic field is linear and radial pointing to
the vessel walls [H = (∂H/∂r)r where ∂H/∂r is constant]
we obtain the following result for the velocity of a particle
located at a distance r from the center of the system:

v(r) = vsL[βr/L], (4)

where L(x) is the Langevin function [see Eq. (3)] and we have
defined

vs = 2R2

9η
μ0

(
∂H

∂r

)
Msρp, (5)

β = bμ0

(
∂H

∂r

)
L. (6)

Physically, vs is the magnetophoretic velocity of a particle
with a magnetization equal to the saturation magnetization Ms.
The dimensionless parameter β can be interpreted as the ratio
between the magnetic field at the walls [the product (∂H/∂r)L]
and the typical magnetic field [b−1, see Eq. (3)] required to
bring a particle to magnetic saturation. Note that, according to
Eq. (4), the particles reach their maximum magnetophoretic
velocities vs at positions r verifying βr/L � 1. Now, we can
obtain an exact, analytical expression for the separation time.
Integrating Eq. (4) we obtain:

dr

L[βr/L]
= vsdt,

∫ r

r0

dr

coth(βr/L) − L
βr

= L

β
[ ln (βr/L cosh(βr/L) − sinh(βr/L)) ]rr0

= vst, (7)

where r0 is the radial coordinate of a particle at time t = 0 and
r is its position at time t . Hence, the time t needed by a particle
to reach the wall of the vessel (r = L) starting from an initial
position r0 > 0 [because the magnetic field at the center of the
vessel is zero H (0) = 0] is

t = L

βvs
ln

[
β cosh(β) − sinh(β)

βr0

L
cosh(βr0/L) − sinh(βr0/L)

]
. (8)

Note that, if the particle is initially located at a position r0

with a sufficiently high magnetic field, its magnetization is in
the saturation regime (βr0/L � 1) and we have L[βr/L] ≈ 1
and v ≈ vs, so that Eq. (8) reduces to t = (L − r0)/vs.

Now, from Eq. (8) is straightforward to obtain the fraction
of particles remaining in dispersion inside the system at a time
t . For a given time t , all particles with initial radial positions
smaller than the value r0 given by Eq. (8) will be still in
solution (not at the wall). Hence, at that specific time t , the
number of particles N (t) remaining inside the separator is
equal to the number of particles with initial radial coordinate
smaller than r0, which is proportional to πr2

0 . Therefore, the
fraction N (t)/N (0) of particles inside the magnetic separator
is given by

f ≡ N (t)

N (0)
=

(
r0

L

)2

. (9)

Using Eqs. (8) and (9) we obtain the separation time t at which
a given fraction of particles f is still in dispersion (not at the
walls):

t = L

βvs
ln

[
β cosh(β) − sinh(β)

β
√

f cosh(β
√

f ) − sinh(β
√

f )

]
. (10)

In other words, Eq. (10) gives the time t needed to reach the
state with a fraction of particles f still in solution. Note that,
in the limiting case of β � 1 and β

√
f � 1, Eq. (10) reduces

to

f ≈
(

1 − vs

L
t

)2

. (11)

In practice, β is typically between 10 and 100 (see next
section), so Eq. (11) can usually be employed to estimate
the initial kinetics of the separation process. Physically,
Eq. (11) describes the separation process assuming that the
magnetization of particles is at saturation, whereas Eq. (10)
takes into account the full M(H ) dependence.

At this point, it is important to explicitly discuss under
which conditions this requirement of no chain formation under
a magnetic field is fulfilled. The classical criterion against
chain formation induced by the dipole-dipole interaction
derived in the context of ferrofluids (see, for example, p. 37
in Ref. [28]) requires that the magnetic coupling constant,
defined as

� = μ0m
2
s

2πd3kBT
, (12)

verifies � � 1. In Eq. (12) ms is the magnetic moment of
a particle at saturation and d is its diameter. Physically, � is
the ratio between the magnetic energy associated to the dipole-
dipole attraction (which tends to induce the formation of chains
of particles in the dipole direction) and the thermal energy
(which tends to disaggregate). However, our recent simulation
results show that this classical criterion is not fulfilled in
dispersions of superparamagnetic particles. For example, we
have shown that, for � = 3 and a volume fraction φ0 =
5.23 × 10−4, no aggregation is found (see Fig. 2 Ref. [31]),
in disagreement with the classical criterion. In general, our
simulations have shown that the aggregation behavior depends
both on � and the volume fraction φ0 (defined as the volume
fraction of particles uniformly dispersed in solution before
applying the magnetic field). Combining simulation results
with a thermodynamical model [31] we have shown that
the aggregation behavior of superparamagnetic dispersions is
controlled by the dimensionless parameter N∗ given by

N∗ =
√

φ0e�−1. (13)

As shown in Ref. [31], in order to observe aggregation, the
condition N∗ > 1 should be verified. In this case, the number
density of chains of length s follows

ns ∝ e−s/N∗
. (14)

and the average length of chains is thus n̄ ≈ N∗. For more
details and a comparison with simulations, see Ref. [31]. Our
results also agree with recent small angle neutron scattering
results [32]. Typical values of � and N∗ of superparamagnetic
colloids employed in the laboratory will be discussed in detail
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in the next section. Here it is enough to remark that all
analytical results derived in this section are valid under the
condition N∗ < 1.

Another issue to be considered in applying our theoretical
model is the possible effect of sedimentation due to gravity. In
principle, sedimentation will be irrelevant in the separation
process if the vertical distance sedimented during magne-
tophoresis is smaller than the vertical size of the system. In our
experimental situations, we will have always a sedimentation
velocity much smaller than magnetophoresis velocity; in
addition, the radius is much smaller than the height of the
container.

III. USE OF ANALYTICAL MODEL IN ANALYSIS
OF MAGNETOPHORESIS EXPERIMENTS

A. Comparison of predictions with experiments

Now we will explore the use of the analytical results
obtained in the previous section to understand the kinetics of
actual magnetophoresis separation experiments. In particular,
we will show the usefulness of Eq. (10) in predicting
magnetophoresis kinetics in the case N∗ < 1. We will also
discuss the limitations of our analytical model by briefly
discussing the case N∗ > 1, for which no analytical solution
is yet available.

For the sake of concreteness, we will consider results
for dispersions of 4 different samples of superparamagnetic
particles (see Table I), differing in size and composition but
all of them representative of the many different kinds of
particles employed in biotechnological applications. Further
technical details (synthesis, characterization) are given in
the supplemental material or in the indicated references. In
all cases, our magnetophoretic separation experiments were
performed using precision magnetophoresis systems from
SEPMAG [33], the SEPMAG LAB 1 × 25 ml 2042 and
2042 plus (in both cases, L = 1.5 cm). The magnetophoresis
kinetics is monitored by measuring the opacity of the sample,
as in previous works [12,23,24] (we also describe again the full
experimental methodology in the accompanying supplemental
material). Here it suffices to say that the measured opacity
(after appropriate normalization) provides a good estimate of
the fraction f of particles remaining in solution.

Let us first consider sample S1, which consists of
maghemite γ -Fe2O3 nanocrystals about 12 nm in size dis-
persed in water at a 10 g/L concentration. It is known that
the colloidal stability (in the absence of a magnetic field) of
these small nanocrystals in dispersions could be an issue. In
our case, we ensure the stability by electrostatic stabilization.
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FIG. 1. (Color online) Kinetics of magnetophoretic separation
of a 10 g/L dispersion of superparamagnetic γ -Fe2O3 nanocrystals
(sample S1). Solid lines are the predictions of Eq. (10) (with no free
parameters) and symbols are the experimental results under 30 T/m
(circles) and 60 T/m (squares).

For full details of sample preparation, stabilization, and
characterization, see the supplemental material. As shown
in Table I, N∗ < 1, so Eq. (10) applies in this case. The
values of the required quantities vs and β were computed
by using the data in Table I in Eqs. (5) and (6). For example,
under a 60 T/m gradient we obtain vs = 1.59 × 10−7 m/s and
β = 61.7. In Fig. 1 we show the theoretical predictions and
the experimental results for two different magnetic gradients
(30 and 60 T/m). Our results (see Fig. 1) show that Eq. (10)
can be successfully applied to predict the magnetophoretic
behavior from averaged properties of the sample, such as
particle radius R and saturation dipole ms. Of course, in real
samples there are always factors difficult to control (such as a
certain degree of polydispersity differing from batch to batch
of identically produced particles) which may cause deviations
from the ideal behavior predicted by Eq. (10). Also, the
measurement of the full magnetophoresis curve is particularly
challenging since, in some cases, it requires more than one day
to complete and additional spurious effects (such as changes
of viscosity of water due to temperature variations during
the experiment) may reduce the agreement between theory
and experiment. In spite of these limitations, the agreement
between theory and experiment is rather satisfactory for this
sample. For example, at a field gradient of 60 T/m we predict
that half of the dispersion (f = 0.5) is removed at separation
times of 7.5 h, close to the experimental value of 7 h.

TABLE I. Physical parameters for the different particles employed in the magnetophoretic experiments shown in Figs. 1 and 2: 2R is the
diameter, ρp is the density, ms is the magnetic dipole at saturation, and the quantities b, �, and N∗ are defined in Eqs. (1), (12), and (13),
respectively.

Sample 2R [nm] ρp [g/cm3] ms [J/T] b [T−1] � N∗

S1 (γ -Fe2O3) 12 4.86 3.0 × 10−19 68 2.5 0.1
S2 Core (γ -Fe2O3)/Shell (SiO2) 82 2.40 3.0 × 10−18 9.3 0.8 0.02
S3 Core (γ -Fe2O3)/Shell (SiO2) 157 2.35 1.7 × 10−17 13.8 3.5 0.2
Estapor R© M1-020/50 200 1.10 2.5 × 10−16 N/A ∼103 ∼1021
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FIG. 2. (Color online) Comparison of magnetophoretic separa-
tion kinetics of colloidal dispersions containing different composite
superparamagnetic particles obtained in experiments (symbols) with
the predictions of Eq. (10) (solid line) without adjustable parameters.
Circles correspond to sample S2 and squares to sample S3 with a
magnetic gradient of 60 T/m (open and filled symbols correspond to
different repetitions of the same experiment).

Now let us consider the results for a different kind of
superparamagnetic particles. Samples S2 and S3 correspond
to a dispersion in water of core shell composite particles
described in Ref. [9] (also denoted by samples S2 and S3 in
that reference) which were designed as image contrast agents
in MRI. In these composite nanoparticles, the shell is made
of microporous silica and the core contains several 6.5 nm
γ -Fe2O3 nanocrystals previously synthesized in Ref. [34].
The average size of the composite particles is 82 nm in the
case of S2 and 157 nm in the case of S3, as determined by
transmission electron microscopy (TEM) (although there is
some polydispersity in size, as discussed in Ref. [9]). In this
case, the dispersions had a concentration of 1 g/L and N∗ < 1
so Eq. (10) is expected to apply. It should be noted that, in
applications, these particles need to be employed always under
conditions with N∗ < 1 to avoid magnetic aggregation and
allow their use as image contrast agents.

In Fig. 2 we show the results under a gradient of 60 T/m.
The values for the saturation velocity vs and dimensionless
parameter β, computed by using the data in Table I in Eqs. (5)
and (6), are vs = 2.19 × 10−7 m/s and β = 9.5 for S2 and
vs = 6.46 × 10−7 m/s and β = 14.1 for S3. Again, Eq. (10)
can be applied to predict, with reasonable approximation,
the magnetophoretic behavior from average particle data. For
example, predicted times for f = 0.5 are 6 hours (sample S2)
and 2 hours (sample S3), which are reasonably close to the
experimental values of 4.3 hours and 1.5 hours, respectively.

We note here that the agreement between theory and
experiments for S2 and S3 is less satisfactory than that
observed for S1 (compare Fig. 1 with Fig. 2). This could be
attributed to the fact that the fit of the magnetic response of
samples S2 and S3 to the Langevin function Eq. (3) is less
accurate than in the case of sample S1 (see the supplemental
material for details on the magnetic characterization of the
samples). We expect that the agreement could be further
improved by using more sophisticated functions to model

the M(H ) response (such as those proposed in Ref. [29]).
However, this better fit of the M(H ) response will make it
impossible to obtain an analytical solution for f . Here we
prefer to maintain the model as simple as possible, even at the
cost of losing some accuracy in the results (which is in fact not
essential in practice).

Up to now, we have discussed the case of magnetophoresis
due to single-particle motion (N∗ < 1), which is a situation
in which our analytical model holds. It is reasonable to
expect that, in the case N∗ > 1 (formation of chains of
magnetic particles induced by the external field), the observed
magnetophoresis kinetics will be faster than expected from our
analytical calculations. However, it is not obvious how large
the difference between the single-particle kinetics described
by our model and cooperative kinetics will be. To this end, we
also include a comparison with experimental results, obtained
in our previous study [12], with commercial Estapor(R)

M1-020/50 particles, which correspond to extremely large N∗
(see Table I). These commercially available particles are made
of magnetic nanocrystals embedded in a polystyrene matrix
and are employed in immunoassay applications (in these
applications, reversible magnetic aggregation under applied
field is often a desired effect). An example of the experimental
results obtained in Ref. [12] are shown in Fig. 3. These results
correspond to a solution of 1 g/L concentration under a 30 T/m
gradient. The kinetics of single-particle magnetophoresis was
estimated using vs 
 4 × 10−6 m/s (as calculated from the
data in Table I). Since we do not pretend in this case to provide
an accurate prediction, we employ, for simplicity, Eq. (11) for
f , which assumes that individual particles always move with
their maximum possible velocity vs, which corresponds to the
saturation magnetization. It is clear that the kinetics observed
for Estapor(R) M1-020/50 particles is orders of magnitude
faster than the kinetics expected from the vs value for these
particles. In fact, the magnetophoretic process is very fast
and complete separation is obtained in less than 2 minutes.
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FIG. 3. (Color online) Comparison between cooperative magne-
tophoresis observed with commercial Estapor(R) M1-020/50 particles
(symbols) and the single-particle magnetophoresis kinetics (N∗ < 1)
ideally expected by these particles moving at their maximum velocity
vs, according to Eq. (11) (dashed line). The solid line is a fit of the
initial decay to Eq. (11) leaving the magnetophoretic velocity as a
fitting parameter, which gives v

agg
s ≈ 2.6 × 10−4 m/s.
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Hence, the comparison shown in Fig. 3 is consistent with
the existence of a cooperative process in the experiments,
as we proposed originally in Ref. [12]. In that reference,
the observed fast kinetics was attributed to the formation
of elongated aggregates. In fact, the results of Fig. 3 can be
employed to obtain a crude estimate of the velocity and size
of these aggregates. The velocity of the aggregates can be
estimated as follows: We interpret the experimental data in
Fig. 3 as corresponding to an initial regime (for times up to
12 s) in which aggregates are formed and f ≈ 1 followed
by magnetophoresis kinetics obeying Eq. (11) with a certain
velocity for the aggregates v

agg
s . Fitting the experimental data

for t up to 100 s (see fit in Fig. 3), we obtain v
agg
s ≈ 2.6 × 10−4

m/s; that is, we estimate that aggregates move 65 times faster
than individual particles. If we approximate the aggregates as
ellipsoids of semiaxis aR and cR (a � c), it is easy to show
that the magnetophoretic velocity of the ellipsoid at magnetic
saturation is given by v

agg
s = [ac2/CD(a,c)]vs, where vs is the

velocity of a single particle [as given by Eq. (5)] and CD(a,c)
is the drag coefficient given by [35] (δ2 ≡ a2 − c2)

CD = 8

3

[
1

δ
ln

(
a + δ

a − δ

)
− 2a2

δ3

(
δ

a
− arcsinh(δ/c)

)]−1

.

(15)

Hence, our previous estimate of v
agg
s ≈ 65vs is consistent with

ellipsoidal aggregates of different dimensions. We provide just
two examples: ellipsoids with semiaxes a ≈ 11.5, c ≈ 4.7 and
a ≈ 32, c ≈ 4.6. The first one would contain around 250 parti-
cles and the second one about 700 particles. This indicates that
aggregates in the cooperative magnetophoresis process may
contain several hundred particles, a situation quite different
from the one studied here (and the subject of future work).

We can conclude this subsection by saying that the results
presented here support the view proposed in the previous
section that two very different magnetophoresis processes
are possible under a constant magnetic gradient. Single
particle magnetophoresis (described by our analytical model)
is observed for N∗ < 1 whereas cooperative magnetophoresis
(involving the formation of large elongated aggregates of
particles induced by the magnetic field) is observed for
N∗ � 1.

B. Possibility of a universal curve

Interestingly, our theoretical results imply that all exper-
imental magnetophoretic results obtained for N∗ < 1 should
collapse onto a unique, universal curve after properly rescaling
quantities. In fact, by defining a dimensionless time τ ≡ tvs/L

and function J (x) ≡ ln (x cosh(x) − sinh(x)), expression (10)
becomes

τ = 1

β
[J (β) − J (βf 1/2)]. (16)

Therefore, one obtains that τ is a function of f and is
dependent on the specific magnetophoretic system through
the dimensionless parameter β defined in Eq. (6). One can
invert this function to get the fraction of particles in solution
f in terms of the dimensionless time τ and parameter β. A
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FIG. 4. (Color online) Comparison of theoretical predictions for a
universal kinetic curve [Eq. (17), solid line] with experimental results
(symbols). Top panel shows a comparison using experimental data
for γ -Fe2O3 nanocrystals (sample S1) under 30 T/m (open symbols)
and 60 T/m (filled symbols). Bottom panel shows a comparison using
experimental results for composite particles. Circles correspond
to sample S2 and squares to sample S3 (open and filled symbols
correspond to different repetitions of the same experiment).

direct manipulation of Eq. (16) yields

β2f = g (J (β) − βτ ) , (17)

where g(x) ≡ [J−1(x)]2 and J−1(x) is the inverse of function
J (x). Equation (17) shows that the rescaled fraction of particles
β2f is a universal function g of a rescaled time defined as
J (β) − βτ .

In Fig. 4 we show a plot of this universal curve compared
with the experimental results for samples S1 (under two
different gradients of 30 and 60 T/m) and samples S2 and S3
(under 60 T/m). These systems correspond to very different
values for the scaled quantities, so we prefer to show the results
in two different panels for easier visibility. The results for
sample S1 (Fig. 4, top panel) show, in general, good agreement
with the theoretical predictions, although deviations are found
at small opacities, where measurements have less accuracy.
For samples of composite particles (S2 and S3, Fig. 4, bottom
panel), the agreement is satisfactory.
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IV. CONCLUSIONS

In this paper, we have analyzed magnetophoretic separation
of superparamagnetic particles of different types under well-
controlled magnetophoretic conditions (in a system based
on a radial, uniform magnetic gradient). Depending on the
properties of the particles and the dispersion, we have proposed
two different kinetic regimes for magnetophoretic separation,
characterized by a dimensionless quantity denoted as N∗ [see
Eq. (13)]. For N∗ < 1, the kinetics of the magnetophoresis
process is dominated by the motion of single particles in
a magnetic gradient (noncooperative magnetophoresis) and,
consequently, the time scales for magnetic separation are large
(many hours in the experiments performed here). In this case, it
is possible to obtain an analytical solution for the kinetics of the
magnetophoresis process with no free parameters and which
shows a satisfactory agreement with experimental results.
Our analytical results also show the existence of a universal
curve [see Eq. (17) and Fig. 4], onto which all experimental
results should collapse after proper scaling (provided that they
correspond to the noncooperative regime, N∗ < 1).

In the case of large N∗ (which corresponds to particles with
high magnetic dipole and moderate or large concentrations),
the magnetophoresis process is enhanced by the formation
of long chains of particles which move rapidly in the
magnetic gradient. This cooperative magnetophoresis process
(described in our previous work [12]) is characterized by a
kinetics orders of magnitude faster than that expected from
the single-particle model. No analytical models are available
for this case yet, so this important case will be the subject of
further work.

It is also interesting to note that we have focused here on the
prediction of the magnetophoresis behavior of particles with
known magnetic properties [i.e., a well-characterized M(H )
curve]. However, in some practical applications it could be
of interest to obtain an estimation of the M(H ) curve as a
byproduct of a magnetophoresis process by fitting the obtained
kinetics with our analytical results: Eqs. (5), (6), and (10)
(provided that N∗ < 1).

Finally, as a limitation of our model, we note that polydis-
persity effects are not taken into account. Although synthesis
methods are advancing rapidly and provide very monodisperse
particles, some polydispersity is still possible. However, it is
difficult to include this effect rigorously in an analytical model.
An important difficulty is the lack of analytical knowledge of
the distributions of sizes and magnetizations in real samples.
In any case, our comparisons with experimental results shows
that the assumption of a mean size for the particles is a good
first-order approximation.
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