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Thermophoretically modified aerosol Brownian coagulation
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A theory of aerosol coagulation rates resulting from continuum-regime Brownian coagulation in the presence
of size-dependent particle thermophoresis is developed and explored here. We are motivated by a wide variety
of applications in which particle Brownian coagulation occurs in a nonisothermal gas where differential
thermophoretic drift contributes to, but does not dominate, the encounter frequency between suspended
spherical particles (e.g., mist droplets) of different sizes. We employ a Smoluchowski-like population-balance
to demonstrate the relative roles of Brownian diffusion and thermophoresis in shaping the short and long
time (asymptotic or “coagulation-aged”) mist-droplet size distribution (DSD) function. To carry out these
combined-mechanism DSD-evolution calculations we developed a rational “coupled” coagulation rate constant
(allowing for simultaneous Brownian diffusion and relative thermophoretic drift) rather than simply adding
the relevant individual coagulation “kernels.” Dimensionless criteria are provided to facilitate precluding other
coagulation mechanisms not considered here (such as simultaneous sedimentation or Marangoni-flow-induced
mist-droplet phoresis) and potential complications not included in the present model [as finite-rate coalescence,
initial departures from the continuum (Stokes drag-) limit, and even dense (nonideal) vapor effects].
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I. INTRODUCTION

Except in the free-molecule limit, aerosols [composed
of spherical solid(-like) particles or “mist” droplets] finding
themselves in a nonisothermal carrier gas will drift at different
speeds because of their size differences. This may be regarded
as the result of “biased” Brownian motion, and such situations
are now known to occur in many materials-processing and
energy technologies (see, e.g., Ref. [1]). In some cases
(especially metallurgical process engineering, cutting, and
welding operations and in certain accident scenarios, e.g.,
spilled molten metal or salt coolants) we recently found
that thermophoretic drift can actually dominate [2,3] ordinary
isotropic Brownian coagulation—providing a natural limiting
case to initiate the exploration of this previously overlooked
coagulation mechanism [4]. In the present extension, we now
turn our attention to those more common environments in
which particle Brownian coagulation occurs in a nonisother-
mal gas and differential thermophoretic drift contributes to, but
does not initially dominate, the encounter frequency between
suspended spherical particles of different sizes in a dilute
(low-volume-fraction) suspension. When the carrier gas mean
free path (�) is small compared to the initial Sauter mean
diameter (SMD) for the coagulating population, this may be
realized because of “modest” local temperature gradients (e.g.,
<105 K/m) and/or prevailing particle-gas thermal conductiv-
ity ratios (e.g., not much above 10-fold). If particle coagulation
persists in such an environment we ask the following: How will
the presence of this thermophoretic drift mechanism accelerate
the associated reduction in particle number density and distort
the evolving size distribution function?
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With these questions in mind, the present paper has
been structured as follows: In Sec. II we summarize the
essential features of our present mathematical model—i.e.,
the physical assumptions to be exploited in Secs. III and
V and discussed and defended in Sec. VI. Section III is
devoted to the rational development of a coagulation rate
constant when Brownian coagulation occurs in the presence of
size-dependent thermophoretic “drift.” Our approach extends
that of Simons [5], also avoiding the common approximation
of “additive kernels” (see, e.g., Ref. [6]). As in our recent
paper [7], we are inevitably led to the remarkable need for a
coagulation rate “constant” that not only depends on the local
thermodynamic state of the carrier gas (via T and p) but also on
the magnitude of the local temperature gradient—a feature that
transcends linear irreversible thermodynamics. The dynamics
of thermophoretically modified Brownian coagulation is ana-
lyzed by solving the corresponding nonlinear integro-partial
differential equation (PDE) governing the evolution of the
aerosol population size distribution in Secs. IV and V. In partic-
ular, Sec. V outlines our use of both Gaussian quadrature-based
methods of “moment” (QMOM; Ref. [8]) and orthogonal
collocation numerical methods [9,10]. These methods are
efficient enough to enable accurate “long time” predictions
of “quasi-self-preserving” (QSP) populations, asymptotically
reached in the long time limit.

Our principal assumptions are then briefly revisited and
discussed in Sec. VI, which includes dimensionless criteria for
precluding other potential complicating factors not considered
here, such as initial departures from the continuum (Stokes
drag) limit, simultaneous sedimentation, Marangoni-flow-
induced mist-droplet thermophoresis, finite-rate coalescence,
and even dense (nonideal) vapor effects. Section VII concludes
this paper with the principal implications of our present
methods and results, including mention of a method to
allow additional sources of relative interparticle drift (e.g.,
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sedimentation, electrophoresis, . . .), generalizations that will
necessary be left to follow-up studies.

II. BASIC ASSUMPTIONS OF THE PRESENT MODEL

To identify and examine the characteristic new features of
aerosol dynamics in the presence of simultaneous Brownian
and thermophoretic coagulation mechanisms, we deliberately
exploit an idealized mathematical model based on the follow-
ing simplifying assumptions; viz. the evolving aerosol under
study is assumed to be as follows:

(i) present at a low volume fraction in a thermodynamically
ideal carrier gas characterized by a mean free path (�) that
is small compared to the mean diameter (e.g., SMD) of the
population

(ii) composed of spherical particles of a single substance
that coalesce rapidly on the time scale set by interparticle
binary encounters
(iii) composed of particles acted on by a (creep-driven)

size-dependent force that causes them to drift down the
local temperature gradient (as would an isolated solid of the
same Fourier thermal conductivity in the same local gaseous
environment)

(iv) not exchanging energy with the local gas or the local
environment, resulting in the sol particle temperatures being
close to the local gas temperature

(v) describable by a continuous local droplet size distribu-
tion (DSD) of the form n(v,t) (in terms of particle volume v

and time t) satisfying a Smoluchowski-type integro-PDE in
the absence of particle growth from the vapor phase or the
nucleation of new particles. Particle volume is assumed to be
conserved on each successful binary encounter

(vi) not acted on by additional forces capable of modify-
ing the local coagulation rate (including gravitational and
electrostatic body forces,. . .) or the breakup of existing
particles.

Explicit criteria sufficient to ensure the validity of most of
these assumptions in any particular application are presented
and discussed in Sec. VI. For the present, however, we wish
to identify and display (Sec. V) the expected features of
coagulation under the simultaneous influence of Brownian
motion and thermophoresis in an externally imposed gas-
temperature gradient. For example, even if only modest
to begin with, will thermophoresis ultimately dominate the
Brownian mechanism? Would novel QSP DSD “shapes”
evolve showing the influence of thermophoresis? How “broad”
will these populations be and how long will it take for
approximate QSP behavior to set in?

Of course, in practice we expect the onset of other
complicating phenomena not considered here, which require
future generalizations of the present model. For instance,
the local environment will generally change with (residence)
time and additional coagulation mechanisms may set in [e.g.,
sedimentation when SMD exceeds a calculable threshold
size (Sec. VI C) or fractal-like aggregate formation when the
coalescence rate becomes too slow, etc.]. In this regard, while
some of these generalizations appear to be straightforward, as
briefly outlined in Secs. VI and VII, others will have to be left
for necessary extensions of the present work.

III. RATE CONSTANT FOR BROWNIAN COAGULATION
IN PRESENCE OF THERMOPHORESIS

It is well known that, in the continuum regime, particles
of different sizes in a temperature gradient will experience
different thermophoretic drift velocities [6,11]. Therefore,
this phenomenon can be responsible for collisions between
particles of different sizes, which can lead to the subsequent
coagulation (as recently shown by Rosner and Arias-Zugasti
[4]); this occurs, for instance, for particles with different
sedimentation velocities under the more familiar action of
gravity. The rate constant for thermophoretically dominated
coagulation adopted here is given by [4,12]

βTP,12 = π (a1 + a2)2 ‖V 1 − V 2‖, (1)

where ai and V i are the radius and the thermophoretically
induced drift velocity of particle i. In terms of the dimen-
sionless thermophoretic particle “diffusivity,” written here
as α̃ ≡ αT D/ν, the vector expression for the particle drift
velocity is given by

V i = α̃iν(−∇ ln T ), (2)

where T is the local carrier gas absolute temperature, ν the
carrier gas momentum diffusivity (i.e. the kinematic viscosity),
D the Brownian diffusion coefficient, and αT (dimensionless)
an effective thermal diffusion factor. For a spherical particle
with intrinsic Fourier thermal conductivity kp and diameter dp

the decisive factor α̃ depends on particle size (via the Knudsen
number based on gas mean free path � and particle diameter:
Kn ≡ �/dp) and thermal conductivity ratio kp/kg (where kg

is the gas thermal conductivity) via the simple semiempirical
relation [13]

α̃ = 2Cs[(kg/kp) + 2CtKn]C

(1 + 6CmKn) [1 + 2(kg/kp) + 4CtKn]
, (3)

where C is the Cunningham-Millikan Stokes drag correction
factor, Ct is the gas-solid temperature jump coefficient, and
Cm and Cs are the gas-solid momentum exchange and thermal
slip coefficients, respectively. The values of these gas-solid
interaction coefficients [13] can be estimated from kinetic
theory, and approximate values are given as per Eqs. (2.21)
and (2.56) of Ref. [6].

On the other hand, the rate constant for the well-known case
of Brownian coagulation in the continuum regime, derived by
Smoluchowski (see, e.g., Ref. [6]), is given by

βB,12 = 4π (D1 + D2)(a1 + a2), (4)

where the Brownian diffusion coefficient is

D = kBT

6πμa
C, (5)

where μ is the gas shear viscosity, and kB is the Boltzmann
constant and the remaining symbols have already been defined.

Although the assumption of rate law additivity for different
coagulation processes is usual in the literature, a more
accurate approximation has been adopted in the present work.
In this regard, the rate constant for combined Brownian
and thermophoretic coagulation has been obtained following
the classical Smoluchowski formulation [6], based on the
calculation of the diffusive flow toward a target particle but
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including an additional convective term that accounts for the
relative thermophoretic speed between the particles. Assuming
that all collisions lead to the corresponding coagulation (i.e.,
neglecting collision efficiency corrections) and assuming a rec-
tilinear thermophoretic drift superimposed with the Brownian
motion (i.e., neglecting hydrodynamic creep-flow interactions
between the particles), the convective-diffusion equation that
determines the coagulation rate is the same as the one
considered by Simons et al. [5] for the combined Brownian and
differential sedimentation coagulation case, exchanging their
sedimentation velocities by the corresponding thermophoretic
velocities. Hence, the combined coagulation rate is given by

β12 = (
βB,12 + βTP,12

)
F(Pe12), (6)

where the correction factor F (Pe) is given by [5]

F (Pe) = 4π/Pe

4 + Pe

∞∑
n=0

(−1)n (2n + 1)
In+1/2 (Pe/2)

Kn+1/2 (Pe/2)
(7)

with I and K being the modified Bessel functions and Pe
the Peclet number, defined as the ratio between the relative
thermophoretic and Brownian diffusion velocities

Pe12 = ‖V 1 − V 2‖
(D1 + D2) / (a1 + a2)

. (8)

Due to the low convergence rate of the series in Eq. (7)
and the extremely large numbers involved when the Peclet
number becomes large, the accurate numerical evaluation of
Eq. (7) for large values of Pe is a mathematically involved
and time-consuming task [14]. In this regard, the convenient
approximate least-squares formula provided by Ref. [15] has
been used for our present calculations (Fig. 1).

The time evolution of an initially log-normal DSD under
the combined kernel Eq. (6) has been analyzed and is shown
below (Sec. V) as a function of the reference Peclet number
Peref , defined as the ratio between the characteristic evolution
times for the initial DSD function under the Brownian
and thermophoretically dominated coagulation kernels acting
alone:

Peref ≡ tB,ref

tTP,ref
. (9)

FIG. 1. Factor F (Pe) vs. Pe from Eq. (7) [5].

These characteristic evolution times are given (in terms of the
unconditional particle number density in the initial population
N0) by ti,ref ≡ 1/

(
βi,refN0

)
. Thus

tB,ref = 3μ

8kBT N0
, and tTP,ref = 4

πd2
refVrefN0

, (10)

where the reference particle diameter dref is defined as the SMD
of the initial population and where the reference velocity Vref

is the thermophoretic drift velocity of a SMD droplet in the
limit kp/kg = ∞.

As a consequence, the combined coagulation kernel is
finally written as

β12 = βB,ref(KB,12 + PerefKTP,12)F (Pe12) , (11)

where the dimensionless coagulation kernels KB,12 and KTP,12

are defined by Ki,12 ≡ βi,12/βi,ref and Peref [Eq. (9)] plays
the role of an independent parameter that measures the
relative importance of both coagulation processes in the initial
population. Namely, according to the former definition of Peref

[Eq. (9)], we find that the reference Peclet number is related
to the prevailing conditions in the initial population by

Peref = α̃∞,ref

32Knref
Scref‖∇ ln T ‖�, (12)

where subscript ref corresponds to an SMD particle in
the initial population, subscript ∞ corresponds to the limit
kp/kg = ∞, and Sc = ν/D is the corresponding particle
Schmidt number. It may be easily seen that the first factor
α̃∞,ref/32Knref reaches a constant value close to 0.32 for
Knref < 10−2.

IV. POPULATION BALANCE EQUATION GOVERNING
THE CONTINUOUS DSD FUNCTION

Once the coagulation rate law β12 is known in terms of
the particle-state variables [Eq. (11)], the population balance
equation that determines the evolution of an initial particle
distribution is the Smoluchowski coagulation equation [6]

∂n

∂t
= B − D, (13)

where the particle production (B) and destruction (D) terms
by coagulation are explicitly given by

B(v) = 1

2

∫ v

0
dv′β(v′,v − v′) n(v′) n(v − v′)

(14)

D(v) = n(v)
∫ ∞

0
dv′ β(v,v′) n(v′)

in terms of particle volume v = (4π/3)a3.
A systematic parametric study of this integro-PDE has

been performed using a two-stage combined QMOM [8]
and orthogonal collocation method [16], as reported below.
The values for the reference Peclet number considered in
the numerical calculations shown below go from Peref =
10−3 (corresponding to coagulation dominated by Brownian
motion) to Peref = 103 (corresponding to thermophoretically
dominated coagulation). Regarding the Fourier thermal con-
ductivity ratio kp/kg , the values considered were 10, 102, 103,
104, and ∞. In all the cases the asymptotic results for pure
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FIG. 2. Time needed to approach the self-preserving DSD func-
tion vs. Peref for several values of kp/kg . The solid lines correspond
to the coagulation frequency given by Eq. (6), and the broken lines
correspond to Eq. (6), assuming F (Pe) = 1. The horizontal gray lines
correspond to the asymptotic results of pure Brownian (Peref = 0) and
pure thermophoretic (Peref = ∞) coagulation.

Brownian (Peref = 0) and pure thermophoretic (Peref = ∞)
coagulation are also shown for reference (gray lines). The
results from QMOM are shown as a function of the reference
Peclet number in Figs. 2, 3, and 4. On the other hand, the
results from orthogonal collocation are presented in Fig. 5.

A. Numerical integration based on QMOM

In the first stage, the time evolution of the 2N lowest order
moments of the DSD n(v,t)

μk(t) ≡
∫ ∞

0
dv vkn(v,t), N = 0,1,2, . . . ,2N − 1 (15)

has been computed by means of QMOM [8], solving the
corresponding evolution equations, given by [17]

dμk

dt
= 1

2

∫ ∞

0
dv′

∫ ∞

0
dv′′β(v′,v′′) n(v′) n(v′′)

× [(v′ + v′′)k − v′k − v′′k], k = 0, . . . ,2N − 1.

(16)

Although QMOM calculations based on a relatively low
number of quadrature abscissae are usual in the literature
(for instance, N � 3), in the present case a higher number of
abscissae were needed to reach convergence for intermediate
values of the reference Peclet number. Thus, in the present
work N = 6 quadrature abscissae were used in all the QMOM
calculations.

The QMOM-based time integration of Eq. (13) was carried
out until the self-preserving size distribution function was
reached to within a certain tolerance. As is well known, in the
long-time limit coagulation-aged size distribution functions
approach (in general) a self-similar form ψ(η) [6,18]; i.e., if
ψ(η,t) is defined according to

n(v,t) ≡ N ψ(v/v,t) / v, (17)

[where N = μ0(t) is the unconditional droplet number density,
v(t) = μ1(t)/μ0(t) is the time-dependent average particle
volume, and η ≡ v/v is the similarity variable], we find that in

FIG. 3. Moments of the self-preserving size distribution function
as a function Peref for kp/kg = 10 (separate lines), 102, 103, 104, and
∞ (almost superimposed lines). (a) Geometric standard deviation
σg , (b) skewness γ1, and (c) kurtosis β2. The horizontal gray lines
correspond to the asymptotic results of pure Brownian (Peref = 0)
and pure thermophoretic (Peref = ∞) coagulation.

the long time limit ψ(η,t) approaches a function that does not
depend on time. According to the former definition [Eq. (17)],
the moments of ψ(η,t) (μψ

k ) are dimensionless and fulfill
μ

ψ

0 = μ
ψ

1 = 1 and are related to the moments of n(v,t) by
μ

ψ

k = (μk/μ0) /vk , as can be easily seen.
If the DSD approaches a self-similar form in the long time

limit, then ψ(η,t) becomes independent of time for long times,
and, as a consequence, all its moments should reach constant
values in the limit t → ∞. Based on this expected behavior of
ψ(η,t), the condition used in the present calculations to test
whether the self-preserving size distribution function has been
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FIG. 4. Moments of the self-preserving size distribution function
over the corresponding moments of ψ(η) fitted to a log-normal
distribution, as a function Peref for kp/kg = 10 (separate lines),
102, 103, 104, and ∞ (almost superimposed lines). (a) skewness γ1;
(b) kurtosis β2. The horizontal gray lines correspond to the asymptotic
results of pure Brownian (Peref = 0) and pure thermophoretic (Peref =
∞) coagulation.

reached is determined by the variation rate of the five lowest
order moments of ψ(η,t). This condition is given by:

tB,ref

(1 + Peref) F (Peref)

4∑
k=0

∣∣∣∣∣
dμ

ψ

k

dt

∣∣∣∣∣ < ε. (18)

The numerical solution of Eq. (16) by means of QMOM
has been calculated for ε between 10−1 and 10−3. In this
respect it was found that the principal effect of changing the
value of ε, in that range, was simply to rescale the times
at which the self-preserving size distribution is “reached”
(obviously this time approaches infinity as ε → 0, since the
approach is asymptotic). In addition to the rescaling of the
time needed to reach self-preservation no qualitative changes
were observed (with ε in the aforementioned range) and no
significant quantitative changes were observed for ε < 10−2.
Thus, a tolerance ε = 10−2 was finally chosen for the results
presented here.

The QMOM-based solution of Eq. (16) provides informa-
tion on the time evolution of the considered moment set (μk ,
with k = 0,1, . . . ,2N − 1), and by means of the condition
Eq. (18) it also provides information on the time needed to
approach the self-preserving size distribution function ψ(η) to
within a certain tolerance.

It has been found that the present self-similarity test
[Eq. (18)] leads to characteristic times for reaching the self-

preserving form that are about an order of magnitude longer
than most self-preservation times reported in the literature
[19], which are based only on the standard deviation of the
self-preserving size distribution function. However, our results
show that even though the standard deviation of ψ(η,t) reaches
its asymptotic value relatively fast, one must wait longer times
for the higher-order moments.

The results for the time (tfin) needed to reach the self-
preserving form [according to (Eq. (18))] are shown in
Fig. 2 for both the simple addition kernel [assuming F (Pe) =
1, broken lines] and the more accurate combined kernel
[Eq. (6) with F (Pe) given by Eq. (7), solid lines]. The results
for the lowest-order moments of ψ(η) ≡ ψ(η,tfin) are shown
in Fig. 3 in terms of the geometric standard deviation, the
(asymmetry parameter) skewness, and the (flatness parameter)
kurtosis. In Fig. 4 we show the ratio between the skewness and
kurtosis of ψ(η) and the corresponding results found for a
lognormal fit of ψ(η).

One of the goals of the present work is to test (in the case of
Brownian and thermophoretic coagulation) the frequently used
simplification of assuming an addition collision frequency
when several coagulation processes take place simultaneously.
In this regard, our results show significant differences (close
to 30%) in the time needed to reach self-preservation when
both coagulation mechanisms are equally important, i.e., for
intermediate values of the reference Peclet number (see Fig. 2).
As expected, these differences become insignificant as either
asymptote, Peref → 0 or Peref → ∞, is approached. On the
other hand, the differences between the simple addition kernel
and the combined coagulation kernel regarding the moments
of the final self-similar distribution ψ(η) were only about 10%,
and, as a consequence, only the results corresponding to the
coagulation kernel given by Eq. (6) with F (Pe) given by Eq. (7)
have been plotted for clarity.

Regarding the dependence of the coagulation dynamics
on the particle-gas thermal conductivity ratio (kp/kg), our
results show that, in the range considered here (kp/kg >

10), this dependence becomes negligible as either asymptote
(Peref → 0 or Peref → ∞) is approached. On the other hand,
for intermediate values of the reference Peclet number this
dependence is appreciable only in the limit of low particle
thermal conductivity (i.e., when kp/kg approaches 10) but
becomes negligible for kp/kg > 102 for all values of Peref .
Of course, it was expected that the results should become
independent of the kp/kg ratio in the small Peref limit (i.e., as
the pure Brownian coagulation limit is approached), but it is
remarkable that the results become also independent of kp/kg

in the opposite limit (corresponding to pure thermophoretic
coagulation).

This result can be easily explained in the following way.
Assuming that the diameters of the colliding particles fulfill
d1,d2 � �, which certainly holds in the long time limit, to
leading order in �/di the coagulation frequency Eq. (6) is
given by

β12

βB,ref
� (d1 + d2)2

4d1d2

[
1 + 4Peref

1 + 2(kg/kp)∣∣∣∣ d1

dref
− d2

dref

∣∣∣∣
]

F (Pe12). (19)
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FIG. 5. (Solid lines) Normalized self-preserving DSD functions reached in the long time limit for several values of Peref and kp/kg = 10,
102, 103, 104, and ∞. The gray lines correspond to pure Brownian (Peref = 0) and pure thermophoretic (Peref = ∞) coagulation. The results
for different values of kp/kg are almost superimposed for all values of Peref , except for Peref = 10−1 and 10−0.25 [(c) and (d)], where ψ(η)
corresponding to kp/kg = 10 can be distinguished from the remaining values. For all values of kp/kg , ψ(η) becomes indistinguishable from the
pure Brownian coagulation QSP DSD for Peref � 10−2 [(a) and (b)], and from the pure thermophoretic coagulation QSP DSD for Peref � 101

[(f), (g), and (h)].

Hence, in the limit Peref � 1 the thermophoretic part domi-
nates and in that case the dependence in kp/kg is given only
by the factors (1 + 2kg/kp)−1 and F (Pe12). The latter factor
depends also in kp/kg since, in the limit d1,d2 � �, the Peclet

number Pe12 is given by

Pe12 � 16Peref

1 + 2(kg/kp)

∣∣∣∣ d1

dref
− d2

dref

∣∣∣∣ (20)
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to leading order in �/di . Therefore, if Peref � 1, in the long
time limit the dependence of β12 [Eq. (19)] on kp/kg given
by the factor (1 + 2kg/kp)−1 affects only the time scale but
not the final self-preserving distribution reached. On the other
hand, the dependence on kp/kg given by the factor F (Pe12)
[Eq. (20)] affects only the length scale (defining an “effective”
reference diameter as dref,eff ≡ [1 + 2(kg/kp)]dref), but not the
final distribution reached.

Hence, as a consequence of these approximate symmetry
relations of the combined coagulation kernel reached in the
long time limit (i.e., for d1,d2 � �), the results for ψ(η)
become independent of kp/kg not only in the small Peref

limit (as expected) but also in the opposite limit Peref � 1,
corresponding to coagulation dominated by thermophoresis.

On the other hand, if we consider intermediate values
of the reference Peclet number, in the range of values of
kp/kg considered here (kp/kg > 10) we find that, for kp/kg =
102 or larger the former coagulation kernel differs only
in a small correction (of order 10−2 or smaller) from the
coagulation frequency corresponding to kp/kg = ∞. As a
consequence, the dependence on kp/kg is appreciable only
for intermediate values of Peref in the limit of the low particle-
gas thermal conductivity ratio (i.e., for kp/kg � 10), being
almost negligible for kp/kg = 102 or larger. In particular, for
kp/kg = 103 or larger, our numerical results become totally
indistinguishable from the results corresponding to the limit
kp/kg = ∞ (see Figs. 2, 3, 4, and 5).

Regarding the time needed to reach self-preservation (tfin),
Fig. 2 shows a dramatic increase in tfin for intermediate values
of the reference Peclet number, whereas the much shorter
self-preservation times corresponding to pure Brownian and
thermophoretic coagulation are recovered for Peref < 10−2 and
Peref > 10, respectively. This result will be explained in Sec. V,
along with the results found for the function ψ(η), computed
using orthogonal collocation (see also Sec. IV B below).

Finally, regarding the shape of the self-preserving DSD
function ψ(η), our results (Fig. 4) show that ψ(η) is not a
log-normal distribution, irrespective of the reference Peclet
number and the thermal conductivity ratio. As a consequence,
the approximation of considering a closed form mathematical
form for the DSD (log-normal in this case), which is a
frequently used approximation, is not justified and may
be misleading, yielding increasing errors as higher-order
moments of the DSD are considered.

B. Numerical integration based on orthogonal collocation

While QMOM is extremely efficient, it has the limita-
tion that it only provides information about the moments
[Eq. (15)] of the number density distribution function, which
remains an unknown function. To calculate the evolution of
the number density n(v,t), from its initial condition until
the self-preserving form is reached, one needs to integrate
Eq. (13). But then, since one needs to carry this time
integration until relatively long times, one is forced to
discretize extensive regions of the state variables space (here
particle volume), because the average particle volume and
standard deviation of a population n(v,t) under coagulation
increase with time. As a consequence, if a time-independent
discretization is used, this would force us to consider extremely

fine discretizations, resulting in a computationally expensive
scheme. On the other hand, a time-dependent discretization
that evolves in time in an adaptive way, determined by the
time evolution of n(v,t), can produce an efficient numerical
method that enables the time integration of Eq. (13) for long
times.

In principle there are several possible ways of implementing
adaptive spectral schemes to solve Eq. (13). On the one hand,
one can compute a time-dependent spectral basis, which is spe-
cially suited to solve Eq. (13), and then use this basis to perform
the spectral expansion of n(v,t), as successfully implemented
in Refs. [20,21]. Another possibility is to introduce a time-
dependent mapping based on the time evolution of n(v,t) in
such a way that the region v ∈ [vmin,vmax], where n(v,t) is
mainly located, is mapped to the standard interval ([−1,1])
and then perform a spectral expansion of n(v,t) in terms of
a complete basis on that interval (for instance Chebyshev or
Legendre), as successfully implemented in Refs. [22,23]. The
numerical method used here belongs to this second class of
adaptive schemes. In the present calculations Eq. (13) has
been numerically integrated using orthogonal collocation in
terms of an adaptive variable x, defined as the ratio between
particle volume v and the time-dependent standard deviation
of n(v,t) (σ (t)), computed previously using QMOM. Hence, in
terms of the mapped variable x the standard deviation of n(x,t)
is always 1, and a time-independent accurate discretization in
terms of x allows for an efficient numerical solution of Eq. (13).
This numerical integration of Eq. (13) has been carried out for
values of t between 0 and the tfin previously derived from
QMOM.

The numerical method used here to integrate Eq. (13),
written in terms of the mapped variable x ≡ v/σ (t), has
been orthogonal collocation [16]. The spectral basis used
was the truncated Whitaker cardinal basis [16], with 75
spectral components. Since orthogonal collocation involves
the evaluation of the differential equation at the corresponding
collocation abscissae (xi), which are constant in time, when
this method is implemented in terms of the mapped variable
x we find that the coagulation term has to be evaluated at the
time-dependent locations vi(t) = xiσ (t). Hence, in principle,
this strategy would result in a quite expensive numerical
scheme, since all the integrals that appear in the coagulation
term of Eq. (13) would have to be recalculated at every time
step. However, by means of the fast algorithm introduced
in Ref. [9] this problem can be avoided, which results in
an extremely efficient numerical method. This strategy has
also been successfully used in Refs. [4,7]. More details on
the implementation of orthogonal collocation in terms of
the mapped variable x ≡ v/σ (t), for aerosol dynamics under
coagulation, can be found in Ref. [10].

The results for the self-preserving normalized size distri-
bution function reached in the long time limit ψ(η), found
according to the self-similarity test Eq. (18), are shown in Fig. 5
as a function of the reference Peclet number (see solid lines),
together with the results corresponding to pure Brownian and
pure thermophoretic coagulation (see thick gray lines). As
shown in Fig. 5, for Peref < 10−2 the quasi-self-preserving
size distribution function is almost identical to the self-
preserving size distribution function corresponding to pure
Brownian coagulation. On the other hand, for Peref > 10 the
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quasi-self-preserving size distribution function is almost iden-
tical to the result found for pure thermophoretic coagulation.

As can be seen in Fig. 5, both asymptotic limits Peref →
0 and Peref → ∞ lead to self-preserving size distribution
functions that do not depend on the thermal conductivity
ratio (kp/kg), as could be expected (see Sec. IV A). On the
other hand, for intermediate values of the reference Peclet
number, and for values of kp/kg in the range considered, the
dependence of ψ(η) on kp/kg is almost negligible. According
to our numerical results ψ(η) becomes slightly dependent on
kp/kg only for the intermediate values of Peref between 0.1
and 1, where the self-preserving size distribution function
corresponding to kp/kg = 10 can be slightly distinguished
from the self-preserving size distribution functions found for
kp/kg = 102, 103, 104, and ∞, which are totally superim-
posed. The results for ψ(η) corresponding to Peref < 0.1 or
Peref � 1 are totally independent of kp/kg . The reason of
this near independence of ψ(η) on the particle-gas thermal
conductivity ratio has already been explained in Sec. IV A.

V. QMOM AND OC RESULTS FOR DSD EVOLUTION AND
ULTIMATE TP DOMINANCE?

The results for ψ(η) computed using orthogonal collocation
show a smooth transition from the pure Brownian coagulation
limit (reached for Peref � 10−2) to the pure thermophoretic
coagulation limit (reached for Peref � 10); see Fig. 5. As
mentioned, these results are almost independent of kp/kg

(Sec. IV A). However, even though this smooth transition
from pure Brownian to pure thermophoretic coagulation, as
a function of Peref , seems a natural result, a different result
could have been expected according to the combined Brownian
and thermophoretic coagulation frequency given by Eq. (6), as
explained below.

For arbitrary long times the characteristic sizes of the
colliding particles are expected to become very large compared
to the reference size, which is based on the initial size
distribution function. Likewise, the typical difference in
diameter between two colliding particles is expected to become
very large compared to the reference diameter. Hence, in the
long time limit the coagulation frequency given by Eq. (6)
approaches the corresponding limit for d1,d2 � �, which is
given by Eq. (19) and Eq. (20). As a consequence, as long as
Peref > 0, at sufficiently long times the thermophoretic contri-
bution becomes dominant over the Brownian contribution, i.e.,
thermophoretic coagulation (if present) ultimately dominates
over Brownian coagulation for arbitrary long times irrespective
of Peref .

The reason why this behavior is not observed in our
numerical integration of Eq. (13) is because for small values
of the reference Peclet number the stopping-test condition
[Eq. (18)] is satisfied before the thermophoretic contribution
becomes relevant. This is because the characteristic evolution
time of the aerosol scales with the inverse of the unconditional
particle number density N (t), becoming very large in the long
time limit as N (t) decreases. As a consequence, even though
no true self-similar behavior may have been reached yet, the
stopping-test condition Eq. (18) becomes eventually fulfilled
in the long time limit.

This explains the extraordinarily long times needed to
reach “quasi”-self-preservation for intermediate values of the
reference Peclet number (Fig. 2). When both (Brownian and
thermophoretic) contributions to the coagulation frequency
are relevant, the coagulation kernel is not a homogeneous
function of particle size, and no true self-similar behavior
is observed. However, for times that are long enough, the
characteristic coagulation time is so long that the coagulation
process becomes slow enough for the stopping-test condition
[Eq. (18)] to become satisfied, even though the DSD has not
yet reached the asymptotic self-similar form.

This also explains the smooth transition found for ψ(η) be-
tween the pure Brownian and thermophoretic self-preserving
functions. For Peref < 10−1 long before the thermophoretic
contribution becomes important the self-similar stopping
test defined by Eq. (18) is fulfilled, yielding a self-similar
distribution which is very close to the one corresponding to
pure Brownian coagulation. On the other hand, for values
of the reference Peclet number of order unity or larger, the
thermophoretic contribution to the coagulation frequency is
important right from the start. In these cases the self-similar
distribution found is very close to the one corresponding to
pure thermophoretic coagulation. In this respect, we recall
[4] that in the long time limit the coagulation frequency
corresponding to pure thermophoretic coagulation becomes
a homogeneous function of degree 1 in particle diameter
(degree 1/3 in particle volume). A similar conclusion can
be drawn from Eq. (19) for the combined Brownian and
thermophoretic coagulation considered here. However, for
intermediate values of the reference Peclet number (for
10−1 < Peref < 1 according to Fig. 2), both contributions to
the coagulation frequency are equally important, which results
in a coagulation frequency that is not a homogeneous function
of particle size. For reference Peclet numbers close to 1 the
contribution of the thermophoretic term becomes dominant
before the stopping-test condition is fulfilled simply because
of the decrease in N (t), producing a dramatic reduction in tfin,
along with a rather fast transition in ψ(η) toward a function
that is very close to the asymptotic self-similar distribution
corresponding to pure thermophoretic coagulation.

In order to be observed in nature a coagulation-aged
self-similar distribution should be reached in a reasonable
time, before other processes (or changes in the environment)
set in. In the case under consideration, for small values of
the reference Peclet number the typical particle size needed
for the thermophoretic contribution to become dominant
over the Brownian contribution becomes extremely large.
This has two consequences: On the one hand, it is possible
that before this ultimate thermophoresis dominance may be
observed other coagulation processes (i.e., sedimentation) may
become important. On the other hand, since the characteristic
coagulation time scales with the inverse of the total number
density of the aerosol N (t) which decreases with time, if Peref

is too small the time needed before the ultimate thermophoresis
dominance can be observed may become too large to be
physically relevant.

As a consequence, even though in principle thermophoretic
coagulation ultimately dominates over Brownian coagulation
irrespective of Peref (provided that Peref > 0), this result will be
observed only for values of the reference Peclet number close
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to unity or larger, and, for this reason, the smooth transition
between the pure Brownian and the pure thermophoretic self-
similar distributions shown in Fig. 5 seems physically relevant.

VI. DISCUSSION

A. Collision efficiency and finite-rate coalescence

Our present results pertain to the limiting case that each
binary encounter between particles of volumes v1 and v2 leads
to “successful” coalescence, producing a spherical particle
of volume v1 + v2 before the next encounter with another
particle. In the language of cloud physics we are assuming
“unit collision efficiency (fraction),” as is appropriate for
collisions for which the average relative kinetic energy is
insignificant compared to typical droplet surface energies (i.e.,
negligible Weber number).

Whether surface tension-driven viscous flow leads to
coalescence on the coagulation time scale (βrefNp)−1 depends
on a reference characteristic time estimated from:

tcoalesce = πμL
SMD

γL
, (21)

where γL is the prevailing surface tension and μL the dynamic
viscosity (see, e.g., Ref. [6]). It is interesting to note that on
this basis a micron-diameter molten iron microdroplet near
Tmp = 1808 K would have a coalescence time of only 8.5 ns.
Based on βref = (8/3)kBT /μg , appropriate for continuum
regime Brownian coagulation, this would be insignificant
compared to the coagulation time (of order 10 ms) of any
such low volume fraction “mist” in, say, 1808 K helium (for
which μg = 0.62 × 10−4 Pa s).

For sols composed of more viscous liquids, or coagulation
sufficiently far below the effective melting temperature, then
“aggregation” would set in, leading to fractal-like “particle”
morphologies [6] governed by rather different laws of diffusion
and thermophoresis (e.g., Ref. [24]).

B. Marangoni-induced thermophoresis

Our use of “solid body” thermophoresis results for micro-
droplet transport in a temperature gradient requires further dis-
cussion. This is because there are situations where microflows
driven by surface tension gradients can retard (or even reverse)
the motion of microdroplets in such environments.

For present purposes we merely envision an engineer-
ing environment in which such liquid-vapor interfaces are
“contaminated,” retarding any surface tension gradient-driven
flows. It should also be mentioned that the use of gas-liquid
experimental results (e.g., oil droplet drag in low density
gases) to describe gas-solid situations is common in aerosol
science and technology, where contaminated liquid surfaces
are avoidable only if extraordinary precautions are taken.

For some systems the aforementioned Marangoni effect
may be precluded simply based on the following “sufficient”
condition:

γL

d
<

(
Tc

T
− 1

)
(Kn)2 p, (22)

where p is the prevailing pressure and the Knudsen number
Kn = �/d is necessarily 
 1 for the “continuum limit.”

This can be derived by insisting that the difference in
surface-tension-induced stress across the nonisothermal drift-
ing droplet be small compared to the average Stokes drag
stress. However, for many systems of practical interest this
criterion would not be satisfied in the absence of surface
contamination.

The consequences of Marangoni-driven flows are therefore
certainly of theoretical interest, including the limiting case in
which this is the dominant source of thermophoresis (from
cold to hot). However, such extensions are beyond the scope
of our present model, which can be regarded as applying to
situations for which the viscosity ratio μL/μg is large (say
O(10) ∼ O(1000), but not “too large” [cf. the effect of μL on
the coalescence time, Eq. (21)].

C. Body-force “sedimentation”

In the presence of a body force g (per unit mass) a
particle of diameter d (d � �) will sediment at the speed
gtp, where tp is the familiar characteristic Stokes “stopping
time” (1/18)ρpd2

p/μg . This implies that the velocity difference
appearing in the corresponding coagulation rate constant will
be proportional to |d2

1 − d2
2 | for a common ρp value. When

one then examines the ratio of βsed,ref to βTP,ref one finds
that sedimentation would ultimately dominate the long-time
coagulation behavior. However, one can show that, as long as
the population SMD is less than about:

SMDcrit = νg

(
‖∇ ln T ‖ρg/ρp

geff

)1/2

, (23)

then the differential sedimentation mechanism can be ne-
glected. Of course, this condition is readily met when the
effective “geff” is small.

D. Noncontinuum effects

When the Knudsen numbers Kn1 and Kn2 are not small then
the Brownian and thermophoretic coagulation rate constants
are both affected but in opposite directions. The Brownian co-
efficient is increased because the relative Brownian diffusivity
D1 + D2 is increased by the relevant Cunningham-Millikan-
Stokes drag (“slip”) correction factors.

However, βTP is reduced because of the reduced sensitivity
of the dimensionless thermophoretic diffusivity α̃ to size as
one approaches the “free-molecule” limit (Kn → ∞). These
“rarefaction” effects would be straightforward to include in an
extended theory, at the expense of introducing the gas mean
free path:SMD ratio as an additional parameter. Indeed, for the
high ‖∇T ‖, atmospheric pressure Fe(L)/He “mist” examples
cited in Rosner and Arias-Zugasti [4] Kn values were not
small enough to maximize the coagulation consequences of
particle thermophoresis. Nevertheless, we estimated that this
mechanism probably dominated the encounter rate between
particles straddling the nominal diameter of 1 μm.

E. Dense vapor effects

Particle thermophoretic drift velocities outside of the do-
main of ideal gas kinetic theory remain an open question (see,
e.g., Ref. [1]). For small departures from ideality, as relevant to
high-pressure laminar diffusion flames, the approach of Rosner
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and Arias-Zugasti [25] (based on the virial EOS together with
the thermodynamics of irreversible processes) appears to be
promising but remains to be developed. However, extensions to
higher carrier vapor molecular volume fractions [> O(10−1)]
will be needed to properly deal with supercritical fluid particle
processing applications [7]—especially in the presence of
simultaneous temperature gradients.

VII. IMPLICATIONS, CONCLUSIONS,
GENERALIZATIONS, AND FUTURE WORK

The nucleation of condensable vapors often occurs due to
supersaturations achieved in the presence of strong tempera-
ture gradients (see, e.g., Refs. [2] and [26]). Yet, such data
have previously been analyzed on the basis of homogeneous
nucleation theory and coagulation rate theory based on locally
uniform temperatures. This observation has motivated our
present theoretical study of the coagulation-rate consequences
of spatially nonuniform temperature.

Here we consider for the first time the simultaneous role of
size-dependent thermophoresis and continuum regime Brow-
nian diffusion in shaping “coagulation-aged” (asymptotic)
aerosol particle size distributions. In contrast to the extreme
case of initial thermophoretic “domination” [4], our present
methods and results apply to more general situations often
encountered for smaller temperature gradients (<105 K/m),
where size-dependent thermophoretic drift modifies but does
not initially dominate the coagulation frequency. As described
in Sec. III, we have avoided using an “additive kernel”
approximation by basing our combined kernel on the solution
of a test particle convective-diffusion equation that accounts
for both ordinary Brownian diffusion and (thermophoretic)
drift. This kernel is then introduced into a Smoluchowski-
type population-balance integro-PDE so we can track the

evolution of initially log-normal distributions in a locally
nonisothermal gas environment. As expected, when a reference
Peclet number of the form βTP,ref/βB,ref is much smaller
than, say 0.1, we recover the previously well-studied and
characterized Brownian self-preserving populations with a
diameter-based geometric standard deviation near 2.4. How-
ever, for intermediate Peclet values, characteristic distortions
set in, corresponding to increased spread and skewness and
slightly smaller departures from log-normality. Ultimately (for
Peclet-values larger than about 10) our quasi-self-preserving
DSDs become indistinguishable from our previously reported
thermophoretically dominated results [4].

Remarkably, it has been observed that, for kp/kg > 10, the
dependence on the particle-gas Fourier thermal conductivity
ratio reduces to a slight modification of the characteristic
time and size scales and hence the results for the self-similar
normalized distribution function reached in the long time limit
are almost independent of the particle-gas Fourier thermal
conductivity ratio in the whole range of values of the Peclet
number.

In view of the idealizations we have chosen to introduce, in
Sec. VI we provide quantitative validity criteria and indicate
promising routes to further generalizations. These extensions
are expected to be essential to make particle processing
predictions in even more demanding environments (e.g., high-
pressure flames and supercritical fluids, which are the focus of
our current attention).

ACKNOWLEDGMENTS

This study was supported by the NSF under Grant No.
CBET-1037733 to Yale University. M.A.Z. also gratefully
acknowledges grants by Ministerio de Ciencia e Innovación
(Grant No. ENE2008-06515-C04-03) and Comunidad de
Madrid (Grant No. S2009/ENE-1597) at UNED.

[1] D. E. Rosner, Prog. Energy Combust. Sci. (submitted, 2011).
[2] E. T. Turkdogan and K. C. Mills, Trans. Metall. Soc. AIME 230,

750 (1964).
[3] T. Kumada, R. Ishiguro, and F. Kasahara, J. Nucl. Sci. Technol.

15, 912 (1978).
[4] D. E. Rosner and M. Arias-Zugasti, Phys. Rev. Lett. 106, 015502

(2011).
[5] S. Simons, M. M. R. Williams, and J. S. Cassell, J. Aerosol Sci.

17, 789 (1986).
[6] S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of

Aerosol Dynamics (Oxford University Press, Oxford, UK, 2000).
[7] D. E. Rosner and M. Arias-Zugasti, AIChE J. 57, 307 (2011).
[8] R. McGraw, Aerosol Sci. Technol. 27, 255 (1997).
[9] M. Arias-Zugasti, J. Aerosol Sci. 37, 1356 (2006).

[10] M. Arias-Zugasti, J. Aerosol Sci. (2011) (in preparation).
[11] D. E. Rosner, Transport Processes in Chemically Reacting Flow

Systems (Dover, Mineola, NY, 2000).
[12] D. E. Rosner and M. Arias-Zugasti, Ind. Eng. Chem. Res. 50,

8932 (2011).
[13] L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid

Mech. 101, 737 (1980).
[14] E. Sajo, Aerosol Sci. Technol. 42, 134 (2008).

[15] E. Sajo, Aerosol Sci. Technol. 44, 916 (2010).
[16] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed.

(Dover, Mineola, NY, 2000).
[17] J. C. Barrett and N. A. Webb, J. Aerosol Sci. 29, 31 (1998).
[18] Ramkrishna, Population Balances: Theory and Applications to

Particulate Systems in Engineering (Academic Press, New York,
2000).

[19] S. Vemury and S. E. Pratsinis, J. Aerosol Sci. 26, 175
(1995).

[20] P. N. Singh and D. Ramkrishna, J. Colloid Interface Sci. 53, 214
(1975).

[21] K. J. Sampson and D. Ramkrishna, J. Colloid Interface Sci. 103,
245 (1985).

[22] M. Strumendo and H. Arastoopour, Chem. Eng. Sci. 63, 2624
(2008).

[23] M. Strumendo and H. Arastoopour, Ind. Eng. Chem. Res. 48,
262 (2009).

[24] A. V. Filippov, M. Zurita, and D. E. Rosner, J. Colloid Interface
Sci. 229, 261 (2000).

[25] D. E. Rosner and M. Arias-Zugasti, AIChE J. 53, 1879
(2007).

[26] J. L. Katz and B. J. Ostermier, J. Chem. Phys. 47, 478 (1967).

021401-10

http://dx.doi.org/10.3327/jnst.15.912
http://dx.doi.org/10.3327/jnst.15.912
http://dx.doi.org/10.1103/PhysRevLett.106.015502
http://dx.doi.org/10.1103/PhysRevLett.106.015502
http://dx.doi.org/10.1016/0021-8502(86)90032-7
http://dx.doi.org/10.1016/0021-8502(86)90032-7
http://dx.doi.org/10.1002/aic.12277
http://dx.doi.org/10.1080/02786829708965471
http://dx.doi.org/10.1016/j.jaerosci.2005.12.002
http://dx.doi.org/10.1021/ie102444e
http://dx.doi.org/10.1021/ie102444e
http://dx.doi.org/10.1017/S0022112080001905
http://dx.doi.org/10.1017/S0022112080001905
http://dx.doi.org/10.1080/02786826.2010.500638
http://dx.doi.org/10.1016/S0021-8502(97)00455-2
http://dx.doi.org/10.1016/0021-8502(94)00103-6
http://dx.doi.org/10.1016/0021-8502(94)00103-6
http://dx.doi.org/10.1016/0021-9797(75)90008-9
http://dx.doi.org/10.1016/0021-9797(75)90008-9
http://dx.doi.org/10.1016/0021-9797(85)90097-9
http://dx.doi.org/10.1016/0021-9797(85)90097-9
http://dx.doi.org/10.1016/j.ces.2008.02.010
http://dx.doi.org/10.1016/j.ces.2008.02.010
http://dx.doi.org/10.1021/ie800272a
http://dx.doi.org/10.1021/ie800272a
http://dx.doi.org/10.1006/jcis.2000.7027
http://dx.doi.org/10.1006/jcis.2000.7027
http://dx.doi.org/10.1002/aic.11190
http://dx.doi.org/10.1002/aic.11190
http://dx.doi.org/10.1063/1.1711920

