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Effect of particle size on energy dissipation in viscoelastic granular collisions

Dmytro Antypov and James A. Elliott*

Pfizer Institute for Pharmaceutical Materials Science, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge,
CB2 3QZ, United Kingdom

Bruno C. Hancock
Pfizer Global Research and Development, Groton, Connecticut 06340, USA

(Received 16 July 2010; revised manuscript received 13 June 2011; published 8 August 2011)

We analyze the scaling properties of the Hertz-Kuwabara-Kono (HKK) model, which is commonly used
in numerical simulations to describe the collision of macroscopic noncohesive viscoelastic spherical particles.
Parameters describing the elastic and viscous properties of the material, its density, and the size of the colliding
particles affect the restitution coefficient ε and collision time τ only via appropriate rescaling but do not change
the shape of ε(v) and τ (v) curves, where v is the impact velocity. We have measured the restitution coefficient
experimentally for relatively large (1 cm) particles of microcrystalline cellulose to deduce material parameters
and then to predict collision properties for smaller microcrystalline cellulose (MCC) particles by assuming the
scaling properties of the HKK model. In particular, we demonstrate that the HKK model predicts the restitution
coefficient of microscopic particles of about 100 μm to be considerably smaller than that of the macroscopic
particles. In fact, the energy dissipation is so large that only completely inelastic collisions occur for weakly
attractive particles. We propose a straightforward self-consistent extension to the Johnson-Kendall-Roberts (JKR)
model to include dissipative forces and discuss the implications of our findings for the behavior of experimental
powder systems.
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I. INTRODUCTION

There is substantial literature dedicated to understanding
inelastic particle collisions which covers applications ranging
from pharmaceutical [1] powders and transporting fruit [2]
to studying asteroids in the Saturnian ring system [3]. The
current study is motivated by the practical aspects of simulating
the processing of pharmaceutical powders on the scale of
individual granules of active ingredient and excipients (e.g.,
binders). This requires an adequate physical description of
interparticle contacts consistent with the available experimen-
tal data for both the material properties of granules themselves
and the ways they interact with each other. For such a common
pharmaceutical excipient as microcrystalline cellulose (MCC)
it was shown recently that the average Young’s modulus
measured on a nanoscale by atomic force microscopy is similar
to that measured macroscopically [4]. This is advantageous
from the point of view of computer modeling as the elastic
component of the intergranular contact forces can be readily
parametrized. However, it is less clear how to describe the
dissipative component both in terms of the model choice and
its parameters.

The starting point for theoretical and computational studies
of granular collisions is a contact model—a set of the
constituent force laws describing contact forces and torques
between the particles as they collide. There is always a
restoring elastic force: either linear described by Hooke’s
law or nonlinear described by Hertz’s law if the particles are
considered to be elastic spheres. Energy dissipation is usually
introduced into the model either via a velocity-dependent
damping force [5,6] or via nonsymmetric loading-unloading
force laws [7]. The fundamental problem here is that there
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are a number of ways the energy is dissipated, but the
overall effect has to be reproduced by an analytically or
otherwise well-defined dissipative force. The physical mech-
anisms responsible for the energy dissipation include but are
not limited to viscoelasticity, plastic deformation, bulk, and
surface elastic waves. This is why the use of simplified contact
models, such as a linear spring-dashpot (LSD) model or a
Hookean spring-dashpot (HSD) model [8,9], can be justified
as they provide a means of capturing the essential elastic and
dissipative characteristics of the system. These two models,
however, simply postulate the coefficient of restitution as a
collision property which does not depend on the particles’
impact velocity, elastic properties, or sizes. When using such
simplified constitutive models, the model parameters have to
be chosen empirically in order to match a given experimental
system and there is no analytical route to predict how the
variation of system parameters such as particle size or the
material they are made of will affect the contact laws. The same
is true for the variation of the experimental conditions such as,
for example, the impact velocity in a two-particle collision.
For this particular example, different models can be fitted to
reproduce the experimentally observed energy dissipation at
a given impact velocity, but as soon as collision velocity is
changed, the models’ predictions can be qualitatively different
[5]. Therefore, it is important to have a better understanding of
how a particular physical phenomenon, such as viscoelasticity,
translates into appropriate constituent force laws and how these
laws depend on the parameters of the collision.

For simplicity, we shall concentrate on head-on collisions of
spherical granules without taking into account their rotational
degrees of freedom. The energy dissipated in such a collision
can be quantified by the normal restitution coefficient

ε =
∣∣∣∣v(τ )

v(0)

∣∣∣∣ , (1)
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where v(0) is the impact velocity and v(τ ) is the velocity at the
end of the collision identified by collision time τ . Note that the
exact definition of “the end of the collision” will affect both τ

and ε.
The ball-drop experiment is a common way of measuring

restitution coefficient ε. In such an experiment, a spherical
object is dropped from a known height H and its rebound
height h is measured. Then the restitution coefficient can be
calculated as ε = √

h/H . Experimental data indicates that the
restitution coefficient decreases at higher collision velocities,
though this decrease is often too small to differentiate between
various contact models [10,11]. The dependence of the
restitution coefficient on particle size is much less studied
despite being crucial for the discrete element method (DEM)
simulations of powders.

The main challenge is to decide on the restitution coefficient
for microscopic (around 100 μm in diameter) granules of
powder from experimental data available for macroscopic
spheres approximately 100 times larger in size. The two
common choices are either (1) to assume that the restitution co-
efficient is independent of the particle size (and consequently
the impact velocity) and use the HSD model or (2) use a
viscoelastic or Hertz-Kuwabara-Kono (HKK) model in which
the restitution coefficient decreases at higher impact velocities
and then accept the size dependence predicted by this model.
We investigate the second route and conduct a detailed analysis
of how the input parameters of the HKK model affect both
the restitution coefficient and collision time. Additionally,
we demonstrate how nonspherical particles can be treated
within the same formalism and how collision properties for
the ball-drop experiment are related to those for a collision of
two free viscoelastic spheres.

The remainder of this paper is structured as follows. We
first describe the experimental and numerical methodology in
Sec. II. Then, the justification for use of the HKK model, its
details, and some exact analytical results are given in Sec. III.
This is followed by the application of the HKK model to
experimental data in Sec. IV. In Sec. V we demonstrate that
if elastic, viscous, and cohesive forces are considered together
in a single contact model, it predicts completely inelastic
collisions (dissipative capture) even for very weak cohesive
forces. Section VI summarizes our findings and suggests
possible sources of the overestimated energy dissipation in
microscopic particles.

II. EXPERIMENTAL AND NUMERICAL METHODS

The restitution coefficient of nonspherical MCC tablets
was measured experimentally using formula ε = √

h/H by
dropping them repeatedly on a large flat substrate, also made
from compacted MCC, from a height H of up to 1 m and
measuring their rebound height h by using a digital camera
against a ruled scale [12]. The vacuum release mechanism
was used to ensure that the tablets fell flat on their side and
bounced off the substrate straight up as described in more
details in Ref. [12].

The tablets were prepared by uniaxial compaction of MCC
Avicel PH102 powder using two concave punches. For all
tablets, the curvature radius was R = 5.26 mm and the mass
m = 500 mg. The density of the tablets was ρ = 1.56 g cm−3,

which is comparable to the bulk MCC density (i.e., the solid
fraction close to 1 for both the tablet and the target). Note that
using different grades of MCC powder with larger granules
to produce the tablets did not significantly affect the solid
fraction or restitution coefficient which was always within the
0.5 to 0.65 range. This supports the hypothesis that a densely
compacted tablet can be treated as a continuous bulk material.

Numerical calculations were performed by integration
of the Newtonian equation of motion using the leap-frog
scheme. Initial position and velocity were used to start the
calculation, while the force constants were determined by
material parameters and particle sizes. For all MCC granule
sizes we use bulk values of Young’s modulus E = 6 GPa and
the Poisson’s ratio ν = 0.3, which is supported by recent AFM
measurements [4].

III. VISCOELASTIC CONTACT MODEL FOR PARTICLE
COLLISION

A. Model details

Consider a normal (i.e., head-on) collision of two spherical
particles of radii r1 and r2. We assume that the direction of
the impact velocity v is colinear with the vector connecting
the centers of the particles, as is the velocity after collision v′.
Hence, ε = v′/v. If the particles are purely elastic and there
is no energy dissipation (ε = 1), the force between them is
described by Hertz’s law:

Fel(δ) = 4Eeff
√

reff

3
δ

3
2 , (2)

where 1/Eeff = (1 − ν2
1 )/E1 + (1 − ν2

2 )/E2 is a function of
the bulk material properties (Young’s moduli E1 and E2 and
Poisson’s ratios ν1 and ν2), 1/reff = 1/r1 + 1/r2 is a function
of the particles’ radii r1 and r2, and the total deformation
δ is related to the separation between the particles’ centers
r1 + r2 − δ.

Note that force (2) does not change whether the target
particle is fixed or not or if material properties of the particles
are swapped around. These changes, however, will affect the
collision properties via the effective mass meff = (1/m1 +
1/m2)−1 entering the equation of motion meffδ̈ = Fel(δ).
Consider, for example, the maximum deformation δmax which
can be determined by the conservation of energy in the zero
momentum frame as the deformation at which the elastic
energy Eel = ∫ δmax

0 Fel(δ)dδ is equal to the kinetic energy
Ekin = meffv

2/2:

δmax =
(

15meff

16Eeff
√

reff

) 2
5

v
4
5 . (3)

Equation (3) predicts, for example, that the maximum de-
formation in a collision of two identical elastic spheres will
increase by a factor of 2

2
5 ≈ 1.32 if one of them is fixed.

The collision time τ will also depend on the details of the
collision and for two identical elastic spheres is calculated
analytically [13,14] as

τ = 3.218

[
πρ(1 − ν2)

2E

]2/5
d

v1/5
. (4)

021303-2



EFFECT OF PARTICLE SIZE ON ENERGY DISSIPATION . . . PHYSICAL REVIEW E 84, 021303 (2011)

TABLE I. Effective elastic and damping parameters E∗ and D∗

for four collision types involving a sphere and one of the listed targets
made of the same material.

Target type meff reff E∗ D∗

A. Fixed sphere m d/4 2E 3D

B. Plane m d/2 2
√

2E 3
√

2D

C. Free sphere m/2 d/4 4E 6D

D. Free cylinder m/2 d/2 4
√

2E 6
√

2D

Different loading-unloading protocols will affect the colli-
sion properties of two dissipative particles in a similar way. In
particular, the restitution coefficient ε will depend on particle
sizes (via reff and meff), their mechanical properties (via Eeff)
and whether or not the target particle was fixed (via meff),
as will be shown later in Table I for the dissipative model
described below.

The analytical expression for the dissipative force between
viscoelastic spheres was first proposed by Kuwabara and
Kono [15] and later derived by Brilliantov et al. [16] and
Morgado and Oppenheim [17] using fundamentally different
approaches. While a viscoelastic mechanism, that is, the
energy dissipation being proportional to local deformation
rate, is responsible for the energy loss in Ref. [16], the collision
energy is adsorbed by harmonic lattice vibrations in Ref. [17].
Both models rely on the fact that the elastic force is described
by Hertz’s law and predict that the dissipative force can be
written as

Fdis(δ,δ̇) = D
√

reff

√
δδ̇, (5)

where D is a material constant which has dimensions of
viscosity and is either a function of viscosity material constants
[15,16] or a number of microscopic material parameters [17].
In any case, D is a material property which sets the rate of
the energy dissipation upon particle collision and does not
depend on particle size, its Young’s modulus (unlike parameter
A = 0.5D/Eeff in Ref. [16]) or collision velocity.

Since, similar to the experimental observations, the HKK
model predicts a lower coefficient of restitution at higher
collision velocities and has a theoretical basis described above,
it is widely used to simulate granular collisions. It also,
for example, fits remarkably well the experimental data on
collision of ice spheres at different velocities [16], despite
the fact that the energy is dissipated as a result of fracture
at the contact surface area of the ice particles. This arguably
covers yet another mechanism for energy dissipation described
by Eq. (5) and makes the choice of the HKK model more
appealing.

From a practical point of view, it might be advantageous
to follow an alternative route and predefine the restitution
coefficient ε for a given collision. For that, the Hertzian elastic
force (2) can be complemented by a fictitious dissipative force,
which is known to be proportional to 4

√
δ [18] [rather than to√

δ in Eq. (5)] and is given by [9]

Fdis(δ,δ̇) = −2 ln ε√
ln2 ε + π2

√
5

3

√
Eeffmeff

√
reffδδ̇. (6)

B. Choice of reduced units for the HKK model

In the absence of gravity, the evolution of particles’
deformation δ is described by the sum of elastic and dissipative
forces meffδ̈ = Fel + Fdis. By using Eqs. (2) and (5) and
assuming that both particles are made of the same material
we obtain

meffδ̈ = 2E
√

reffδ
3
2

3(1 − ν2)
+ D

√
reff

√
δδ̇. (7)

For the purposes of analysis and to obtain a numerical solution
to Eq. (7), it is convenient to present it in dimensionless units.
Since the duration of the collision depends on the impact
velocity v, there is no characteristic time to describe such
collisions. Therefore, the unit of time is often chosen to depend
on v (see Refs. [15] and [14] for example). This definition,
however, poses a problem when a large number of particles
collide with each other at different velocities as, for example,
in a powder flow or powder compaction simulations. As these
simulations often include gravity, that is, g is the characteristic
acceleration, there is a convenient way of defining the unit
of time as

√
d/g, which is independent of the details of

individual collisions. For the same reason, the maximum
particle deformation δmax should not be used as the unit of
length as in Ref. [15]. Instead, we use a particle diameter
or, in the case of a polydisperse system, the smallest particle
diameter as the unit length. If m is the mass of the particle with
diameter d, then the forces are measured in units of mg, the
unit of energy is mgd, the unit of pressure is mg/d2, and the
unit of velocity is

√
gd.

For a free collision of two identical spheres, that is, when
r1 = r2 = d/2, reff = d/4, and meff = m/2 = π

12d3ρ, Eq. (7)
reads

δ̈∗ = 4Eδ∗ 3
2

gρπd(1 − ν2)
+ 6D

√
δ∗δ̇∗

√
gρπd3/2

, (8)

where the reduced units are marked by an asterisk and ρ is the
material density.

To include other collision types summarized in Table I,
Eq. (8) can be generalized to

δ̈∗ = E∗δ∗ 3
2

gρπd(1 − ν2)
+ D∗√δ∗δ̇∗

√
gρd3/2

, (9)

where parameters E∗ and D∗ are, respectively, proportional to
the Young’s modulus E and damping parameter D. The data
in Table I are obtained assuming that the masses of a fixed
particle or a plane are infinite. For collision type D we assume
that the sphere collides with the flat side of the cylinder (i.e.,
r2 = ∞) and both bodies have the same mass (i.e., m1 = m2)
similar to the experimental setup in Ref. [19].

C. The end of the collision

It was previously demonstrated that the end of the collision
must be identified as the moment when the total force becomes
zero, that is, δ̈ = 0, not when the deformation turns to zero,
that is, δ = 0 [14]. Here we briefly explain the importance
of these findings and demonstrate how they affect collision
properties.
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FIG. 1. (Color online) The deformation, the rate of the defor-
mation, and viscoelastic force during a collision of two viscoelastic
particles characterized by a restitution coefficient of 0.5. All quantities
are normalized by their maximum values.

Figure 1 shows the numerical solution for the deforma-
tion, its rate, and the viscoelastic force normalized by their
maximum values for a sample collision in which around
three-quarters of the kinetic energy is dissipated (i.e., ε =√

Eafter/Ebefore = 0.5). While for an elastic collision, the time
it takes to reach the maximum deformation is exactly half
of the collision time, in the case of an inelastic collision,
the displacement curve is no longer symmetrical. After the
velocity of the deformation passes through zero and the
particles start moving away from each other, the velocity
passes through a minimum as indicated by the arrow in Fig. 1.
At this point the magnitude of the damping force opposing
the high particle velocity becomes greater than that of the
elastic force. This is the point which corresponds to the
end of the collision. When the total force becomes positive
(around t∗ = 0.80 in Fig. 1) the colliding particles lose contact
while still being deformed. This event has to be taken into
account by replacing the unphysical attractive force with a
value of zero despite some deformation still being present.
Otherwise, the particle will experience attraction which has
no physical basis in the HKK model and the final particle
velocity will be underestimated, resulting in a lower value
of the restitution coefficient. In Fig. 2 we demonstrate this
effect for a collision of two viscoelastic particles parametrized
using material properties of microcrystalline cellulose (MCC).
The asymptotic behavior of the restitution coefficient changes
depending on the criterion used to identify the end of the
collision. The values for the asymptotic gradients shown in
Fig. 2 were obtained from numerical calculations with various
time steps at extreme damping and collision velocities and
were verified with accuracy of one part per million (cf. value
of −0.331 instead of −1/3 in Ref. [14]).

When the incorrect δ = 0 criterion is used to determine the
end of the collision for the dissipative particles, the collision
time becomes greatly overestimated at large impact velocities.
Figure 3 shows the collision time for the same viscoelastic
spheres as above. The dotted line in Fig. 3 is the theoretical
prediction of the collision time for purely elastic spheres, that
is, the time given by Eq. (4).
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FIG. 2. (Color online) Calculated restitution coefficient of two
identical 100 μm spheres with MCC material properties as a function
of the impact velocity calculated according to two different criteria
to define the end of the collision: correct δ̈ = 0 (solid red line) and
incorrect δ = 0 (dashed green line). The dotted lines are asymptotes
calculated numerically with their gradients shown.

D. Scaling properties of the HKK model

It has been previously shown that for the HKK model
both the coefficient of restitution and collision time can be
approximated by power series of v

1
5 [20,21]. A different

series expansion was used in Ref. [14] to show that ε is a
unique function of the following combination of parameters
(in our notation): DE−3/5v1/5. The collision time τ can also
be considered as a function of the combination above if the
unit of time is rescaled proportionally to DE. For the choice of
dimensionless variables we use in this paper, it can be shown
analytically (similarly to Ref. [14]) and verified numerically
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FIG. 3. (Color online) Collision time of two identical 100 μm
spheres with MCC material properties as a function of the impact
velocity calculated according to two different criteria to define the
end of the collision: correct δ̈ = 0 (solid red line) and incorrect δ = 0
(dashed green line). The black dotted line is the asymptote calculated
using Eq. (4) with the gradient of −1/5 as indicated. The red dot-
dashed line is obtained for a material with Young’s modulus 10 times
greater than that of the MCC by shifting the solid line according to
the rules given in Table II.
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that both ε(v) and τ (v) are unique functions of dρ2/5. As shown
above, these scaling properties can be extended to include the
collision type via effective elastic and damping parameters
E∗ and D∗. In general, two collisions which have the same
values of D∗E∗−3/5v1/5d−1ρ−2/5 will have identical restitution
coefficients. In fact, 1 − ε is proportional to this combination
of parameters [15,22] for nearly elastic collisions (note the
typographical error in Eq. (11) of Ref. [22] where ρ−2/5/E3/5

is rendered as ρ2/5/E−3/5).
From a practical point of view, this means that any change

in the parameters present in Eq. (9) does not change the shape
of the curves (shown in Figs. 2 and 3 and calculated as a
series expansion in Ref. [14]) but only shifts their positions.
Note that this statement is true for using either the δ̈ = 0 or
δ = 0 criterion to define the end of the collision. In Table II
we summarize what shifts the ε(v) and τ (v) curves experience
if one of the model parameters is multiplied by a factor α. For
example, to predict a collision time for two 100 μm spheres
made of a material 10 times stiffer than, but otherwise identical
to, MCC, according to Table II, one has to shift the solid red
curve shown in Fig. 3 down by 10 and right by 1000, as shown
by the dot-dashed red line. Note that the transformations in
Table II are true for both elastic and viscoelastic particles. As
expected, for purely elastic particles the transformations for τ

are consistent with the predictions of Eq. (4).
Since ε(v) decreases monotonically with v, the damping

D∗ is the only parameter whose increase will reduce ε

when measured at the same impact velocity. At the same
time, larger values for E∗, d, and ρ will result in higher
restitution coefficients, that is, stiffer, larger, and heavier
particles dissipate less energy.

Using the transformations given in Tables I and II, it is
straightforward to relate the restitution coefficient measured
in a ball-drop experiment (collision type B in Table I) to that
expected for a collision of free spheres (collision type C). Both
elastic and dissipative terms for the sphere-sphere collision
are

√
2 times greater than those for the sphere-plane collision.

According to Table II, the simultaneous increase of E and D by
α = √

2 is equivalent to applying the left shift by α5−3 = 2 to
both ε(v) and τ (v) curves. This means that the impact velocity
in the ball-drop experiment has to be halved to reproduce the
restitution coefficient seen in a sphere-sphere collision. Due
to the monotonic behavior of ε(v), the restitution coefficient
for a sphere-plane collision will always be higher than that
for two free spheres at a given impact velocity (see Fig. 4 for
example).

The transformation between any two collision types in
Table I can be obtained in a similar way. To summarize, with

TABLE II. This table shows how the restitution coefficient ε and
collision time τ curves, shown correspondingly in Figs. 2 and 3, will
shift if a given parameter X in Eq. (9) is replaced by αX.

X ε τ

Elasticity, E∗ right by α3 down by α and right by α3

Damping, D∗ left by α5 up by α and left by α5

Diameter, d right by α5 right by α5

Density, ρ right by α2 right by α2

all other factors being equal, a free sphere-cylinder collision
(D) dissipates most energy, followed by a free sphere-sphere
collision (C), then a sphere-plane collision (B), whereas a
sphere-sphere collision with the target sphere fixed dissipates
least energy.

IV. APPLICATION OF THE VISCOELASTIC MODEL
TO EXPERIMENTAL DATA

A. Finding damping parameter D from experiment

In this section the transformations shown in Tables I and II
are used to find the material parameter D from data collected
in a ball-drop experiment using a 1 cm nonspherical tablet with
axial symmetry and two convex faces.

Since the tablets used in our experiment were nonspherical
(as illustrated in Fig. 4), a sphere with the same curvature and
density will be heavier and hence have a higher restitution
coefficient. The particle mass enters Eq. (7) only via material
density ρ, which can be adjusted so that the nonspherical
tablet is treated as a lighter sphere. Taking the mass ratio
between the 500 mg MCC tablet and an MCC sphere with
the same curvature of mass m = 4/3πR3ρ = 951 mg, we can
predict that the ε(v) curve for this sphere will be shifted to
the right by (951/500)2 ≈ 1.92 ≈ 3.62. Figure 4 shows the
ε(v) curve (blue solid line) that was fitted to the experimental
data using the method of least squares. Though the theory
provides an adequate fit to the experimental data with D =
12000 kg m−1s−1, the converse statement that the use of the
HKK model is supported by the experiment or that MCC
is a viscoelastic material is not true. Indeed, some plastic
deformation is expected especially at high collision velocities
[12], which might be responsible for a slightly steeper gradient
of the experimental data than that predicted by theory.
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FIG. 4. (Color online) Restitution coefficient measured for an
axisymmetric biconvex MCC tablet (gray squares with the error
bars indicating standard deviation) and fitted using HKK theory
(blue solid line). The ε(v) curves for a sphere-plane and a free
collision of two spheres with the same curvature radius (shown as the
green and red dashed lines, respectively) were obtained by applying
the indicated shifts along the x axis as described in the text. The
vertical line indicates the collision velocity v = √

2gH = 4.43 m s−1

corresponding to the drop height of H = 1 m.
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Assuming that the HKK model is applicable to describe
our model material, the ε(v) curve for a free collision of two
spherical granules can be obtained by shifting the sphere-plane
curve to the left by a factor of 2 as discussed above in Sec. III.
Figure 4 shows all three collisions and the corresponding ε(v)
curves. At v = 4.43 m s−1, the restitution coefficient for the
sphere-plane collision is ε = 0.612, and ε = 0.574 for the
free sphere-sphere collision, both marked by the open circles
in Fig. 4.

For a free sphere-cylinder collision (type D in Table I, not
shown in Fig. 4), the viscoelastic model predicts a restitution
coefficient approximately 6% lower than that for two spheres
(type C). This contrasts with results for collisions with plastic
deformation which predict ε for collision D to be 19% higher
than for collision C [19].

B. Dependence of restitution coefficient on particle size

Assuming that the damping parameter D obtained from the
experimental data in the previous section is a material property
which is not affected by the particle size, we now calculate the
restitution coefficient for smaller but still macroscopic spheres
bouncing off a plane, that is, the ball-drop experiment. To make
the results comparable, the drop height H is fixed at H = 100d

and three diameters d = 1 cm, d = 1 mm, and d = 0.1 mm
are considered.

We solve Eq. (7) numerically with [Fig. 5(a)] and without
[Fig. 5(b)] addition of the gravitational force to this equation.
When a gravitational force is included in Eq. (7), it introduces
a cutoff impact velocity below which the incident particle
does not separate from the plane after the collision but
remains in contact with it. When this happens, the particle
continues to oscillate around the equilibrium deformation δ0

while gradually dissipating energy at the same time. If the
impact velocity is relatively high, the incident particle will
bounce a finite number of times [as shown by the circles in
Fig. 5(a)] until it reaches the regime described above. It is
evident from Fig. 5(a) that smaller particles reach equilibrium
much faster than larger particles. Indeed, the smallest particle

 

 

 10  10   10   1   100-6 -4 -2

Impact velocity (m/s)

(b)

1cm
1mm

0.1mm

-1/3

 0.001

 0.01

 0.1

 1

 10   10   10   1   100

R
es

tit
ut

io
n 

co
ef

fic
ie

nt

-6 -4 -2

Impact velocity (m/s)

(a)

1cm
1mm

0.1mm

-1/3

FIG. 5. (Color online) Calculated restitution coefficient for a
viscoelastic sphere with material parameters of MCC bouncing off
a plane (a) with and (b) without the effect of the gravitational field.
The circles correspond to consecutive rebounds of a sphere dropped
from a height of 100d in a computer simulation with gravity. All data
were obtained by solving Eq. (7) numerically for the different impact
velocities v.

TABLE III. Relationship between the coefficient of restitution in
a ball-drop experiment with H = 100d for particles with diameter d

(as input values for different materials) and particles with diameter
0.01d (as predicted by the HKK model).

ε for diameter d 0.5 0.6 0.7 0.8 0.9
ε for diameter 0.01d 0.0002 0.0041 0.0079 0.0174 0.0552

experiences only one rebound with ε = 0.0045, while the
number of rebounds is greater than one for larger particles.
This reduction of the coefficient of restitution is a generic
feature of the HKK contact model and affects any material
with viscoelastic behavior as demonstrated in Table III.

Figure 5(b) shows the restitution coefficient for the col-
lisions in the absence of the gravitational field. Note that
all three curves in Fig. 5(b) have the same shape and are
shifted in respect to each other by five orders of magnitude
along the x axis, as predicted by transformations in Table II
for a tenfold change in the particle diameter. The curves in
Fig. 5(a) have different shapes because the addition of gravity
(or any attractive interactions for that matter) breaks the scaling
properties of the HKK model. Both parts of Fig. 5 show the
same straight dotted line corresponding to the asymptote with
a gradient of −1/3 also shown in Fig. 2. The reduction of the
restitution coefficient due to gravity seen in Fig. 5(a) at low
impact velocities has also been observed experimentally [10].
Note that in our analysis and in Ref. [10], any correlations
between the forces are neglected. This is not strictly true
because gravity will increase the contact area which in turn
is expected to increase the dissipative force.

V. EFFECT OF COHESIVE FORCES

To ensure that a tablet remains intact after it has been
compacted, the cohesive energy of pharmaceutical powders
is typically high [23]. The last section of this paper is
therefore concerned with energy dissipation in the presence
of cohesive forces. First, we discuss ways of combining the
elastic, dissipative, and cohesive force in a single model, then
we consider collisions of cohesive particles using parameters
of MCC as an example.

When no cohesion is present, the damping force due to
material viscosity is defined by Eq. (5), that is, the HKK model.
In the HKK model the radius of the contact spot a is exactly
a = √

reffδ, and the dissipative force described by Eq. (5) can
be written as

Fdis = Daδ̇. (10)

In the presence of cohesion, the size of the contact spot is
greater at the same deformation δ. The magnitude of the
dissipative force is also expected to increase since more
material is deformed at approximately the same speed during
the particle collision when compared to the cohesion-free
case. The relationship between δ and a for the cohesive
nondissipative particles described by the Johnson-Kendall-
Roberts (JKR) model [24] is

δ(a) = a2

reff
−

√
2πγ a

Eeff
, (11)
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where γ is the surface energy. The expression for the total
force due to the elasticity and cohesion reads

FJKR(a) = 4Eeffa
3

3reff
−

√
8πγEeffa3. (12)

From FJKR(a) = 0, we can find the equilibrium contact radius

a0 =
(

9

2

πγ r2
eff

Eeff

)
. (13)

Equations (11) and (12) expressed in terms of a0 become

δ(a) = a2

reff

⎛
⎝1 − 2

3

√
a3

0

a3
l

⎞
⎠ (14)

and

FJKR(a) = 4Eeffa
3

3reff

⎛
⎝1 −

√
a3

0

a3

⎞
⎠ . (15)

The analysis of Eqs. (14) and (15) shows that as the two
particles move away from each other, the contact area
decreases monotonically and the net force remains attractive
for all a < a0. Condition δ(a) = 0 is reached when contact
radius is a ≈ 0.76a0. At δ(a) < 0, the particles remain in
contact as the maximum force Fpull-off = −3πγ reff is reached
when a ≈ 0.63a0. After this point, the attractive force FJKR(a)
starts to decrease until the particles suddenly loose contact at
a ≈ 0.30a0 when F = 5/9Fpull-off [25].

An ad hoc way of incorporating energy dissipation in the
JKR model would be simply to use Eq. (5) with the actual
displacement δ (or rather

√
δ) or by using Eq. (10) with the

actual contact spot radius a found from Eq. (11). The first
approach, used in Ref. [3], is limited to positive values of
δ and therefore cannot make any predictions for negative δ.
The second approach is qualitatively correct but was shown
to overestimate the amount of energy dissipation [26]. In
Ref. [26] the energy dissipation was shown to be simply
proportional to the time derivative of the contact force (12), that
is, Fdis(a) = Aȧ ∂FJKR(a)

∂a
, where A = 0.5D/Eeff in our notation.

By substituting ȧ = δ̇ ∂a
∂δ

into this equation we obtain

Fdis(a) = Da

(
1 − 2

6ζ − 1

)
δ̇, (16)

where ζ =
√

a3/a3
0 is a dimensionless parameter reciprocal

to that seen in Eqs. (14) and (15). Note that at equilibrium,
that is, a = a0 and ζ = 1, Eq. (16) predicts energy dissipation
40% lower than that predicted when the term dependent on
ζ is neglected. At higher deformations, the effect of this
term is lower. Since the force in Eq. (16) is proportional to
ȧ, it diverges when the particles lose contact at a ≈ 0.30a0,
where ζ = 1/6. Moreover, when Fpull-off is reached at ζ = 1/2,
Fdis(a) becomes zero and it remains attractive till it diverges
at smaller a. To avoid this unphysical behavior, we choose
to use a simpler model described by Eq. (10) which is more
computationally efficient and numerically stable.

Similarly to the effect of gravity, the presence of cohesive
forces means that it is possible for the particles to remain
in contact (i.e., “stick together”) if the impact velocity v

is sufficiently low. As a result, a typical ε(v) profile for a
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FIG. 6. (Color online) Maximum restitution coefficient predicted
for spherical MCC granules as a function of their surface energy for
different particle diameters, as indicated.

collision of viscoelastic cohesive particles looks similar to the
curves shown in Fig. 5(a)—there is a well-defined maximum
at moderate values of v. Figure 6 shows how this maximum
value of the restitution coefficient changes with the surface
energy γ for several particle diameters in the submillimeter
range. For the smallest particles shown here, that is, 300 μm in
diameter, the particles are predicted to remain in contact if their
surface energy is larger than γ ≈ 0.71 mJ m−2 no matter how
high their relative velocity. This effect of dissipative capture
is possible due to the combination of the viscous and cohesive
forces—the viscous force reduces the kinetic energy so much
that even weak cohesion is able to keep the particles together.
As was shown in Sec. IV, smaller particles dissipate energy
more effectively and therefore stick together at lower surface
energies. The experimental value of MCC surface energy is
around 70 mJ m−2 [23]. This means that particles smaller than
about 650 μm will be held together by cohesive forces once
they are brought in contact.

At first glance this finding appears to contradict the
experimental observation that much smaller MCC particles
form dry powders without sticking together. However, what
must be taken into account is that (1) the particles with coarse,
rough surfaces would have a smaller effective surface energy,
(2) the “stickiness” of the powder is assessed experimentally by
applying macroscopic stresses much greater than those present
in a binary collision, and (3) the presence of dissipation mech-
anisms other than viscoelastic will affect how the restitution
coefficient changes with particle size and not necessarily result
in the large reduction predicted by the HKK model alone.

The predicted ultralow restitution coefficients for submil-
limeter granules raises a question whether finding the damping
parameter D is needed at all. For weakly cohesive powders, it is
reasonable to assume that all collisions as purely inelastic and
describe them, for example, by a critically damped Hertzian
spring with ε = 0 in Eq. (6).

VI. CONCLUSIONS

In this paper we have shown that the restitution coefficient
of viscoelastic particles described by the Hertz-Kuwabara-
Kono (HKK) model is a unique function of the following
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combination of parameters D∗E∗−3/5v1/5d−1ρ−2/5. The effect
of varying elasticity E and damping parameter D, the particle’s
diameter d and density ρ can be reduced to an appropriate
rescaling of the impact velocity v (the only parameter in
the expression above which is not the property of the
colliding bodies) to predict the new restitution coefficient.
Collision details (e.g., fixed or free target) and geometry
(e.g., collision with a plane or a sphere) can also be taken
into account by adjusting E and D as signified by an
asterisk. Similar scaling can be applied to the collision time,
except the time scale must also be changed as shown in
Table I.

We used the scaling properties of the HKK model to
demonstrate how the restitution coefficient measured exper-
imentally for nonspherical tablets in a ball-drop experiment
can be related to that for freely moving spherical particles.
The material constant D responsible for viscous damping was
obtained from a fit to the experimental data. For MCC tablets,
the parameter A = D(1 − ν2)/E = 1.8 × 10−6 s was found
to be approximately 55 times weaker than that reported in
the literature for ice particles [16,26]. Using this value, we
simulated the collision of viscoelastic particles of different
diameters with a plane. Our calculations summarized in
Table III clearly indicate that collisions involved smaller par-
ticles are characterized by much lower restitution coefficients
than those involved larger particles. Combined with the fact

that smaller particles have smaller masses, the dissipated
energy is predicted to increase their temperature significantly
during such powder processing as compaction [27]. This can
be crucial for the tabletting of pharmaceutical powders, where
the increase in temperature can affect the properties of the
drug [28,29].

We also discussed the application of viscous damping
alongside the JKR model. A simple model in which the
dissipative force is proportional to the contact radius was
chosen due to its simplicity and numerical stability. This
model becomes identical to the HKK model in the limit of
the weak cohesive interactions. The quantitative analysis of
this model predicted dissipative capture for particles in the
submillimeter size range even if relatively weak cohesion was
present. While this suggests that most granular collisions in a
powder flow are completely inelastic, this is partially due to
the overestimated energy dissipation when the HKK model is
used alone to account for the energy loss. Experimental data for
collision of macroscopic nylon spheres of different diameters
also confirms that the HKK model overestimates the energy
dissipation for smaller spheres [22], and therefore should not
be used across two orders of magnitude of particle sizes.
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