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Collision of viscoelastic spheres: Compact expressions for the coefficient
of normal restitution
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The coefficient of restitution of colliding viscoelastic spheres is known analytically as a complete series
expansion in terms of the impact velocity where all (infinitely many) coefficients are known. While being
analytically exact, this result is not suitable for applications in efficient event-driven molecular dynamics (eMD)
or direct simulation Monte Carlo (DSMC) methods. Based on the analytic result, here we derive expressions
for the coefficient of restitution that allow for application in efficient eMD and DSMC simulations of granular
systems.
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I. INTRODUCTION AND DESCRIPTION OF THE SYSTEM

A. Introduction

Granular systems are frequently modeled as assemblies of
dissipatively colliding spheres. Several review articles show
that viscoelastic spheres are an important and widely used
collision model for soft spheres (see Refs. [1–3]).

So far, the simulation of systems of viscoelastic spheres
was restricted to force-based molecular dynamics (MD). To
perform much more efficient event-driven molecular dynamics
simulations (eMD) as well as direct simulation Monte Carlo
(DSMC) methods, the coefficient of restitution is needed
as a function of the impact velocity, material, and system
parameters.

Although the exact solution for the coefficient of restitution
for viscoelastic spheres is known [4], it is impractical for
eMD and DSMC simulations since the solution is given as
a complete but extremely slowly converging series. Thus, at
present, eMD simulations of systems of viscoelastic spheres
are impossible in general.

In this paper, we provide approximate expressions for the
coefficient of restitution that allow for a direct application
in eMD and DSMC simulations and, thus, for a substantial
increase of the efficiency of simulations, provided the pre-
conditions for the application of event-driven simulations are
given.

B. System description

The collision of frictionless (smooth) viscoelastic spheres
obeys Newton’s equation of motion,

meff ξ̈ = F (ξ̇ ,ξ ), (1)

with the effective mass meff ≡ m1m2/(m1 + m2) and com-
pression ξ ≡ R1 + R2 − |�r1 − �r2|, where �r1 and �r2 are the
time-dependent positions of the spheres. F (. . .) is the nor-
mal component of the vectorial interaction force F = �F · ê,
with the unit vector ê = (�r1 − �r2)/|�r1 − �r2|. For nonadhesive
viscoelastic spheres, it reads [5]

F = F el + F dis = min

(
0, − ρξ 3/2 − 3

2
Aρ

√
ξ ξ̇

)
, (2)

with

ρ ≡ 2Y
√

Reff

3(1 − ν2)
, (3)

and Y , ν, and Reff standing for the Young modulus, the
Poisson ratio, and the effective radius Reff ≡ R1R2/(R1 + R2),
respectively. The dissipative constant A is a function of the
elastic and viscous material parameters [5]. The min(. . .)
function ensures that the force is always repulsive.

The elastic part in Eq. (2), F el , is the Hertz contact force [6],
while its dissipative part, F dis, was first motivated in Ref. [7]
and then rigorously derived in Refs. [5] and [8], where only
the approach in Ref. [5] leads to an analytic expression of the
material parameter A.

While knowledge of the interaction force, Eq. (2), is suffi-
cient to perform MD simulations, the coefficient of restitution
is needed to perform much more efficient eMD and DSMC
simulations, as well as for the kinetic theory of granular gases,
e.g., Ref. [9]. By disregarding the dynamics of the collision
process and idealizing the collision as an instantaneous
event, the coefficient of restitution relates the postcollisional
deformation rate ξ̇ ′ to the precollisional deformation rate v,

ε ≡ −ξ̇ ′/v. (4)

Event-driven MD uses this concept for simulations of dilute
granular systems, where the frequency of three-particle inter-
actions is negligible compared with the frequency of binary
collisions. Therefore, eMD is mainly important for dilute
granular gases and, thus, our results may be significant for
the simulation of dilute gases of viscoelastic spheres. Beyond
its theoretically justified limit, in some applications eMD was
also used successfully for moderately dense systems.

In general, the coefficient of restitution is not a constant but
depends on the details of the interaction force and the impact
velocity. It can be obtained by integrating Eq. (1) with the
initial conditions ξ (0) = 0 and ξ̇ (0) = v, assuming that the
spheres start contacting at t = 0. The coefficient of restitution
is then obtained from

ε = −ξ̇ (tc)/v, (5)
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where the duration of the collision, tc, is determined by the
condition

ξ̈ (tc) = 0, tc > 0, (6)

that is, the collision terminates at time tc when the interaction
force vanishes.

Solving the set of Eqs. (5) and (6) is a complicated problem
that was solved rigorously in Ref. [4]. The solution reads

ε = 1 +
∞∑

k=0

hk(β1/2v1/10)k ≡ 1 +
∞∑

k=0

hkv
k
∗, (7)

where we define the shorthand v∗ with

β = 3

2
A

(
ρ

meff

)2/5

. (8)

This solution is exact since all coefficients hk are analytically
known (see Ref. [4]). It is, moreover, universal since all
material and particle properties are covered by β, that is, the
hk are pure numbers that are independent of the material and
particle properties.

Although it is exact, there are two main problems with the
solution, Eq. (7), that prohibit its application in efficient eMD
or DSMC simulations: First, it converges extremely slowly. To
obtain ε up to quadratic order in v we need 20 terms of the
series expansion. Second, wherever we truncate the series at
some order kc, Eq. (7) diverges to ε → ±∞, depending on the
sign of hk .

The divergence of the truncated series is a serious problem.
For example consider the very accurate experimental data by
Bridges et al. [10] for the coefficient of restitution of ice balls
at very low temperature (where ice behaves viscoelastically)
in which material and particle properties correspond to β =
1.307 (s/cm)1/5. Then from Fig. 1 we see that the series trun-
cated at order kc = 20 starts deviating at v∗ ≈ 1, corresponding
to the impact velocity v = v10

∗ /β5 ≈ 0.262 cm/s. That is, for
typical impact velocities of v ∼ 1 m/s we would need to go
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FIG. 1. (Color online) Coefficient of restitution, ε, over v∗ ≡
β1/2v1/10. The analytic solution, Eq. (7), truncated at different order
kc leads to divergence. The dotted line shows ε as it follows from the
numerical solution of Eqs. (5) and (6). It almost coincides with the
thick green line showing the Padé approximant [1/4]ε , Eq. (11), to
the analytical solution, Eq. (7) (for explanation, see text).

to an impractically high truncation order. Consequently, eMD
becomes inefficient and one has to apply force-based MD
to the simulation of granular gases of viscoelastic particles.
By providing a convergent expression for the coefficient of
restitution, the work presented here extends the applicability
of eMD to granular systems of viscoelastic particles.

To illustrate the relevance of this problem, consider a
granular gas of viscoelastic particles. Assume further that
its initial granular temperature T corresponds to the scaled
thermal velocity v∗ = 1.25 (see Fig. 1). For the material
parameters β = 1.307 (s/cm)1/5 this corresponds to the
unscaled (physical) velocity v ≈ 2.5 cm/s. At this velocity the
coefficient of restitution is ε ≈ 0.278; however, if we truncate
the series after the tenth term (kc = 10 in Fig. 1), we would
obtain ε ≈ 1.85. Therefore, if we would simulate a granular
gas initialized at temperature T using the truncated series,
almost all collisions would take place with ε > 1; thus, the
gas would heat up. Using the correct expression, of course,
the gas cools due to inelastic collisions. Thus, the truncation
of the series, Eq. (7) (hereafter the tenth term), would cause a
qualitatively incorrect result.

From an approximate expression for the coefficient of
restitution for applications in efficient eMD and DSMC
simulations, we suggest that (a) the approximative solution be
close to the correct solution; (b) it can be computed efficiently;
that is, it contains only a small number of universal coefficients
that are independent of the material and particle properties; and
(c) the representation must not reveal divergences, unlike the
truncated series, Eq. (7), shown in Fig. 1.

10
0.0

10
0.2

10
0.4

10
0.5

10
0.7

10
0.9

v
*

10
-3

10
-2

10
-1

ε

10
-3

10
-1

10
1

10
3

10
4

10
6

v
ice

 (m/s)

numeric (exact)
[0/3] ε
[1/4] ε
[2/5] ε
[3/6] ε
[15/18] ε

v
*

-3.2

FIG. 2. (Color online) Coefficient of restitution, ε, for large v∗
(bottom scale). The thick green line shows the numerical solution
of Eq. (9) revealing the asymptotic behavior ε = v−3.2

∗ (dotted line).
Additionally, various Padé approximants, Eq. (11), of the analytical
solution, Eq. (7), are shown (for discussion, see text). The Padé
approximants [3/6]ε and [15/18]ε (which are virtually identical)
agree almost perfectly with the exact solution. The scale at the
top displays the corresponding physical velocity for the case of ice
spheres [β = 1.307 (s/cm)1/5] [10]. Note that the covered range of
v∗ corresponds to 9 orders of magnitude in the physical velocity,
v ∝ v10

∗ , being the relevant velocity in simulations.
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II. NUMERICAL SOLUTION

As described in Refs. [4] and [11], Eq. (1), with the inter-
action force Eq. (2) and the corresponding initial conditions,
may be scaled to

ẍ + x3/2 + v2
∗ ẋ

√
x = 0, x(0) = 0, ẋ(0) = 1, (9)

with the only free parameter v∗ ≡ β1/2v1/10. Compression
and time are scaled by x ≡ ξ/[(ρ/meff)−2/5v4/5] and τ ≡
t/[(ρ/meff)−2/5v−1/5]. From the numerical solution of Eq. (9)
we determine ε(v∗) via Eq. (5): ε = −ξ̇ (tc)/v = −ẋ(τc), where
τc is obtained from the condition ẍ(τc) = 0, τc > 0. Apart from
numerical errors, this solution is exact and may serve as a
benchmark for our approximate solution, even for large values
of v∗. Using the numerical solution, we find the asymptotic
behavior

lim
v∗→∞ ε(v∗) = v−3.2

∗ (10)

for large v∗, in agreement with Ref. [4] (see Fig. 2).

III. PADÉ APPROXIMANTS

Using the analytical solution, Eq. (7), and the asymptotics,
Eq. (10), we construct an approximative expression for ε(v)
that agrees with the analytical solution for the entire range
of definition, v ∈ (0,∞), and is thus much more suitable
for numerical simulations. The Padé approximant [m/n]ε(v∗)
approximates the m + n times differentiable function ε(v∗) by
a rational function

[m/n]ε(v∗) =
∑m

i=0 aiv
i
∗∑n

i=0 bivi∗
(11)

in a way that the Maclaurin series of the approximant and of
the approximated function match up to order m + n:

ε(0) = [m/n]ε(0),

ε′(0) = [m/n]′ε(0),

...

ε(m+n)(0) = [m/n](m+n)
ε (0). (12)

TABLE I. Coefficients of the Padé approximants [m/m + 3]ε for
m ∈ {0,1,2,3}. [2/5]ε reveals a pole at v∗ ≈ 5.6801.

m n ai bi

0 3 a0 = 1.0 b0 = 1 b2 = 1.15345
b1 = 0 b3 = 0

1 4 a0 = 1.0 b0 = 1.0 b3 = 0.577977
a1 = 0.501086 b1 = 0.501086 b4 = 0.532178

b2 = 1.15345
2 5 a0 = 1.0 b0 = 1.0 b3 = 0.638466

a1 = 0.553528 b1 = 0.553528 b4 = 0.384023
a2 = −0.128445 b2 = 1.025 b5 = 0.027908

3 6 a0 = 1.0 b0 = 1.0 b4 = 1.19449
a1 = 1.07232 b1 = 1.07232 b5 = 0.467273
a2 = 0.574198 b2 = 1.72765 b6 = 0.235585
a3 = 0.141552 b3 = 1.37842
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FIG. 3. (Color online) Coefficient of restitution, ε, over v∗. The
first four Padé approximants are shown together with the numerical
(exact) solution. The inset shows a magnification. The order [3/6]ε
(dotted line) coincides almost perfectly with the exact solution in the
entire range of definition.

Asymptotically, the Padé approximant behaves like a power
law, limv∗→∞[m/n]ε ∼ vm−n

∗ . These properties allow us to
represent the function ε(v∗) similar to a Taylor expansion for
small arguments and asymptotically as a power law, and, thus,
convergent if m < n (see Ref. [12]).

Since ε ∼ vα
∗ with α ≈ −3 [see Eq. (10) and Fig. 2], we

chose a Padé approximation [m/m + 3]ε. To find an accurate
yet compact approximant to Eq. (7), we start at m = 0 and
increase the order until sufficient agreement with the exact
solution is achieved. The result is shown in Fig. 2: [0/3]ε
is certainly not acceptable; [1/4]ε offers a good tradeoff
between simplicity and accuracy. [2/5]ε reveals a pole at
v∗ ≈ 5.68; therefore, it is suitable only for small impact
velocity v∗ � 100.3. For ice spheres as described in Ref. [10],
this implies v � 2.6 m/s. The next order, [3/6]ε, offers almost
perfect agreement with the benchmark. We checked all orders
up to [25/28]ε and could not find any significant improvement
as compared to [3/6]ε. As an example, [15/18]ε is shown in
Fig. 2.

Table I displays the coefficients ai and bi for the relevant
Padé approximants [m/m + 3]ε for m ∈ {0,1,2,3} and Fig. 3
shows these Padé approximants together with the exact
(numerical) solution. Again, [1/4]ε and [3/6]ε turn out to be
good compromises between accuracy and simplicity.

IV. CONCLUSION

The universal exact solution, Eq. (7), for the coefficient of
restitution of smooth viscoelastic spheres cannot be applied
directly in eMD and DSMC simulations since the series
diverges for any finite truncation order. We have shown that the
Padé approximations of order [1/4]ε and [3/6]ε are suitable
for representing the coefficient of restitution over the entire
range of impact velocities, including its asymptotic behavior
up to an excellent accuracy, and we provided the constants of
this approximation. Similar to the full solution, Eq. (7), the
Padé expansion is universal, that is, the constants ai and bi are
universal. They depend on neither material properties (Young
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FIG. 4. (Color online) Coefficient of restitution, ε, as a function
of the impact velocity v. The Padé approximant [3/6]ε (dotted line)
agrees almost perfectly with the numerical integration of Newton’s
equation, Eqs. (1)–(6), in the entire range of impact velocity v

(physical units), while the analytical solution, Eq. (7), truncated at
order as large as kc = 40, diverges at v ≈ 0.3 cm/s. For the material
constant, β = 1.307 (s/cm)1/5, we used the experimental values by
Bridges et al. [10] for the collision of ice spheres at low temperature.

modulus, Poisson ratio, and dissipative constant) nor particle
properties (radii and masses). All nonuniversal parameters
enter exclusively via β, Eq. (8), which in turn enters the
argument of the Padé expansion via v∗ = β1/2v1/10, with v

being the impact velocity in physical units (cm/s). Thus, the
presented Padé approximation can be conveniently applied in
numerical simulations.

The precision of the approximant can be assessed in
Fig. 4, which shows the Padé approximation together with
the numerical integration of Newton’s equation, Eq. (1),
in combination with Eqs. (2)–(6) , and with the divergent
analytical solution, Eq. (7), truncated at an order as large
as kc = 40. We see that over the entire range of definition,
the Padé approximation coincides almost perfectly with the
numerical solution and with the truncated analytical solution
up to v ≈ 0.3 cm/s, where the latter starts to diverge.
For the material constant, β = 1.307 (s/cm)1/5, we used the
experimental values from Bridges et al. [10] for the collision
of ice spheres at low temperature. The corresponding data
also are shown in the plot. While the agreement among the
exact analytical result, the numerical integration, and the
Padé approximant is remarkable, the experimental data deviate
slightly. This deviation is not surprising because in addition to
viscoelasticity, described by the force in Eq. (2), other forces
may contribute, such as surface forces, plastic deformation,
and adhesion, among others.
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