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Thermophoretic force on micro- and nanoparticles in dilute binary gas mixtures
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We theoretically investigate the thermophoretic force on spherical particles in binary monatomic gas mixtures
in the free molecular regime. Based on gas kinetic theory and by considering the gas-particle interactions, we
derive the analytical formulas of the thermophoretic force for two limiting gas-particle collision models; namely,
specular and diffuse scattering scenarios. The formulas are consistent with those in simple gases and apply to
both micro- and nanoparticles; for the latter the intermolecular interactions are important. As an example, the
thermophoretic force on Ag nanoparticles in He-Ar mixtures is illustrated.

DOI: 10.1103/PhysRevE.84.021201 PACS number(s): 51.10.+y, 47.45.Dt, 05.60.Cd, 65.80.−g

I. INTRODUCTION

Thermophoresis is a phenomenon where small particles
suspended in a fluid (usually a gas) with a nonuniform temper-
ature distribution tend to move from high to low temperature. It
is an old scientific problem going back to around the mid 19th
century [1,2]. The force that drives the particles to move against
the temperature gradient is called the thermophoretic force.
In steady state, the particles move with a constant velocity
(thermophoretic velocity) when the thermophoretic force is
balanced by the drag force, which is due to the particle-fluid
relative motion and the viscosity gradient in the fluid [3,4].
Thermophoresis plays important roles in many areas, including
aerosol science, biology, and the semiconductor industry (see
Ref. [5] and references cited therein). Most of the applications
employ the thermophoretic force to manipulate or separate
suspended objects, such as microparticles and biomolecules.
This positions the thermophoretic force as a key issue in
practical applications.

In gaseous media, the thermophoretic force acting on a
suspended object depends on the flow regimes, which are
characterized by the Knudsen number Kn = λ/L, where λ is
the mean-free path of the gas and L is the characteristic length
of the object. In the past decades, extensive theoretical, ex-
perimental, and numerical investigations have been conducted
to understand the phenomenon of thermophoresis [5–31]. For
theoretical analysis, the calculation of the thermophoretic force
usually involves solving the Boltzmann equations. This is
especially difficult in the continuum (Kn � 1) and transition
(Kn ∼ 1) regimes, where the velocity distribution of the gas
molecules is greatly affected by the motion of the objects
and the theoretical analysis is very complex. Although a
few analytical approaches have been developed based on
different approximation methods [5,6,9], the theories in these
two regimes are far from complete. In the free molecular
regime (Kn � 1), the problem can be greatly simplified by
assuming that the presence of the suspended objects does
not affect the velocity distribution of the gas molecules and
that pair collisions of gas molecules dominate. In this case,
the Chapman-Enskog gas-kinetic theory [32–34] for dilute
gases in a nonequilibrium state can be used to obtain the
thermophoretic force.

In the free molecular regime, the thermophoretic force
on spherical particles in simple monatomic gases under the
assumption of rigid body collisions (i.e., gas molecules do not

interact with the particles unless they are in physical contact),
was developed by Waldmann [10],

FT = − 8

15

√
2πmg

kBT
κR2∇T , (1)

where mg is the mass of the gas molecule, kB is the Boltzmann
constant, κ is the thermal conductivity of the gas, R is the
particle radius, and T is the temperature. For microparti-
cles, Eq. (1) agrees well with experiments and numerical
simulations [16–19]. For nanoparticles, however, the rigid
body collision assumed by Waldmann becomes questionable
due to the fact that the interaction between gas molecules
and particles could be important [3,26,27]. By considering
the intermolecular interactions, Li and Wang derived the
thermophoretic force in simple gases based on a rigorous
gas-kinetic analysis [27]. For specular and diffuse scatterings
of gas molecules upon collisions with a nanoparticle, the
thermophoretic forces are given by

FT ,s/d = 8

3

√
2πmr

kBT
κR2∇T

(
�

(1,1)∗
s/d − 6

5
�

(1,2)∗
s/d

)
, (2)

where mr = mgmp/(mg + mp) is the reduced mass of a
gas molecule and particle and �

(1,1)∗
s/d and �

(1,2)∗
s/d are the

reduced collision integrals, which depend on the gas-particle
interaction [28,33]. The subscripts “s” and “d” in Eq. (2)
denote specular and diffuse scattering, respectively. Usually,
the particle mass is much larger than that of a gas molecule
(mp � mg) and Eq. (2) reduces to Eq. (1) for both specular
and diffuse scattering if rigid body collisions are assumed
(�(1,1)∗

s/d = �
(1,2)∗
s/d = 1 [3,27]). Therefore, Eq. (2) is more

general compared with Eq. (1) and can be applied in the free
molecular regime in simple gases regardless of particle size.

In practical applications, many thermophoresis cases in-
volve particles in gas mixtures, where the velocity distribution
of the gas molecules depends on not only the temperature
gradient but also on the concentration distribution [15].
Examples include the fabrication of thin films as sensing
materials, where nanoparticles in gas mixtures are driven
by temperature gradients and deposited on microelectronic
chips [35]. In micro- and nanofabrications, thermophoresis
can be used to protect the lithographic masks from nanoparticle
contamination [36]. Other applications in materials synthesis
and in the semiconductor area can be found in Ref. [37].
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In the literature, little theoretical work has been reported
on thermophoresis in gas mixtures due to the mathematical
difficulty of solving the coupled Boltzmann equations for gas
mixtures. In this work, we investigate the thermophoretic force
on spherical particles in binary monatomic gas mixtures in
the free molecular regime. Theoretical expressions for the
thermophoretic force are derived on the basis of gas kinetic
theory for specular and diffuse scattering. By setting the
concentration of one component of the gas mixture to zero,
it is shown that the analytical expressions are consistent with
those for simple gases. The analytical formulas are valid for
both micro- and nanoparticles.

II. SECOND-ORDER APPROXIMATION OF BOLTZMANN
EQUATION FOR BINARY GAS MIXTURES

As will be shown later, the thermophoretic force can be
obtained by calculating the momentum transfer during the
collisions between the gas molecules and particle, which
requires the velocity distribution of the gas molecules under
a temperature gradient. For binary mixtures of monatomic
gases, where the velocity distribution is not as simple
as that of simple gases, the velocity distributions of the
two components f1 andf2 satisfy the following Boltzmann
equations [32,33]:

∂fi

∂t
+ ci · ∂fi

∂r
+ Fi · ∂fi

∂ci

= ∂efi

∂t
, i = 1,2, (3)

where ci and Fi are the molecular velocity of and external force
acting on species i, respectively, ∂efi/∂t represents the change
of fi due to molecular collisions and by which f1 andf2 are
coupled to each other.

The first-order approximations of f1 and f2 are denoted
by f

(0)
1 and f

(0)
2 , respectively, which represent the equilibrium

solutions and are given by the Boltzmann velocity distribution,

f
(0)
i = ni

(
mi

2πkBT

)3/2

exp

(
− miv

2
i

2kBT

)
, i = 1,2, (4)

where ni and mi are the number density and molecular mass
of species i, respectively, and vi = |vi | represents the peculiar
velocity of gas molecules, which is relative to the local mass
velocity c0 of the gas mixture through vi = ci − c0 [32].

With the presence of a temperature gradient, the velocity
distribution deviates from Eq. (4) and corresponds to the
second-order approximation of fi , f

(1)
i . According to the

Chapman-Enskog theory [32], f
(1)
i is given by

f
(1)
i = f

(0)
i �

(1)
i (∇T ,∇ni), i = 1,2, (5)

where �
(1)
i is a function of ∇T and ∇ni if c0 is constant and

given by

�
(1)
i (∇T ,∇ni) = −Ai · ∇ ln T − Di · dij ,

i,j = 1,2, i �= j, (6)

where the functions Ai and Di are vectors and the vector dij

are given by [32]

dij = ni

n
∇ ln pi − ρiρj

pρ
(Fi − Fj ) − ρi

pρ
∇p, (7)

where p = nkBT and pi = nikBT denote the total and partial
pressures, respectively. Similarly, ρ and ρi = mini are the total
and partial mass densities, respectively. If the external force is
absent and the binary mixture is still, Eq. (7) reduces to

dij = ∇xi, (8)

where, xi = ni/n is the concentration. In steady state, xi is
related to the temperature gradient through the thermal diffu-
sion ratio kT ∝ DT

i /Dij , where DT
i is the thermal diffusion

coefficient of species i and Dij is the usual binary diffusion
coefficient [33]

∇xi = −kT ∇ ln T . (9)

With Eqs. (8) and (9), �
(1)
i can be written as

�
(1)
i = −Ãi · ∇ ln T , (10)

where Ãi = Ai − kT Di , which can be expanded in a conver-
gent Sonine polynomial [32,38,39]. If the first term in the
polynomial is used, Ãi can be expressed as

Ãi = ai

(
5
2 − ζ 2

i

)
ζ i , (11)

where ζ i = vi

√
mi/(2kBT ). In Eq. (11), ai depends on

temperature T , mass mi , and the intermolecular interaction
potential (see Sec. III).

III. THERMOPHORETIC FORCE
IN BINARY GAS MIXTURES

The thermophoretic force on a particle is related to momen-
tum transfer between the gas molecules and particle. Consider
a dilute binary gas mixture with a temperature gradient ∇T .
Assume that the mean velocity of the gas mixture is zero. When
a particle of radius R is introduced into the gas mixture with an
instantaneous velocity V, based on the theoretical framework
given in Ref. [27], the thermophoretic force that is mainly due
to species i, FT ,i (FT ,1 and FT ,2 are coupled, as discussed later),
can be calculated as

FT ,i = mip

∫
vi

gigif
(0)
i �

(1)
i Q(gi) dvi , (12)

where mip = mimp/(mi + mp) is the reduced mass, gi = vi −
V is the relative velocity, and Q(gi) represents the collision
cross section, which depends on the scattering scenario (i.e.,
specular or diffuse scattering) when gas molecules collide with
the particle [27,32]. For specular scattering,

Qs(gi) = 2π

∫ ∞

0
(1 − cos χ ) bdb, (13)

where b is the impact parameter for the gas-particle collisions
and χ is the angle of scattering given by [32]

χ = π − 2b

∫ ∞

rm

dr

r2
√

1 − b2

r2 − 2ϕ(r)
mipg2

i

, (14)

where r is the interaction distance, rm is the distance of the
closest encounter, and ϕ(r) is the interaction potential between
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the gas molecules and particle. For diffuse scattering, the
collision cross section reads [27]

Qd (gi) = 2π

[ ∫ b0

0

(
1 +

√
πkBT

2mipg2
i

sin
χ

2

)
bdb

+
∫ ∞

b0

(1 − cos χ)bdb

]
, (15)

where b0 is the critical impact factor and corresponds to the
case of orbiting scattering (χ → −∞). For b < b0, the gas
molecules collide with the particle physically and diffuse
scattering becomes possible. For b > b0, grazing scattering
takes place and the collision is considered to be specular [3,33].

A. Analytical expressions for thermophoretic force

By substituting Eqs. (4) and (10) into Eq. (12), the
thermophoretic force FT ,i can be obtained as (a detailed
derivation can be found in Appendix)

FT ,i= − 20
√

πkBR2aini

3

(
mi

mip

)2(
�

(1,1)∗
ip − 6

5
�

(1,2)∗
ip

)
∇T ,

i = 1,2, (16)

where

�
(l,q)∗
ip =

∫ ∞

0

e−γ 2
i γ

2q+3
i Ql(gi)dγi

[(q + 1)!/2]{1 − [1 + (−1)l]/(2 + 2l)}πR2

is the reduced collision integral with γi = gi
√

mip/(2kBT ) [27,32]

and the subscript “ip” in �
(l,q)
ip denotes that the interaction

potential between species i and the particle should be used in
calculating the scattering angle χ in Eq. (14). The coefficient
ai in Eq. (16) is given by [32]

ai = αiajj + αjaij

det |A | , i,j = 1,2, i �= j, (17)

with αi = −15ni

√
2kBT /mi/(4n2) and matrix

A =
[

aii aij

aji ajj

]
.

The elements of A are given by

aii = 4n2
i

n2

√
kBT

πmii

�
(2,2)
ii + 8Mj

ninj

n2

√
kBT

2πmij

�ii, (18)

ajj = 4n2
j

n2

√
kBT

πmjj

�
(2,2)
jj + 8Mi

ninj

n2

√
kBT

2πmij

�jj , (19)

aij = aji = −8(MiMj )−3/2 ninj

n2

√
kBT

2πmij

�ij , (20)

where Mi = mi/(mi + mj ), mij = mimj/(mi + mj ), and
�ii , �jj , and �ij are the combinations of collision integrals:

�ii = 5
4

(
6M2

i + 5M2
j

)
�

(1,1)
ij − M2

j

(
5�

(1,2)
ij − �

(1,3)
ij

)
+ 2MiMj�

(2,2)
ij , (21)

�jj = 5
4

(
6M2

j + 5M2
i

)
�

(1,1)
ij − M2

i

(
5�

(1,2)
ij − �

(1,3)
ij

)
+ 2MiMj�

(2,2)
ij , (22)

�ij = 55
4 �

(1,1)
ij − (

5�
(1,2)
ij − �

(1,3)
ij

) − 2�
(2,2)
ij . (23)

In Eqs. (18)–(23), �(l,q)
ij is the collision integral for gas-gas

interactions. For most gases, the Lennard-Jones (LJ) potential
ϕij (r) = 4ε[(σ/r)12 − (σ/r)6] can be used to describe the
interactions, where ε is the molecular binding energy and σ

is the collision diameter. The values of the collision integrals
in Eqs. (18)–(23) based on the LJ potential can be found in
standard handbooks about gas kinetic theory [33]. Therefore,
the total thermophoretic force on the particle can be written as

FT = −20
√

π

3
R2kB∇T

[
a1n1

(
m1

m1p

)2(
�

(1,1)∗
1p − 6

5
�

(1,2)∗
1p

)

+ a2n2

(
m2

m2p

)2(
�

(1,1)∗
2p − 6

5
�

(1,2)∗
2p

)]
. (24)

It should be noted that a1 and a2 in Eq. (24) depend on
the intermolecular interactions between the two gas species.
Therefore, FT in Eq. (24) is not a linear superposition of the
thermophoretic forces caused by the gas components, as will
be demonstrated later. For the sake of simplicity, we would
like to rewrite Eq. (24) as

FT = −20
√

π

3
R2kB(�∗

T ,1 + �∗
T ,2)∇T , (25)

where �∗
T ,1 and �∗

T ,2 denote the first and second terms in
the square bracket in Eq. (24). Note that the units of �∗

T ,1

and �∗
T ,2 are the same as 1/R2, while the reduced collision

integrals �
(l,q)∗
ip in Eq. (24) are dimensionless.

It is noted that the thermophoretic force depends on how
gas molecules are reflected upon collisions with the particle.
Specular and diffuse scatterings are the two limiting cases.
Usually diffuse scattering results in a larger force than specular
scattering. For these two cases, the difference lies in the
collision cross section [i.e., Eqs. (13) and (15)]. Therefore,
the thermophoretic force for the two collision models can be
expressed as

FT ,s/d = −20
√

π

3
R2kB�∗

T ,s/d∇T , (26)

where �∗
T = �∗

T ,1 + �∗
T ,2, which can be called the binary

thermophoretic collision integral and the subscript “s/d”
denotes that the specular or diffuse collision cross section,
Eqs. (13) or (15), should be used in calculating the collision
integrals in Eq. (24).

If the concentration of one component of the gas mixture
approaches zero, it is expected that Eq. (26) converges to
Eq. (2) for simple gases. In Eq. (26), if, for example, x2 → 0
and x1 → 1, it can be shown that a1n1 = −15

√
2π/(16�

(2,2)

11 )
and FT ,s/d simplified to

FT ,s/d = 25
√

2π

4�
(2,2)
11

R2kB∇T

(
�

(1,1)∗
1p − 6

5
�

(1,2)∗
1p

)
s/d

, (27)

by assuming that mp � m1. Equation (27) becomes the
same as Eq. (2) given that the conductivity of the gas
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κ = 75k2
BT /(32

√
kBT m1/π�

(2,2)
11 ) [32]. It is worth mentioning

that Eq. (26) is based on the second-order approximation of the
velocity distribution function. For extremely high-temperature
gradients, the higher-order terms in the velocity distribution
may need to be considered. However, in most cases, the error
caused by the higher-order terms is below 10% [27], which is
expected to be minor compared with the uncertainty involved
in the gas-particle interaction potential.

B. Thermophoretic force on microparticles
with rigid body collisions

Equation (24) represents a very general expression for the
thermophoretic force, where the intermolecular interactions
are considered. For microspheres, the gas-particle interaction
is unimportant [3,26,27] and the analytical results of the
collision integrals in Eq. (24) can be obtained as

�
(1,1)∗
1p = �

(1,2)∗
1p = �

(1,1)∗
2p = �

(1,2)∗
2p = 1. (28)

Hence, the thermophoretic force on large spheres with rigid
body collisions in binary gas mixtures can be written as

FT = 4
√

π

3
R2kB∇T (a1n1 + a2n2), (29)

provided that the mass of the particle is much larger than that of
the gas molecules. It is easy to check that Eq. (29) is consistent
with the Waldmann equation (1), for simple gases as n1 or n2

goes to zero.

C. Thermophoretic force on nanoparticles

For nanoparticles, the gas-particle interactions may become
significant and the collision integrals �

(l,q)∗
ip in Eq. (24), which

depend on the interaction potentials, should be evaluated to
calculate the thermophoretic force. The LJ potential may be
too simple to model the gas-particle interaction, for which the
Rudyak-Krasnolutski 9-3 potential probably is a good choice,
although it has limitations. Detailed information about the
model can be found in Refs. [26,27,40].

Herein, as an example, we present the thermophoretic force
on a silver nanoparticle in dilute He-Ar gas mixtures. The
binding energy ε and collision diameter σ for He and Ar are
set to ε1/kB = 10.0 K, σ1 = 2.55 Å and ε2/kB = 114.0 K,
σ2 = 3.47 Å, respectively [41,42]. For He-Ar interaction, the
Lorentz-Berthelot mixing rules σ12 = (σ1 + σ2)/2 and ε12 =√

ε1ε2 are employed. To evaluate the gas-particle collision
integrals �

(1,1)∗
ip and �

(1,2)∗
ip , σp = 2.574 Å and εp/kB =

4075.0 K are used for Ag nanoparticles, and σip = (σi + σp)/2
and εip = √

εiεp [26,27,43]. The radius of the Ag nanoparticle
is set as R = 10σ1p.

Figure 1 shows the quantity �∗
T R2, which is dimensionless,

as a function of the mean temperature of the gas mixture
for specular [Fig. 1(a)] and diffuse [Fig. 1(b)] scatterings
at different concentrations of He x1. Figure 1 indicates that
the thermophoretic force for diffuse scattering is larger than
that for specular scattering, given the temperature gradient
and mean temperature. This is the same as the case in
simple gases. It is also reasonable that FT increases with
increasing mean temperature because the momentum transfer
is enhanced at high temperatures. Furthermore, it is seen that
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FIG. 1. (Color online) �∗
T R2 as a function of the mean tem-

perature of the gas mixture T at different He concentrations x1 for
specular (a) and diffuse (b) scattering.

the thermophoretic force on the Ag nanoparticle depends on
the concentrations of the mixture. For the case in Fig. 1, it
increases with increasing He concentration x1 for a given mean
temperature. This, we believe, is the consequence of gas-gas
and gas-particle interactions, which are very complicated. Due
to the complexity of the collision integrals, it is difficult
to offer a criterion about how the thermophoretic force
qualitatively depends on the concentration of the mixture.
Further investigations on this point are required.

In Fig. 2, �∗
T R2and �∗

T , iR
2 are depicted as a function

of He concentration x1 with mean temperature T = 300 K.
It is seen that FT ,1 (He) increases while FT ,2 (Ar) decreases
nonlinearly as x1 increases and that FT ,1 is more sensitive
to x1 compared with FT ,2. This guarantees that the total
thermophoretic force FT increases with increasing x1, as
shown in Fig. 1. The dependence of �∗

T R2 and �∗
T , iR

2 on x1

follows the same fashion for specular [Fig. 2(a)] and diffuse
[Fig. 2(b)] scatterings. Due to the nonlinear dependence, there
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FIG. 2. (Color online) Dependence of �∗
T R2 and �∗

T , iR
2on He

concentrations x1 for specular (a) and diffuse (b) scattering at T =
300 K. Open symbols represent the results in pure simple gases.

is a maximum at x1 ∼ 0.9, where FT is even larger than its
counterparts in pure He and Ar, which are illustrated by open
symbols in Fig. 2. Figure 2 also shows that Eq. (26) converges
to Eq. (2) as x1 converges to 0 or 1.

Finally, we would like to point out that the thermophoretic
force given by Eq. (24) could be negative (�(1,1)∗

ip >

6�
(1,2)∗
ip /5), depending on the gas-particle interaction potential.

This suggests possible applications of thermophoresis for the
separation of particles of different materials. The negative
thermophoretic force has been theoretically proven possible
for small Knudsen numbers based on the Boltzmann-Krook-
Welander model of the Boltzmann equation, although it is too
weak to be observed experimentally [4,5,44–47]. It has also
been argued that the negative thermophoretic force might be an
artifact due to theoretical approximations [48]. Nonetheless,
our current analyses indicate that the thermophoretic force
could be negative in the free molecular regime if appropriate
gas-particle interaction potentials are employed. The negative

thermophoretic force is a nontrivial issue and requires intensive
investigations.

IV. CONCLUSIONS

In summary, we have theoretically derived the ther-
mophoretic force on spherical particles in binary mixtures of
monatomic gases in the free molecular regime by using gas
kinetic theory. The formulas converge to those in simple gases
and can be reduced to the cases of rigid body collision. The
analytical expressions are valid for particles of size ranging
from the nano- to microscale provided that the case is in the
free molecular regime (Kn � 1).
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APPENDIX: DERIVATION OF THERMOPHORETIC
FORCE

Substituting Eqs. (4) and (10) into Eq. (12), the ther-
mophoretic force FT ,i reads

FT ,i = mip

∫
vi

gigif
(0)
i Q(gi)ai

(
ζ 2
i −5

2

)
ζ i · ∇ ln T dvi . (A1)

It is reasonable to assume that the variation in the drift
velocity V is much smaller than the peculiar velocity of the
gas molecules vi (V � vi). If V is in the same direction as
the temperature gradient and φ and θ are the colatitude and
azimuthal angles of gi , respectively, in a reference frame in
which V is in the z direction [24,26], it can be shown that

dvi ≈ dgi = g2
i sin φdφdθdgi. (A2)

Since the direction of the thermophoretic force is collinear
with that of the temperature gradient, only the component in
the V direction of g needs to be considered. This simplifies
Eq. (A1) to

FT ,i = mip

∫
gi

g4
i f

(0)
i Q(gi)ai

(
ζ 2
i − 5

2

)
ζ i

· u∇ ln T sin φ cos φdφdθdgi, (A3)

where u is the unit vector in the V direction. In consid-
eration of V � vi , we have v2

i = g2
i + V 2 + 2giV cos φ ≈

g2
i + 2giV cos φ, and the exponential term in f

(0)
i and the term

(ζ 2
i − 5

2 )ζ i · u can be simplified as [26]

exp
(−ζ 2

i

) ≈ exp
(−γ 2

i

)
and

(
ζ 2
i − 5

2

)
ζ i · u

≈
√

mi

2kBT

(
γ 2

i − 5

2

)
gi cos φ. (A4)
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By substituting Eq. (A4) into Eq. (A3), we obtain

FT ,i = mip

∫
gi

g4
i f

(0)
i Q(gi)ai

(
ζ 2
i − 5

2

)
ζ i

· u∇ ln T sin φ cos φdφdθdgi

= 4kBT aini√
π

(
mi

mip

)2

∇ ln T

∫ ∞

0
γ 5

i e−γ 2
i

(
γ 2

i − 5

2

)

×Q(gi)dγi

∫ π

0
sin φ cos2 φdφ

= −20kBaini

3
√

π

(
mi

mip

)2 {∫ ∞

0
γ 5

i e−γ 2
i Q(gi)dγi

−2

5

∫ ∞

0
γ 7

i e−γ 2
i Q(gi)dγi

}
∇T (A5)

= −20kBaini

3
√

π

(
mi

mip

)2 {
�

(1,1)
ip − 2

5
�

(1,2)
ip

}
∇T

= −20
√

πkBR2aini

3

(
mi

mip

)2 (
�

(1,1)∗
ip − 6

5
�

(1,2)∗
ip

)
∇T ,

which is Eq. (16).
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