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In this work we study the properties of a relativistic mixture of two nonreacting dilute species in thermal
local equilibrium. Following the conventional ideas in kinetic theory, we use the concept of chaotic velocity.
In particular, we address the nature of the density, or pressure gradient term that arises in the solution of the
linearized Boltzmann equation in this context. Such an effect, also present for the single component problem, has,
so far, not been analyzed from the point of view of the Onsager resciprocity relations. To address this matter, we
propose two alternatives for the Onsagerian matrix which comply with the corresponding reciprocity relations.
The implications of both representations are briefly analyzed.
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I. INTRODUCTION

Relativistic kinetic theory has become a rather fashionable
subject in recent years. Not only is this due to many
astrophysical and cosmological phenomena which occur in
dilute gases at high temperatures, but also because, for a
while, it was believed it would find an important application
in the study of the quark-gluon plasma which is formed in
relativistic heavy ion collisions (RHIC). Although this last
feature is questionable [1–3], mostly because a relativistic
quantum hydrodynamical theory is required, interest in it still
remains due to its applications to classical systems.

It is our view that, in spite of the existence of the wealth of
approaches to this classical problem, which goes back to Israel
et al. [4–7], there are two aspects that have been so far ignored
in previous works. First, the formulation of the theory using
the rather useful concept of chaotic (thermal) velocities of the
molecules composing the gas. Second, the study of the so-
called cross effects in irreversible thermodynamics. Also, and
even more important, the possibility of selecting appropriate
representations of fluxes and their conjugate forces in which
one can provide an airtight proof on the validity on Onsager’s
reciprocity relations (ORR) has, to our knowledge, never been
given. It is important to emphasize at this point that the validity
of the ORR is one of the fundamental postulates of linear
irreversible thermodynamics (LIT).

The introduction of the concept of thermal velocity has
been successfully accomplished for a single-component dilute
gas and its advantages clearly underlined in the calculation of
their transport properties [8,9]. Perhaps it is worth stressing
that in this formulation the relativistic generalization of the
classical expression for the heat flux obtained emphasizes the
nature of heat, namely, the transport of the kinetic or thermal
energy of the molecules. Further, one can obtain in a rigorous
way the expression for the relativistic stress tensor as proposed
phenomenologically by Eckart [10].

In this paper we study the second feature as mentioned
above, the cross effects and the validity of the ORR in a binary,
nonreactive, dilute mixture of gases. The most surprising
result is that there are two representations in which the ORR

hold true depending on how fluxes and forces are selected.
One of the representations follows the idea formulated by
previous authors of coupling in one single force both the
temperature and pressure gradients, this force being the direct
drive for the heat flux. The ORR are verified in that context.
The second one is based on the novel idea that due to the
noninvariance of the volume elements of the gas under Lorentz
transformations, a “volume flux” results whose conjugate
force is the pressure gradient. Resemblance to this idea arose
in at least one phenomenological derivation of Burnett’s
constitutive equations, but it has no connection with our result
[11]. Further, two cross effects are present in this approach
which are completely absent in the nonrelativistic case.

To accomplish this task, we divide the article as follows.
Section II is devoted to the basic concepts of the relativistic
kinetic theory, as well as the derivation of the conservation
equations. In Sec. III we use the Chapman-Enskog method
to linearize the Boltzmann equation. In Sec. IV we select
the appropriate thermodynamic forces following the ideas in
Refs. [6,7], and we show that the Onsager reciprocity relations
[12–14] in a 2 × 2 matrix hold. In Sec. V we propose the idea
of a purely relativistic flux directly coupled with the pressure
gradient, which satisfies the symmetry of a 3 × 3 “Onsagerian”
matrix. Finally, in Sec. VI, we include a discussion and
concluding remarks.

II. RELATIVISTIC KINETIC THEORY

As mentioned above, we study a relativistic, dilute mixture
of two nonreacting species in thermal local equilibrium. In the
framework of kinetic theory, we consider the quantity

f(1)d
3xd3v(1) + f(2)d

3xd3v(2), (1)

which represents the number of particles of species (1) and
(2) in d3xd3v(1) and d3xd3v(2), where vα

(i) denotes molecular
velocity. To establish a clear notation, we use parentheses in the
subscripts to denote species. For components, Latin subscripts
run form 1 to 3 for the spatial ones while Greek subscripts
are used for four-vectors and tensors running from 1 to 4
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in Minkowski’s space-time with a + + +− signature, also a
comma will be used to denote a covariant derivative.

The invariant Boltzmann equations for the mixture are

vα
(i)f(i),α =

2∑
i,j=1

J(ij ), (2)

where the collisional term is given by [7]

2∑
i,j=1

J(ij ) =
2∑

i,j=1

∫
(f ′

(i)f
′
(j ) − f(i)f(j ))F(ij )σ(ij )d�(ji)d

3v∗
(j ).

(3)

Here, F(ij ), σ(ij ), and d�(ji) denote the invariant flux, the
invariant differential elastic cross section, and the element of
the solid angle that characterize a binary collision between
the particles of constituent i with those of constituent j ,

respectively. The differential d3v∗
(i) stands for d3v(i)

v4
(i)

, also an

invariant. The cross-section σ(ij ) has special symmetries [15]
that guarantee the existence of inverse collisions such that
the principle of microscopic reversibility is satisfied. The
quantities f (i) and f ′

(i) denote the distribution functions before
and after a collision, respectively.

The collisional invariants in this case are the rest mass
of each species m(i) and the four-momentum m(i)v

α
(i), where

the energy is included in the temporal component m(i)v
4
(i). In

the following sections these quantities will be used to obtain
balance equations. It is important to notice at this point that the
molecular velocity in the previous equations is measured by an
observer in an arbitrary frame, which we call laboratory frame.

A. Particle number conservation

By multiplying the Boltzmann equation (2), by m(i) and
integrating over d3v∗

(i) one finds(
m(i)

∫
vα

(i)f(i)d
3v∗

(i)

)
,α

= 0, (4)

where

Nα
(i) = m(i)

∫
vα

(i)f(i)d
3v∗

(i), (5)

is the mass four-flux in an arbitrary frame. The barycentric
velocity is thus defined as

nUα = Nα
(1)

m(1)
+ Nα

(2)

m(2)
, (6)

which is consistent with Eckart’s definition for the hydro-
dynamic four-velocity. Here n = n(1) + n(2) is the particle
number density and represents an invariant. We also define
the relativistic diffusive four-flux in the comoving frame as

J α
(i) = m(i)

∫
Kα

(i)f(i)d
3K∗

(i), (7)

where Kα
(i) is the four-velocity of the particles of the species

i measured in the comoving frame (i.e., Kα
(i) is the chaotic or

thermal velocity) [16–18]. Then Nα
(i) and J

β

(i) are related by a
Lorentz transformation as follows

Nα
(i) = Lα

βJ
β

(i), (8)

where Lα
β is the transformation from the comoving frame,

where Um = 0, to an arbitrary one moving with a four-velocity
Uα .

With the help of these equations, one can find the complete
particle number conservation equation, see Ref. [19]. In this
work we only need them at Euler’s level because we will
use the Chapman and Enskog method up to first order in the
gradients. Thus, we have that

n(i)U
α
,α + Uαn(i),α = 0, (9)

for the particle number conservation.

B. Momentum and energy balance

To obtain the energy-momentum balance for the mixture,
Boltzmann’s equation is now multiplied by m(i)v

α
(i) and

integrated over d3v∗
(i), which yields

T βα
,α = (

T
βα

(1) + T
βα

(2)

)
,α

= 0, (10)

where

T βα =
∑

i

m(i)

∫
v

β

(i)v
α
(i)f(i)d

3v∗
(i). (11)

To establish the form of the tensor T βα we recognize that,
as defined in Eq. (11), it is referred to an arbitrary reference
frame. Thus, we can express it in terms of T̃ γ φ , measured in
the comoving frame defined above, as

T βα = Lβ
γLα

φT̃ γφ, (12)

where again Lα
φ and Lβ

γ are the Lorentz transformations from
the comoving frame to an arbitrary one moving with a four-
velocity Uα . Following Weinberg [20] and using the fact that
the stress-energy tensor is symmetric [see Eq. (11)], we assume
that in the comoving frame it has the form

T̃ βα =̈

⎛
⎜⎝

p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 ne

⎞
⎟⎠ +

⎛
⎜⎜⎝

0 0 0 q1

0 0 0 q2

0 0 0 q3

q1 q2 q3 0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

π11 π12 π13 0
π12 π22 π23 0
π13 π23 π33 0
0 0 0 0

⎞
⎟⎟⎠ . (13)

In Eq. (13) we have separated the proper equilibrium quanti-
ties, namely, the hydrostatic pressure

p = 1
3 T̃ mm, (14)

and the energy density per particle

ne = T̃ 44. (15)

On the other hand, the nonequilibrium quantities are

qm = cT̃ 4m = cT̃ m4, (16)

for the heat flux and

	mn = T̃ mn, (17)
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for the Navier tensor. Introducing Eq. (13) in Eq. (12) yields

T αβ = pgαβ + 1

c2
(p + ne)UαUβ

+ 1

c2

(
UαLβ

μqμ + UβLα
μqμ

) + Lβ
μLα

ν 	μν, (18)

where gαβ is the metric tensor. In Eq. (18) we identify the
first two terms as the relativistic energy-momentum tensor
at Euler’s level. The third and fourth terms represent the
nonequilibrium generalization with the heat and viscous
dissipation terms as found from kinetic theory grounds for
the single fluid in Ref. [9].

We now calculate the derivative in Eq. (10) using Eq. (18)
and its projection with the four-velocity, namely, UμT μν

,ν .
Neglecting all the terms which contain corrections whose order
is beyond Euler’s regime [19] and after laborious calculations
one finds

ρ̃U̇ β + hβνp,ν = 0, (19)

and

nė = −pUμ
,μ, (20)

where Eqs. (19) and (20) are the momentum and internal
energy balance equations, respectively. Here

ρ̃ =
∑

i

m(i)n(i)G(z(i)) = ρ̃(1) + ρ̃(2), (21)

and

G(z(i)) =
K3

(
1

z(i)

)
K2

(
1

z(i)

) , (22)

with z(i) = kT
m(i)c2 being the well-known relativistic parameter.

The dot denotes a proper time derivative and is defined as
(·) = Uμ( ),μ. Here Kn( 1

z(i)
) is the nth modified Bessel function

of the second kind.
Equation (20) is related to the temperature evolution by

assuming that the internal energy density depends only on the
temperature e = CvT . The details of the calculations above
can be found in Refs. [9,19].

III. LINEARIZATION OF THE BOLTZMANN EQUATION

In this section we proceed to apply the well-known
Chapman-Enskog method to linearize the covariant form of
Boltzmann’s equation. Following the ideas in Ref. [9], we
will perform all calculations in the comoving frame such that
Eq. (2) now reads

Kα
(i)f(i),α =

2∑
j=1

J(ij ), (23)

where Kα
(i) is the four-velocity measured in such a frame.

As usual, we now assume that the distribution functions
f(i)(xα,Kα

(i),t) can be taken as functionals of the locally con-
served variables, namely f(i)(xα,Kα

(i)|n(i),U
α,T ), and further,

they may be expanded in a power series of an inhomogeneity

parameter around the local equilibrium distribution function
f

(0)
(i) defined in an arbitrary frame as [21–23]

f
(0)
(i) = n(i)

4πc3z(i)K2
(

1
z(i)

) exp

(
Uβv(i)β

z(i)c2

)
, (24)

which in the comoving frame reduces to

f
(0)
(i) = n(i)

4πc3z(i)K2
(

1
z(i)

) exp

(
−γk(i)

z(i)

)
, (25)

where γk(i) = (1 − k2
(i)/c

2)−1/2 is the usual Lorentz factor and
k2

(i) is the squared magnitude of the chaotic or thermal three-
velocity. Omitting unnecessary arguments, we resort to the
linear theory [24] and expand Eq. (23) as

f(i) = f
(0)
(i) (1 + φ(i)). (26)

The substitution of Eq. (26) into Eq. (23) with the help of
the functional hypothesis and Eqs. (9), (19), and (20) leads to

Km
(i)

{
−γk(i)

1

z(i)c2ρ̃
p,m

+ (ln n(i)),m +
[

1 + 1

z(i)
[γk(i) − G(z(i))]

]
(ln T ),m

}
= [C(φ(i)) + C(φ(i) + φ(j ))]. (27)

Notice that in Eq. (27) we have omitted the second rank
tensorial terms since Curie’s principle establishes that in
isotropic systems only forces and fluxes of the same tensorial
rank couple among themselves. Clearly, there is an equation
similar to Eq. (27) for species j . The linearized collision kernel
now reads

C(φ(i) + φ(j )) =
∫

· · ·
∫

f
(0)
(i) f

(0)
(j ) (φ(j )

′ + φ(i)
′ − φ(j ) − φ(i))

×F(ij )σ(ij )d�(ji)d
3v∗

(j ), (28)

and

C(φ(i)) =
∫

· · ·
∫

f
(0)
(i) f

(0)
(i) (φ(i)

′ + φ(i)
′ − φ(i) − φ(i))

×F(ii)σ(ii)d�(ii)d
3v∗

(i).

The left-hand side of Eq. (27) contains terms involving
gradients of the intensive thermodynamical variables p,m,
(n(i)),m, and T,m, which we identify with thermodynamic
forces. The question that arises is how to select among
them a representation in which Onsager’s reciprocity relations
hopefully turn out to be valid. This will be discussed in the
following sections.

IV. SOLUTION WITH TWO THERMODYNAMIC FORCES

Following the statement issued above, we will proceed to
discuss the aforementioned representations. For instance, we
first rearrange the left-hand side of Eq. (27) to read as

Km
(i)

{
[dm(ij )] + 1

z(i)
[γk(i) − G(z(i))]

[
T,m

T
− 1

nhE

p,m

]}
= [C(φ(i)) + C(φ(i) + φ(j ))], (29)
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where

dm(ij ) = n(j )

(
m(j )G(z(j )) − m(i)G(z(i))

ρ̃

)
p,m

p
+ n

n(i)
(ni0),m,

(30)

and using the notation nhE = ρ̃c2, and ni0 = n(i)

n
representing

an invariant. This choice implies that we are considering two
vector forces in the system, namely

dm(ij ) and
T,m

T
− 1

nhE

p,m. (31)

The second term may be regarded as related to a generalized
Fourier’s equation with a thermal force that includes both
temperature and pressure gradients [7]. Further it may be
shown that in the nonrelativistic limit, the coefficient of such
a force in Eq. (29) reduces to

1

z(i)
[γk(i) − G(z(i))] → m(i)k

2
(i)

2kBT
− 5

2
, (32)

and the coefficient of the pressure gradient vanishes be-
cause [γk(i) − G(z(i))] → 0. Thus, the inhomogeneous term in

Eq. (27) reduces to the well-known expression of the classical
linearized Boltzmann equation.

On the other hand, dm(ij ) = −dm(ji) ≡ dm may be consid-
ered as a generalization of the standard diffusive force to a
relativistic scheme since, indeed, in the nonrelativistic case
Eq. (30) reduces to

dm(ij ) → n(j )

ρp
(m(j ) − m(i))∇p + n

n(i)
∇ni0, (33)

which is in accordance with phenomenological [26] and kinetic
[27] classical expressions.

Having selected the above thermodynamic forces, the
solution to Eq. (29) reads as [28,29]

φ(i) = −Km
(i)A(i)

[
T,m

T
− 1

nhE

p,m

]
−

∑
i

Km
(i)D(i)dm.

(34)

The substitution of Eq. (34) in Eq. (29) leads to
two independent equations. The first one is for the
scalar A(i) and is related to the temperature and pressure
gradients

Km
(i)

1

z(i)
[γk(i) − G(z(i))] = −

∑
j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′A(j )

′ + Km
(i)

′A(i)
′ − Km

(j )A(j ) − Km
(i)A(i)

]
F(ij )σ(ij )d�(ji)d

3K∗
(j ). (35)

The second one is related to the scalar function D(i) related to the diffusive force, namely

Km
(i) = −

∑
j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′D(j )

′ + Km
(i)

′D(i)
′ − Km

(j )D(j ) − Km
(i)D(i)

]
F(ij )σ(ij )d�(ji)d

3K∗
(j ). (36)

We will now use the expressions for the mass and energy fluxes arising in this representation to prove the validity of Onsager’s
reciprocity relations in this scheme. The diffusive mass flux has been defined in Eq. (7), which, with the help of Eqs. (34) and
(26), can be written as follows:

Jm
(i)

m(i)
= −1

3

∫
f

(0)
(i) Kn

(i)Kn(i)A(i)d
3K∗

(i)

[
T ,m

T
− 1

nhE

p,m

]
− 1

3

∫
f

(0)
(i) Kn

(i)Kn(i)D(i)d
3K∗

(i)d
m. (37)

In Eq. (37) the transport coefficients are identified as

Jm
(i)

m(i)
= −Ldq

[
T ,m

T
− 1

nhE

p,m

]
− Lddd

m, (38)

where Ldq and Ldd are the integrals appearing in Eq. (37).
For the energy flux we propose the form which is given in the literature [26]

qm
tot

kT
= 1

kT

∑
i

(
qm

(i) − h(i)J
m
(i)

)
, (39)

where

h(i) = kT

z(i)
G(z(i)), (40)

is the enthalpy [6]. After Eqs. (16) and (7) are introduced in Eq. (39) one obtains the complete form for the total heat flux qm
tot

which reads

qm
tot

kT
= −1

3

∑
i

∫
f

(0)
(i)

1

z(i)

[
γk(i) − G(z(i))

]
Kn

(i)Kn(i)A(i)d
3K∗

(i)

[
T ,m

T
− 1

nhE

p,m

]

− 1

3

∑
i

∫
f

(0)
(i)

1

z(i)

[
γk(i) − G(z(i))

]
Kn

(i)Kn(i)D(i)d
3K∗

(i)d
m, (41)
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as we can see, this expression has two contributions, the one given by the first term to which we may refer as the modified
Fourier’s equation and the second term related with the diffusive force dm. In short, this equation may be rewritten as

qm
tot

kT
= −Lqq

[
T ,m

T
− 1

nhE

p,m

]
− Lqdd

m. (42)

Equations (38) and (42) are now in a form which, by a similar analysis as the one performed in the classical case (see Ref. [27]),
are bound to lead to the required relations of symmetry.

To show this we start by constructing an “Onsagerian” matrix, namely(
qm

tot

Jm
(i)

)
= −

(
Lqq Lqd

Ldq Ldd

) (
T ,m

T
− 1

nhE
p,m

dm

)
. (43)

Then one proceeds by multiplying both sides of Eq. (36) by K(i)mA(i) and integrating over d3K∗
(i) to obtain the form∫

1

3
(Kn

(i)Kn(i))A(i)d
3K∗

(i) = −
∑

j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′D(j )

′ + Km
(i)

′D(i)
′ − Km

(j )D(j ) − Km
(i)D(i)

]
×K(i)mAiF(ij )σ(ij )d�(ji)d

3K∗
(j )d

3K∗
(i) ≡ {D,A}. (44)

On the other hand, multiplying Eq. (35) by K(i)mD(i) and integrating over dK∗
(i) yields∫

1

3
(Kn

(i)Kn(i))
1

z(i)

[
γk(i) − G(z(i))

]
D(i)d

3K∗
(i) = −

∑
j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′A(j )

′ + Km
(i)

′A(i) − Km
(j )A(j ) − Km

(i)A(i)
]

×K(i)mD(i)F(ij )σ(ij )d�(ji)d
3K∗

(j )d
3K∗

(i) ≡ {A,D}. (45)

Equations (44) and (45) may be symmetrized by taking
into account the invariance of F(ij )σ(ij )d�(ji)d

3K∗
(j )d

3K∗
(i) (see

Ref. [7]), and using the same symmetry arguments as in the
conventional proof of the H-theorem. Such a procedure leads
to

{A,D} = {D,A}, (46)

and thus

Ldq = Lqd. (47)

Emphasis should be made on the fact that we verified
the reciprocity of the Onsager relations using the standard
kinetic definition for two fluxes, but not for the forces. In
this section, we are assuming that the generalization for the
Fourier’s equation has the form given by Eq. (42). Here p,m is
considered as part of this force to obtain integral equations in
which the transformation of their kernels fulfill the symmetry
requirements. Thus in this representation one cannot speak of
the canonical forms of the Dufour-Soret effects that relate the
diffusion coefficients to strictly the thermal conductivity.

However, in the following section we will overcome this
difficulty by introducing a volumetric flow which arises solely
from the fact that in the theory of relativity volumes are not
invariants. This representation is completely new in the context
of relativistic kinetic theory.

V. SOLUTION WITH THREE THERMODYNAMIC FORCES

In this section we explore the possibility of a third
thermodynamic flux in the system. The motivation behind
such a task is the interest in keeping the temperature and
pressure gradients as independent forces which would yield
a Fourier-type constitutive equation for the heat flux relating
it exclusively to a temperature gradient. This will imply that
the heat flux caused by a pressure gradient constitutes a cross
effect. This is a purely relativistic effect and we shall see how
it relates to the pressure, or density, gradient term that arises
in the case of the high temperature one-component gas.

To achieve this new representation we start by rearranging
Eq. (27) as follows:

Km
(i)

{
dm + 1

z(i)
[γk(i) − G(z(i))]

T,m

T
− [γk(i) − G(z(i))]

[
n(i)m(i)

ρ̃

p,m

p(i)

]}
= [C(φ(i)) + C(φ(i) + φ(j ))], (48)

for species i, recalling that there is a similar equation for
species j . Notice that we are considering a new force

V(i)m ≡ n(i)m(i)

ρ̃

p,m

p(i)
,

which satisfies

V(1)m = m(1)

m(2)
V(2)m ≡ Vm. (49)

021132-5



MORATTO, GARCIA-PERCIANTE, AND GARCIA-COLIN PHYSICAL REVIEW E 84, 021132 (2011)

Equation (48) leads to a solution of the form

φ(i) = −Km
(i)A(i)

T,m

T
−

∑
j

Km
(j )B(j )Vm −

∑
j

Km
(j )D(j )dm.

(50)

The substitution of Eq. (50) into Eq. (48) yields three
independent equations. The first one, which is related with
the heat flux, is for the scalar function A(i), namely

Km
(i)

1

z(i)

[
γk(i) − G(z(i))

]
= [

C
(
Km

(i)A(i)
) + C

(
Km

(i)A(i) + Km
(j )A(j )

)]
. (51)

The second one is related to the volume flux V m and is for the
scalar function B(i), namely

Km
(i)

[
γk(i) − G(z(i))

]
= [

C
(
Km

(i)B(i)
) + C

(
Km

(i)B(i) + Km
(j )B(j )

)]
. (52)

And finally the third one must be satisfied by the scalar function
D(i) and reads

Km
(i) = [

C
(
Km

(i)D(i)
) + C

(
Km

(i)D(i) + Km
(j )D(j )

)]
. (53)

Equation (52) is now the new ingredient in this repre-
sentation. To understand its physical meaning we proceed as
follows. Consider the motion of an individual particle which
collides with another one. After the collision it will travel a
length λ, the mean free path, before colliding with a third one.
Recall also that the mean free time is much greater than the
collision time. One can thus construct a sphere centered in
the particle (in general, it can be any other geometric figure)
with volume V = 4

3πλ3 that, when the speed of the particle is
comparable with the speed of light, by Lorentz’s contraction,
is deformed into a ellipsoid with volume 4

3πλ3γk . Therefore,
in the relativistic case, an observer sees a change in this volume
with a privileged direction �k. This is the process which gives
rise to “volume or volumetric flow” and a system with an
apparently additional state variable. To explore its significance
we establish the transport equation characterizing its flow.
In the case of a binary mixture by multiplying Boltzmann’s

equation by the microscopic change in the volume aγk(i) where
a is a constant, and integrating over the velocities d3K∗

(i) yields(∫
γk(i)K

α
(i)f(i)d

3K∗
(i)

)
,α

=
∫

γk(i) (J(ii) + J(ij ))d
3K∗

(i)

= πvol, (54)

which is a balance equation for the change in the volume in
the gas. Notice that in the nonrelativistic limit, the right-hand
side vanishes, implying that there is no such change in volume.
The physical implications of this flux are further discussed in
the final section.

In the case of mixtures, the energy flux corresponding to
heat dissipation to be considered in Onsager’s formalism is
constructed by subtracting the diffusive mass flux times the

enthalpy from the heat flux [26,30]. In a similar fashion, we
define the total volume (adimensional) flux as

Jm
V =

∑
i

(∫
γk(i)K

m
(i)f(i)d

3K∗
(i) − hE(i)

m(i)c2

Jm
(i)

m(i)

)
, (55)

where n(i)hE(i) = c2ρ̃(i). Thus, using Eqs. (50) and (26) we
have that

Jm
V = −1

3

∑
i

∫
f

(0)
(i)

[
γk(i) − G(z(i))

]
Kn

(i)K(i)nA(i)d
3K∗

(i)
T ,m

T

− 1

3

∑
i

∫
f

(0)
(i)

[
γki

− G(z(i))
]
Kn

(i)K(i)nB(i)d
3K∗

(i)V
m

− 1

3

∑
i

∫
f

(0)
(i)

[
γk(i) − G(z(i))

]
Kn

(i)K(i)nD(i)d
3K∗

(i)d
m,

(56)

or

Jm
V = −LV q

T ,m

T
− LV V V m − LV dd

m, (57)

which introduces two new transport cross-coefficients LV q ,
LV d and one corresponding to the direct effect LV V .

As mentioned before, the dissipative energy flux is given
by

qm
tot

kBT
= −1

3

∑
i

∫
f

(0)
(i)

1

z(i)

[
γk(i) − G(z(i))

]
Kn

(i)Kn(i)A(i)d
3K∗

(i)
T ,m

T
− 1

3

∑
i

∫
f

(0)
(i)

1

z(i)

[
γk(i) − G(z(i))

]
Kn

(i)Kn(i)B(i)d
3K∗

(i)V
m

− 1

3

∑
i

∫
f

(0)
(i)

1

z(i)

[
γk(i) − G(z(i))

]
Kn

(i)Kn(i)D(i)d
3K∗

(i)d
m (58)

or
qm

tot

kBT
= −Lqq

T ,m

T
− LqV V m − Lqdd

m, (59)

and for the mass flow we have
Jm

(i)

m(i)
= −1

3

∫
f

(0)
(i) Kn

(i)Kn(i)A(i)d
3K∗

(i)
T ,m

T
− 1

3

∫
f

(0)
(i) Kn

(i)Kn(i)B(i)d
3K∗

(i)V
m − 1

3

∫
f

(0)
(i) Kn

(i)Kn(i)D(i)d
3K∗

(i)d
m, (60)

which can also be written as
Jm

(i)

m(i)
= −Ldq(i)

T ,m

T
− LdV (i)V

m − Ldd(i)d
m. (61)

021132-6



VALIDITY OF THE ONSAGER RELATIONS IN . . . PHYSICAL REVIEW E 84, 021132 (2011)

From the previous equations, one can readily identify the Soret
and Dufour cross effects. The verification of the Onsager
reciprocity relations will support that these are the correct
generalizations for such effects.

Equations (57), (59), and (61) will be explored to see
whether they comply with the Onsager reciprocity relations.
As before, we construct the Onsagerian matrix

⎛
⎜⎝

qm
tot

Jm
(i)

Jm
V

⎞
⎟⎠ = −

⎛
⎜⎝

Lqq Lqd LqV

Ldq(i) Ldd(i) LdV (i)

LV q LV d LV V

⎞
⎟⎠

⎛
⎜⎜⎝

T ,m

T

dm
(i)

V m

⎞
⎟⎟⎠ , (62)

where we introduced the term V m as the direct driving force
for the volume flux Jm

V . Then, by the same procedure and
arguments as those in the previous section, we will verify the
symmetries ∑

Ldq(i)
?= Lqd, (63)

LV q
?= LqV , (64)

LV d
?=

∑
LdV (i). (65)

First, for Eqs. (63), (51), and (53) are multiplied by Km
(i)D(i)

and Km
(i)A(i), respectively. After integration over d3K∗

(i) one
finds

∫
Kn

(i)
1

z(i)

[
γk(i) − G(z(i))

]
Kn(i)D(i)dK∗

(i) = −
∑

j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′A(j )

′ + Km
(i)

′A(i)
′ − Km

(j )A(j ) − Km
(i)A(i)

]

×Km
(i)D(i)F(ij )σ(ij )d�(ji)d

3K∗
(j )d

3K∗
(i) ≡ {A,D}, (66)

or

∫
Kn

(i)Kn(i)A(i)dK∗
(i) = −

∑
j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′D(j )

′ + Km
(i)

′D(i)
′ − Km

(j )D(j ) − Km
(i)D(i)

]

×K(i)mA(i)F(ij )σ(ij )d�(ji)d
3K∗

(j )d
3K∗

(i) ≡ {D,A}, (67)

where, by the symmetry properties of the collisional term, {A,D} = {D,A}, implying that Eq. (63) holds. Second, multiplying
Eqs. (51) and (52) by Km

(i)B(i) and Km
(i)A(i), respectively, and integrating over d3K∗

(i) yields

∫
Kn

(i)
1

z(i)

[
γk(i) − G(z(i))big]Kn(i)B(i)dK∗

(i) = −
∑

j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′A(j )

′ + Km
(i)

′A(i)
′ − Km

(j )A(j ) − Km
(i)A(i)

]

×Km(i)B(i)F(ij )σ(ij )d�(ji)d
3K∗

(j )d
3K∗

(i), ≡ {A,B}, (68)

or

∫
Kn

(i)

[
γk(i) − G(z(i))]Kn(i)A(i)dK∗

(i) = −
∑

j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′B(j )

′ + Km
(i)

′B(i)
′ − Km

(j )B(j ) − Km
(i)B(i)

]

×Km(i)A(i)F(ij )σ(ij )d�(ji)d
3K∗

(j )d
3K∗

(i), ≡ {B,A}, (69)

and since {A,B} = {B,A}, Eq. (64) holds. Last, Eqs. (52) and (53) are multiplied by Km
(i)D(i) and Km

(i)B(i), respectively, yielding

∫
Kn

(i)

[
γk(i) − G(z(i))

]
Kn(i)D(i)d

3K∗
(i) = −

∑
j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′B(j )

′ + Km
(i)

′B(i)
′ − Km

(j )B(j ) − Km
(i)B(i)

]

×Km(i)D(i)d
3K∗

(i) ≡ {B,D}, (70)∫
Kn

(i)Kn(i)B(i)dK∗
(i) = −

∑
j

∫
· · ·

∫
f

(0)
(i) f

(0)
(j )

[
Km

(j )
′D(j )

′ + Km
(i)

′D(i)
′ − Km

(j )D(j ) − Km
(i)D(i)

]

×K(i)mB(i)F(ij )σ(ij )d�(ji)d
3K∗

(j )d
3K∗

(i), ≡ {D,B}, (71)

where again, {B,D} = {D,B}, justifying Eq. (65).
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At this point we have verified that Onsager’s symmetries
hold in this representation. The authentic Dufour effect
corresponds to the transport coefficient Lqd , while the Soret
effect is related to Ldq , whose explicit expressions are depicted
in Eqs. (59) and (61). Now, from the Onsagerian matrix we
identify two new cross effects represented by LdV and LqV .
These effects do not appear in the nonrelativistic theory and
their physical meaning will be discussed elsewhere.

The Onsager reciprocity relations are not necessarily
fulfilled in other representations. In classical irreversible
thermodynamics one often finds that many writers believe
that the appropriate thermodynamic forces to describe cross
effects in the case of mixtures are the chemical potentials of
the species. For the nonrelativistic case, when the mixture is
nonisothermal it was clearly shown in Ref. [27] that this is
incorrect. In such a representation the ORR do not hold true.
The same statement is valid for a nonisothermal binary mixture
of inert gases in special relativity, the details of the proof are
practically identical as in the nonrelativistic case so we omit it.

VI. DISCUSSION

In this paper we have shown that the introduction of the
concept of thermal velocity is equally useful to deal with
transport properties of diluted mixtures. In fact, the expression
we obtained for the total heat flux Jm

tot is consistent with
its expression in the phenomenological theory as well as in
the nonrelativistic case. Second, we insist that the new result
exhibits the existence of two representations in which the ORR
are valid. The one discussed in Sec. IV, where the forces are
those that have been used by the authors of Refs. [6,7] for
the simple component gas, is characterized by the fact that
Fourier’s like equation has to be modified by the presence of
a pressure gradient.

In the second case as discussed in Sec. V, we propose the
new idea of the volume flux, which may be introduced without
modifying the classical Fourier equation, and also gives rise to
the canonical form for the Dufour and Soret effects related with
Lqd and Ldq . This representation provides two cross effects
that are only present in the relativistic case, namely LqV and
LdV . Indeed, one can immediately see from Eq. (52) that this
contribution vanishes in the nonrelativistic limit.

Notice that the volume flow as introduced in Eq. (57) may
be regarded as a multiple of the heat flux Eq. (59) in the
single-fluid limit. As shown in the Appendix, the constitutive
equation for the heat flux and for the volume flux in this limit
coincide. Thus, what in the binary mixture is a cross effect turns
into a direct effect with a Fourier-type constitutive equation in
the single-fluid limit.

The variable associated with the volume transport has a
peculiar thermodynamical meaning. This volume flux with
its conjugated force is indeed related to the thermodynamic
description of the system, and when taken into account,
clarifies the nature of the transport phenomena in a relativistic

mixture. This coupling of the volume flux with a pressure
gradient is indeed confirmed when calculating the entropy
production of the mixture, which constitutes a work in progress
and will be published elsewhere.
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APPENDIX

In this Appendix we will take the single-fluid limit of the
equations for the volume flux and the heat flux. Taking m(i) =
m(j ) = m, n(i) = n(j ) = n, from Eqs. (16) and (54) we have
for the heat flux

qm
tot

kBT
= mc2

kBT

∫
γkK

mf d3K∗, (A1)

and for the volume flux

Jm
V =

∫
γkK

mf d3K∗, (A2)

thus
qm

tot

kBT
= 1

z
Jm

V . (A3)

It remains to verify that the transport coefficients satisfy the
same relations, namely, from Eqs. (57) and (59) with the fact
that dm = 0, recalling that Jm

(i) = Jm
(j ) = 0 we get

Jm
V = −LV q

T ,m

T
− LV V

[
nm

ρ̃

p,m

p

]
, (A4)

and

qm
tot

kBT
= −Lqq

T ,m

T
− LqV

[
nm

ρ̃

p,m

p

]
, (A5)

where

LV q = −1

3

∫
f (0)[γk − G(z)]KnKnAd3K∗, (A6)

LV V = −1

3

∫
f (0)[γk − G(z)]KnKnBd3K∗, (A7)

Lqq = −1

3

∫
f (0) 1

z
[γk − G(z)]KnKnAd3K∗, (A8)

LqV = −1

3

∫
f (0) 1

z
[γk − G(z)]KnKnBd3K∗. (A9)

Where again we can immediately see that

qm
tot

kBT
= 1

z
Jm

V . (A10)

Then, in the single-fluid limit, the volume flux turns out to be
a multiple of the heat flux.
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