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Finite-size effects in nanocomposite thin films and fibers
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Monte Carlo simulations of finite-size effects for continuum percolation in three-dimensional, rectangular
sample spaces filled with spherical particles were performed. For samples with any dimension less than 10–20
times the particle diameter, finite-size effects were observed. For thin films in the finite-size regime, percolation
across the thin direction of the film gave critical volume fraction (pc) values that differed from those along the
plane of the film. Simulations perpendicular to the film for very thin samples resulted in pc values lower than
the classical limit of ∼29% (for spheres in a three-dimensional matrix) which increased with film thickness.
For percolation along thin films, while holding film thickness constant, pc increased with increasing sample
size, which is a modification of the finite-sized scaling effect for cubic samples. For samples with a large aspect
ratio (fibers) and a finite-sized cross-sectional area, the critical volume fraction increased with sample length, as
the sample became quasi-one-dimensional. The results are discussed in the context of adding volume along or
perpendicular to the percolation direction. From an experimental perspective, these findings indicate that sample
shape, as well as relative size, influences percolation in the finite-size regime.
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I. INTRODUCTION

Nanocomposite materials (a matrix doped with nanometer-
sized particles) rely on the formation of a network of particles
which spans the sample to enhance the properties of the
matrix. This first occurs at a critical filling level or percolation
threshold (pc), which is dependent upon many characteristics
of the composite, including the sample dimensionality [1].
As fabrication of, and interest in large aspect ratio particles
has increased in recent years, the effects of particle shape,
size, and alignment have been a focus of experimental and
computational studies of percolation [2–5]. However increas-
ingly, rather than utilizing bulk sample geometries, composites
are being formed into more complex morphologies, such as
coatings, thin films, and fibers, where the size of sample
features may approach that of the particle, the sample shape
is anisotropic, and void space may exist within the sample.
In these constrained geometries, the sample shape will affect
the observed critical filling level, and critical filling may occur
at different values along different axes of the sample. For
instance, Fu et al. recently reported changes in pc for thin films
as film thickness approached the length of the carbon nanotube
dopant [6]. As well, we have experimentally observed similar
effects as a function of sample size in fibrous mats doped with
carbon nanotubes [7]. More broadly, percolation in a confined
geometry is generally important for particle-doped nanofibers,
such as those fabricated by electrospinning [8] where the fiber
diameter may approach the size of at least one dimension
of the particle. The underlying issues of percolation within
these confined spaces and anisotropic finite-sized samples
have not previously been well studied, particularly with an
eye toward understanding current, technologically important
experimental geometries, such as thin films and nanofibers.
In fact, many applications for nanocomposites involve thin
films or coatings of either a continuous (filmlike) or fibrous
morphology.
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In this report, we discuss computational results on finite-
size effects along long fibers and within thin films, where
percolation is measured either along or perpendicular to
the thin film. Here we focus on spherical particles; however,
these effects are also significant for technologically important
large aspect ratio particles, and scale based upon the longest
particle dimension; that is, in order to avoid finite-size effects
a sample size of many times the longest particle dimension is
required, as will be discussed in a future report [7]. Previously,
our group [9] as well as others [10], have addressed the effect
of void space within complex morphologies.

II. COMPUTATIONAL DETAILS

Three-dimensional (3D) continuum Monte Carlo simula-
tions were performed as reported earlier [9]. Sample spaces
were doped with completely penetrable (soft core) spheres of
a fixed size. For a given sample space and doping level, 1000
or more realizations were generated and tested for percolation,
resulting in a percolation probability for each case. Percolation
tests were carried out using a “tree-burning” algorithm [11].
The critical volume fraction was defined as the filling level
at which the percolation probability was 50%, as determined
by fitting the probability versus volume fraction curve with
the equation P = 0.5 + 0.5 erf[(p − pc)/�] where P is the
percolation probability, erf the error function, p the volume
fraction, and � reflects the width of the transition region
[12]. In our terminology pc is a size- and shape-dependent
parameter due to finite-size effects; p∞

c is the infinite limit
of this value or the usual critical volume fraction. Volume
fractions were determined from either 1 − p = (1 − v/V )Nor
the infinite limit form of this equation p = 1 − exp(−vN/V )
where N is the number of particles, v is the particle volume,
and V is the space available for filling, that is, for placement
of the center point of the filling particle [13], modified as
follows to account for particle volume residing outside the
sample space. Assuming a uniform distribution of particles
throughout the sample, the probability of a particle touching
n = 0, 1, or 2 sides of the sample space, the expected
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protruding volume in each case, and thus the expected enclosed
volume 〈νn〉 were calculated. The volume fraction is then p =
1 − exp[−N (vP0 + 〈v1〉P1 + 〈v2〉P2 + 〈v3〉P3)/V ] [14]. The
error in pc is the standard deviation (σ = �/

√
2 as the error

function is the integral of a Gaussian distribution) calculated
from the fit of the probability versus volume fraction data.
For very small samples, we directly calculated p by checking
a few million points within the sample (either randomly
or by imposing a fine grid) and determining if each fell
within a sphere [15]. For the largest sample sizes, instead
of traditional Monte Carlo, a series of correlated tree-burning
tests were performed. A very low doping level was generated
and the absence of percolation confirmed. This same particle
placement was retained and additional particles were added,
iterating until percolation was achieved. The critical particle
number was recorded, generating a pc value for this realization,
using the above formulaic approach. The process was repeated
1000 times and a percolation probability versus volume
fraction curve was generated by numerically integrating the
data, and then fit as described above. In this approach, there
is less statistical sampling away from pc; however, for 35
test cases of various shapes, we found good agreement with
traditional Monte Carlo, providing the sample is sufficiently
large. A similar approach has been previously reported [16].

III. RESULTS AND DISCUSSION

A. Finite-size effects in cubes

Finite sample size effects have previously been studied
primarily in cubic or square systems. In these cases, as the
sample size increases, pc approaches an asymptotic value
from above, pc − p∞

c ∼ L−1/ν with L the sample length and
ν the scaling exponent [1]. Figure 1 shows the probability
curves for cubic samples of varying size. Following the
intersection with the dashed line (50%) reveals that the critical
volume threshold decreases as the sample size increases. In
addition, the transition becomes sharper, also as expected from
classical theory where � ∼ L−1/ν [1,12]. Scaling � values
(for 13 cubes with L = 20–70) resulted in ν = 0.91 ± 0.02
consistent with a previous report of ν = 0.89 ± 0.01 for cubes
with L = 16–80 (p∞

c = 0.2895 ± 0.0005) [12]. For smaller
cubes (L = 2, 5, 10, and 15), � was smaller than expected from
this scaling law with the deviation increasing with decreasing
size. Utilizing this � value to scale the pc data resulted
in pc = 0.2887 ± 0.0001 which is slightly lower than the
previous finite-size scaling value and a very accurate recent
value of pc = 0.289573 ± 0.000002 [17]. This slight deviation
may be due to our handling of protruding volume. Without the
protruding volume adjustment, which is a small correction at
large sample size, but significant for small samples, our results
yield ν = 0.90 ± 0.02 with p∞

c = 0.2891 ± 0.0002 which is
fully consistent with previous finite-size scaling studies.

One interpretation of this classical result is that for similar
particle and sample size, generating a single sample-spanning
path requires few particles but a large fraction of the sample
volume. For a cubic sample, as the sample gets larger, the
length to be spanned (and thus the number of particles needed)
increases, however, the overall volume rises more rapidly, so
a smaller fraction of the overall sample will be filled at the

FIG. 1. (Color online) Percolation probability curves for cubic
samples doped with spheres. Fit lines are error function. Sample
dimensions are relative to sphere diameter. The dashed horizontal
line indicates 50% percolation probability.

percolation threshold. The net effect is a decrease in pc with
increasing sample size for small samples.

B. Finite-size effects in fibers

In contrast, for a fiberlike sample where percolation occurs
along the long axis, an increase in the fiber length while
maintaining cross-sectional area (A) provides only a modest
increase in volume. Thus, the length effect dominates and pc

grows with increasing fiber length. This case is presented in
Fig. 2 where cubic samples for five different cross-sectional
areas were extended in the direction of percolation, resulting in
a more fiberlike shape. As the sample lengthens, pc increases,
with the size of the effect the largest for the most confined
samples, where particle size is similar to the cross-sectional
area of the fiber. For small cross-sectional areas, as the fiber
length increases, the samples become quasi-one-dimensional
(quasi-1D) and, as a result pc grows. In the most extreme
case (L = 200, A = 1×1), pc is 0.960 approaching the
true 1D value of 1. As the cross-sectional area increases
the effect is lessened. Considering the asymptotic values at
large L as the most experimentally accessible, even for a
cross-sectional area of 10 × 10, pc is noticeably elevated
over the usual three-dimensional value. For a sufficiently
large cross-sectional area we expect to recover this bulk (3D)
value of pc of ∼0.29 with no dependence on sample aspect
ratio. Samples with a cross-sectional dimension of 50× and
100× approach this value (L = 200, A = 50 × 50 pc =
0.296; L = 50, A = 100 × 100 pc = 0.284) although pc

is still somewhat shape dependent. Scaling using the form
|pc − p∞

c | ∼ L−1/ν(where the absolute value is necessary
as pc falls below the infinite limit value) is summarized
in the Fig. 2 caption. For large cross-sectional areas, the
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FIG. 2. (Color online) Thin film to cubic to fiberlike transition
for five different cross-sectional areas. Sample dimensions are
relative to sphere diameter and percolation is tested for along L

the percolation length. A is the cross-sectional area perpendicular
to L. Fit lines are from the standard pc finite-sized scaling form
(taking the absolute value of the left-hand side) with p∞

c and ν

values as follows: A = 1 × 1, 1.003 ± 0.004, 2.11 ± 0.08; A =
5 × 5, 0.495 ± 0.003, 2.23 ± 0.08; A = 10 × 10, 0.376 ± 0.001,
1.72 ± 0.05; A = 50 × 50, 0.2995 ± 0.0006, 0.88 ± 0.05; A =
100 × 100, 0.299 ± 0.003, 0.94 ± 0.05. As expected, the smallest
L values do not scale; more low L values had to be excluded
as cross-sectional area increased. An elevated ν indicates a slower
approach to the infinite value as L is increased. We also scaled
samples with the same aspect ratio (AR) versus L. For a small number
of samples with AR = 2, p∞

c = 0.289 and ν = 0.88; ν increased as AR
varied from 1 (e.g., AR = 1/5, ν = 2.2; AR = 15,ν = 1.1). Again,
small L values do not scale.

scaling exponent (ν) and pc values approach those in 3D.
For anisotropic samples (either thin filmlike or fiberlike), ν

is elevated, indicating a slower approach of pc to the infinite
value or equivalently, the need for a larger sample in order to
avoid finite-size effects.

C. Finite-size effects in thin films

Interestingly, a second effect is noticeable in Fig. 2 for
sample aspect ratios less than one. In this region, where the
length of the sample is less than

√
A, for large sample sizes, pc

is lower than the three-dimensional value of ∼0.29, normally
considered the lower limit. In this case, the sample length
along which percolation is measured is small (a few particle
diameters), while the cross-sectional area can be relatively
large, thus very little of the volume must be filled in order
to span this short distance. Similar results along and across
rectangular samples have been observed in two-dimensional
(2D) lattice percolation simulations [18–20]. This result led us
to examine such thin filmlike geometries, where percolation
can be experimentally measured along the short “thickness”
of the sample, for instance, when the film is placed between

FIG. 3. (Color online) Critical volume fraction in two directions
(x and y as indicated above) for cubic to filmlike samples. The x
and z dimensions are always the same (=d), so percolation occurs
perpendicular to or along a filmlike sample. Dimensions are in units of
the sphere diameter. Arrows point in the direction of larger samples.
For comparison, the values in Fig. 2 are in the y direction.

parallel-plate electrodes, or alternatively along the plane of the
film. In fact, for the largest cross-sectional dimensions (50×
and 100×) in Fig. 2, the results are almost independent of the
cross-sectional area, indicating that these limiting values are
applicable for thin films (very large A, with much smaller L). In
this case, the primary finite-size effect is a significant decrease
in pc at L values less than ∼20×, even though the other sample
dimensions are quite large.

The results for thin films (and smaller samples with aspect
ratio <1) in comparison with cubes are summarized in
Fig. 3. We first discuss percolation along the thin direction,
perpendicular to the film (the y axis in Fig. 3). For instance,
for a sample thickness of 2× the particle diameter (squares),
as the cross-sectional area of the sample increases [e.g., from
2 × 2 (fully filled) to 100 × 100 (right-half filled)], pc along
y (pc,y) decreases, falling well below the classical limit of
∼0.29. We term this result the “thin-wide sample” effect,
to distinguish it from the other finite-size effects, namely
the “fiber” effect (Fig. 2) and the “classical finite scaling”
effect (Fig. 1). This decrease is related to the classical scaling
effect, where pc is driven downward as total volume increases.
Here the counteracting effect due to increasing sample length
is absent as the sample thickness remains constant. Further
increase in the cross-sectional area (and thus the volume),
continues to decrease pc,y until the values begin to asymptote
at large A (here the x-z plane). As the thin-film samples
become thicker [e.g., with a thickness of 5× (circles in Fig. 3)],
increasing the cross-sectional area still reduces pc,y , but to a
lesser extent. As sample size increases, pc values converge
toward the point pc,y = pc,x ≈ 0.29, exemplified by the
50 × 50 × 50 sample (pc,y = pc,x = 0.290). Again, as in the
fiber case, the effect is largest for the highest confinement (in
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this case, the thinnest sample). Considering the experimentally
accessible thin-film case, the large × Y × large line in Fig. 3
follows the transition as the thickness of a thin film (very large
A) increases. Again, it is noteworthy that noticeable finite-size
effects persist up to thicknesses of 20× the particle diameter.

We can also consider percolation along such a film, which
would be important experimentally for applications where
transport along (rather than just through) the film was crucial
(such as cases where electrodes are attached only to the ends
of a conducting composite film). Considering again the y =
2 sample sequence (squares in Fig. 3), we now examine
pc,x (x axis, Fig. 3). Here, the film thickness (y) is kept
constant, while both the percolation direction (x) and z (the
orthogonal direction within the film) increase simultaneously.
Thus, both the percolation direction and one component of the
cross-sectional area (now the y-z plane) increase by the same
extent. As the sample size grows [e.g., from 2 × 2 × 2 (fully
filled) to 100 × 2 × 100 (right-half filled)] pc,x increases. This
is similar to the fiber case (Fig. 2), where the sample becomes
quasi-one-dimensional as a cubic sample transitions into a
fiber, with an associated increase in pc. Here, the transition is
from a three-dimensional sample to a quasi-two dimensional
sheet. As in the fiber case, the increase is larger for more
confined (in this case thinner) samples, with the thinnest (2×)
sample showing the largest increase. For comparison, a sheet
of spheres in a rectangular box, one sphere tall, has a pc,x of at
least ∼0.45 (calculated from the known areal volume fraction
in 2D of ∼0.68 for continuum percolation of circles [21]).
This value is similar to the result for a 1× thick sample (not
shown), 100 × 1 × 100 where pc,x = 0.51. As the sample
becomes sufficiently thick, the difference in pc along x and y
decreases, and both approach the 3D value. For comparison,
traditional finite scaling for cubic samples is highlighted at the
top of Fig. 3.

IV. CONCLUSIONS

Summarizing all the results in this work, in the finite-size
regime increasing the length of the percolation direction tends
to increase pc, whereas increasing the cross-sectional area
perpendicular to percolation drives down the value of pc. In
a given experimental configuration, one of these effects will
dominate, leading to either an increase or decrease in pc with
sample size dependent upon sample geometry. For instance,
both “classical finite scaling” (increasingly larger cubes) and

the “thin-wide sample” (increasing the cross-sectional area
only) effect lower pc as sample volume is increased. In other
cases (fibers, or increasing film thickness for thin films when
percolating along the thin direction), the effect of increasing
the percolation length dominates and pc grows with size. In the
experimentally accessible configurations of long fibers or thin
films, pc will be elevated for fibers with finite cross sections
and suppressed for thin films. Both of these observations are
consistent with previous experimental work by ourselves [7,22,
23] and others [6] with long aspect ratio particles (rather than
the spheres studied in this work), indicating that these effects
remain important as particle aspect ratio changes. We will
address finite-size effects for large aspect ratio particles in a
future work [7]. Very recently a study of anisotropic finite-size
effects in a three-dimensional continuum system for a much
narrower range of sample shapes (square cross sections only
with aspect ratios of 0.125–8.0) than in this work (aspect ratios
of 0.02–200) has appeared [24].

We have shown that in the finite-size regime both the sample
size and shape affect percolation. In classical finite scaling,
where volume is added symmetrically in all three directions
to the sample, the critical volume fraction decreases with
increasing sample size. Conversely, adding volume only along
the percolation direction raises the critical volume fraction (the
“fiber” effect). In a thin-film geometry, when percolating along
the film, increasing the sample size while holding the thickness
constant results in a modified version of “fiber” effect where
pc increases but with a slower rate than in the fiber case.
Finally, for percolation along the short distance of the film,
increasing sample size, while keeping the percolation distance
constant, results in a dramatic decrease in pc and values that
are lower than the usual 3D limit (0.29 for spherical particles).
All three of these finite-size effects are the largest at a small
sample-to-particle ratio and diminish as this confinement is
released until at sufficiently large sample sizes the critical
volume is independent of sample shape and size and collapses
to the 3D limit.
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