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Worm-type Monte Carlo simulation of the Ashkin-Teller model on the triangular lattice
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We investigate the symmetric Ashkin-Teller (AT) model on the triangular lattice in the antiferromagnetic
two-spin coupling region (J < 0). In the J → −∞ limit, we map the AT model onto a fully packed loop-dimer
model on the honeycomb lattice. On the basis of this exact transformation and the low-temperature expansion, we
formulate a variant of worm-type algorithms for the AT model, which significantly suppress the critical slowing
down. We analyze the Monte Carlo data by finite-size scaling, and locate a line of critical points of the Ising
universality class in the region J < 0 and K > 0, with K the four-spin interaction. Further, we find that, in the
J → −∞ limit, the critical line terminates at the decoupled point K = 0. From the numerical results and the exact
mapping, we conjecture that this “tricritical” point (J → −∞,K = 0) is Berezinsky-Kosterlitz-Thouless-like
and the logarithmic correction is absent. The dynamic critical exponent of the worm algorithm is estimated as
z = 0.28(1) near (J → −∞,K = 0).
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I. INTRODUCTION

The Ashkin-Teller (AT) model is a generalization of the
Ising model to a four-component system of which each lattice
site is occupied by one of the four states [1–7]. In 1972, Fan
[1] associated each lattice site with two Ising variables (σ ,τ )
and represented the four states by the combined states (1,1),
(1, − 1), (−1,1), and (−1, − 1). On this basis, the reduced
Hamiltonian (kBT ≡ 1) of the AT model reads

H = −
∑
〈i,j〉

(Jσσiσj + Jτ τiτj + Kσiτiσj τj ), (1)

where the sum 〈i,j 〉 runs over all the nearest-neighbor pairs
of spins, Jσ (Jτ ) represents the two-spin interaction for σ

(τ ), and K is the four-spin interaction. Examples of physical
realizations of the AT model include (1) systems with layers
of atoms and molecules adsorbed on clean surfaces—e.g.,
selenium adsorbed on the Ni(100) surface [8] and the oxygen-
on-graphite system [9], and (2) systems with layers of oxygen
atoms in the CuO plane, like the high-Tc cuprate yttrium
barium copper oxide (YBCO) [10].

The AT model exhibits very rich critical behavior and
plays an important role in the field of critical phenomena.
Figure 1 displays the phase diagram of the AT model on the
square lattice for J ≡ Jσ = Jτ > 0 (we shall only consider
this symmetric case in this work). The model reduces to
two decoupled Ising systems for K = 0, and is equivalent
to the four-state Potts model along the diagonal line J = K .
The whole P-I-O line is critical, with continuously varying
critical exponents, and with the decoupled Ising point I and the
four-state Potts point P as two special points. The two branches
P-A and P-B are also critical and are numerically shown to
be in the Ising universality class. On other two-dimensional
planar lattices like the honeycomb, triangular, and kagome
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lattices, the phase diagram of the AT model with J � 0 is
similar to Fig. 1, except that the antiferromagnetic transition
line for K < 0 may be absent on nonbipartite lattices like the
triangular and the kagome lattice.

In this work, we shall consider the AT model on the
triangular lattice. From the duality relation and the star-triangle
transformation, it was already found [11] in 1979 that the
critical P-I-O line is described by

e−4K = 1
2 (e4J − 1), (2)

with K � 1
4 ln 2. Further, it can be shown that the model on

the infinite-coupling point O (J = −K → ∞) can be mapped
to the critical O(n) loop model with n = 2 on the honeycomb
lattice and the well-known Baxter-Wu model on the triangular
lattice at criticality [12]. In the limit J = K → −∞, the
model is equivalent to the four-state Potts antiferromagnet
at zero temperature, which is also critical. In the limit J =
0,K → −∞, the AT model reduces to the zero-temperature
Ising antiferromagnet in the variable στ ; the same applies
to the limit K = 0,J → −∞ for the two decoupled Ising
variables σ and τ . The phase transition of the triangular-lattice
Ising antiferromagnet is absent at finite temperature, and at
zero temperature the system has nonzero entropy per site
[13,14]. The pair correlation on any of the three sublattices
of the triangular lattice decays algebraically as a function of
distance, and the associated magnetic scaling dimension is
Xh = 1/4 [15].

On the square lattice, the phase diagram for J < 0 is
the symmetric image of Fig. 1 with respect to the K axis
(J → −J ), arising from the bipartite property. However, to our
knowledge, the phase diagram of the AT model is still unknown
on the triangular and the kagome lattices with J < 0. Clearly,
the Ising critical line P -A should continue into the region J <

0,K > 0, albeit it remains to be explored what this extension
looks like. Due to the absence of exact results, we will apply the
Monte Carlo method and the finite-size scaling theory. Monte
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FIG. 1. (Color online) Phase diagram of the AT model on the
square lattice. The P-I-O curve (thick cyan line) is self-dual and has
continuously varying critical exponents, separating the paramagnetic
and the ferromagnetic states in Ising variables σ , τ , and στ . The P-A,
P-B, and O-C lines are commonly believed to be Ising-like; they are
represented by thin magenta lines.

Carlo simulation of the triangular AT model is challenging for
large negative coupling J < 0, because of the so-called geo-
metric frustration. Antiferromagnetic coupling J < 0 means
that the neighboring Ising spins prefer to be antiparallel. How-
ever, such a preference cannot be satisfied for all of the three
neighboring pairs on any elementary triangular face. One can
at most have two antiferromagnetic pairs. For such a frustrated
system, most Monte Carlo simulations suffer significantly
from critical slowing down. In fact, as J → −∞, the Metropo-
lis and the Swendsen-Wang-type cluster algorithms are found
to be nonergodic [6,16–18]. Recently, worm-type algorithms
with the so-called rejection-free property were developed for
the antiferromagnetic Ising model on the triangular lattice
and other systems [19,20]. This algorithm has been proved
to be ergodic at zero temperature and suffers from only minor
critical slowing down. The rejection-free worm algorithm can
be extended to the AT model, albeit the efficiency is limited
for nonzero K in the zero-temperature limit J → −∞.

The outline of this paper is as follows. Section II describes
the partition sum of the AT model as well as an exact mapping
to a fully packed loop-dimer (FPLD) model in J → −∞ limit.
A variant of worm-type algorithms is developed in Sec. III.
The numerical results are presented in Sec. IV. In Sec. V we
investigate the dynamic critical behavior of one of the worm
algorithms. A discussion is given in Sec. VI, including the
phase diagram on the kagome lattice.

II. MODEL AND EXACT MAPPING

A. Low-temperature expansion of the AT model

Instead of directly updating the spins, worm-type algo-
rithms [21,22] for the Ising model simulate a graphical
representation which can be the high- and the low-temperature
expansion graphs. The worm methods in Refs. [21,22] can be
generalized to graphical expansion of the AT model. In the
following, we shall use the low-temperature (LT) expansion,
defined on the dual lattice of the triangular lattice—the
honeycomb lattice. Given a spin configuration {σ,τ }, for each
pair of nearest-neighboring vertices (i,j ), one places on its
dual edge

:σ = −1, τ = −1 :σ = −1, τ = 1 :σ = 1, τ = −1

FIG. 2. (Color online) A spin configuration of the AT model on
the triangular lattice and the corresponding LT expansion graph on
the honeycomb lattice. Thick blue line represents blue bond; thin red
line denotes red bond; the same convention is used in the following
figures.

(a) nothing if σi = σj ,τi = τj ,
(b) a red occupied bond if σi = σj ,τi �= τj ,
(c) a blue occupied bond if σi �= σj ,τi = τj ,
(d) a red and a blue bond if σi �= σj ,τi �= τj .
In other words, depending on the associated pair of spins on

the triangular lattice, an edge on the honeycomb lattice can be
in one of the four states: vacant, red, blue, and red + blue. An
example is shown in Fig. 2. Since the coordination number is 3
for the honeycomb lattice, the red and blue bonds form a series
of disjointed loops in red and blue colors, respectively. Note
that the red and the blue loops are allowed to share common
edges. In this way, a spin configuration on the triangular
lattice is mapped onto a loop configuration on the honeycomb
lattice, while a loop configuration corresponds to four spin
configurations,1 which are related to each other by globally
flipping the σ or/and τ Ising spins. Let |Er |, |Eb|, and |Er+b|
be the number of red, blue, and red + blue bonds, the partition
sum of the AT model can be written as (up to an unimportant
factor)

ZAT =
∑
{L}

X|Er |
r X

|Eb|
b X

|Er+b |
r+b , (3)

where the summation {L} is over all loop configurations. From
the mapping, one can obtain the relative statistical weights as

Xr = Xb = e−2J−2K and Xr+b = e−4J . (4)

One can further describe the AT model in the language of
vertex states, which will serve as the basis for the formulation
of the worm-type algorithms in this work. In the loop
configurations, all the vertices must have an even number of
incident red (blue) bonds. Accordingly, only the five types
of vertex state in Fig. 3 exist, where the states are unchanged
under spatial rotations. Simple calculations yield the statistical
weights as

W1 = 1, W2 = W3 = e−2J−2K,
(5)

W4 = e−4J , W5 = e−4J−2K.

1This is not precisely correct for the torus geometry, where a loop
configuration can correspond to a no-spin configuration.
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1 2 3 4 5

FIG. 3. (Color online) Vertex states in the LT expansion graph of
the AT model.

Let |Vi | be the number of vertices at state i with i = 1,2,3,4,5;
then the partition sum of the AT model can be written as (up
to a constant)

ZAT =
∑
{V}

5∏
i=1

W
|Vi |
i , (6)

where the summation {V} is over configurations with vertex
states in Fig. 3.

B. Exact mapping in the J → −∞ limit

Given a finite four-spin coupling K , when the antiferro-
magnetic coupling J becomes stronger and stronger, more
and more vertices will be in states 4 and 5 in Fig. 3, because
W4 ∼ W5 ∝ exp(−4J ) increases faster than W1,W2,W3, as
seen from Eq. (5). In the J → −∞ limit, only states 4 and 5
survive. We can then redefine the edge states in states 4 and
5 as follows. The empty edge is replaced by a “dimer,” while
the blue + red edge is regarded as empty; namely, the edge
is now in one of the states empty, dimer, red, or blue. As a
result, states 4 and 5 become those in Fig. 4(a). One observes
that the occupied bonds in state 5 form a series of disjointed
loops; these loops are now constructed by bonds alternately in
colors red and blue. Further, one notes that the color degree of
freedom can be simply integrated out, and each loop gains a
statistical weight factor 2. Without the color information, the
edge is in one of the states empty, dimer, or bond, and the
vertex states reduce to those in Fig. 4(b), where the new labels
6 and 7 are used. The statistical weights are

W6 = 1, W7 = e−2K. (7)

On this basis, the partition sum of the AT model in the
J → −∞ limit can be written as

ZFPLD =
∑
{V}

n�W
|V7|
7 (n = 2), (8)

where the summation is over configurations with all vertex
states in Fig. 4, and � is the number of loops. We shall refer to
the model defined by Eq. (8) and Fig. 4 as the n-color FPLD
model.

Note that, for finite K , the loops in the FPLD model
are “dilute” due to the presence of state 6. However, in the

4 5
(a)

6 7
(b)

FIG. 4. (Color online) (a) States 4 and 5 after the redefinition of
the edge states. (b) Vertex states in the FPLD model. The dashed
black line represents the dimer.

K → −∞ limit, only state 7 survives, and one obtains the
mapping between the triangular four-state antiferromagnet
at zero temperature and the honeycomb n = 2 fully packed
loop model. For K → ∞, the model reduces to the fully
packed dimer model, which is equivalent to the triangular
Ising antiferromagnet at zero temperature.

We conclude this section by mentioning that the FPLD
model is very similar to the honeycomb O(n) loop model [23].
The difference is that in the former the vertices off the loops are
paired up in dimers, while they are not in the latter. Namely, the
configuration space for the FPLD model is a subspace in the
O(n) loop model. Although it remains to be explored whether
or not the two models are in the same universality class, it will
not be surprising if this turns out to be the case.

III. WORM ALGORITHMS

The worm algorithm for the high-temperature expansion
graphs of the Ising model was first formulated by Prokof’ev
and Svistunov [21], and the dynamic critical behavior was
studied in Ref. [22]. Recently, Wolff provided a worm-type
simulation strategy for O(N) σ and loop models [24]. The
underlying physical picture of the worm method is beautifully
simple: enlarge the state space of the to-be-simulated model,
define an extended model, and simulate the system by a local
algorithm.

A. Worm algorithm for finite J

Let us now generalize the worm method in Refs. [21,22] to
the AT model in the language of the vertex states, defined by
Eq. (6) and Fig. 3.

1. Enlarge the state space

We first introduce new vertex states by deleting from (or
adding to) the states in Fig. 3 a red or blue bond. This leads
to the eight additional vertex states in Fig. 5. The state space
is then enlarged such that a configuration has a pair of or no
vertices at states in Fig. 5. These pairs of vertices are named
“defects” and denoted as (u,v). Accordingly, the state space
can be divided into two subspaces: one without defects (u = v)
and the other with two defects (u �= v); we shall refer to them
as the M (measuring) and W (worm) sectors, respectively. A
careful check shows that the pair of defects in the W sector
must be connected via a string of red or blue occupied bonds.

1′ 2′ 3′ 4′

5′ 6′ 7′ 8′

FIG. 5. (Color online) Additional vertex states in the worm
method for the AT model. The red (blue) filled circle denotes a defect
in the red (blue) vertex configuration.
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Namely, u and v are both at either state {1′,4′,5′,7′} or state
{2′,3′,6′,8′} in Fig. 5. For later convenience, we let u,v be
ordered as u ← v, and thus the interchange (u ↔ v) will lead
to a different configuration for u �= v.

2. Define the extended model

With the inclusion of the defects and the vertex states in the
W sector, a configuration can now be completely specified by
its vertex states {V} and the ordered pair of defects (u,v). The
partition sum of the extended model can be separated into two
parts. The part in the M sector is defined as

ZM = ZAT = 1

V

∑
{V,u,v}

δu=v

5∏
i=1

W
|Vi |
i , (9)

where V is the volume of the system and δ is the Kronecker
delta function. The summation {V} is over vertex-state con-
figurations with states in Fig. 3 and coordinations (u,v). The
factor 1/V accounts for the summation of u = v over the
whole lattice. Similarly, the part of the partition sum in the W
sector can be defined by

ZW = 1

V

∑
{V,u,v}

δu �=v

5∏
i=1

W
|Vi |
i

8∏
j=1

W
|Vj ′ |
j ′ , (10)

where the summation {V} is over configurations with two
vertex states in Fig. 5 and all others in Fig. 3, and Wj ′ are
the statistical weights for states in Fig. 5. The extended model
can then be defined as

Zworm = ZM + ξwZW, (11)

with ξw > 0 a constant factor controlling the relative weights
in the M and the W sectors.

For a complete definition of the extended model, the
statistical weights Wj ′ for states in Fig. 5 should have a definite
value. It is natural that they are defined in accordance with the
edge states, which leads to

W1′ = W2′ = e−J−K, W3′ = W4′ = e−3J−K,
(12)

W5′ = W6′ = e−3J−3K, W7′ = W8′ = e−5J−K.

3. Formulate the worm algorithm

One can now use any valid algorithm to simulate the model
defined by Eq. (11). Since a configuration is specified by the
ordered triplet of parameters (V,u,v), an update can be enacted
on the vertex states V and/or the locations of defects (u,v).
The worm strategy is to randomly move u and/or v around
the lattice and update V by changing the edge states during
the biased random walk. Suppose that u �= v are in red (in the
W sector). As u moves to a neighboring vertex un, the edge
(uun) state will be symmetrically updated: a red bond is placed
(deleted) if it is absent (present). In this way, the state at u will
be back in Fig. 3 after u moves to un. Accordingly, the number
of defects remains unchanged if v �= un or becomes zero if
v = un. This accounts for a step of the random walk in the W
sector or from the W to the M sector. For the case u = v, by
symmetric update of an edge state, one will generate a pair
of defects which can be in either red or blue. Therefore, one
never introduces more than two defects. The parameter ξ = 1

is set in this work, and a version of the worm algorithm is as
follows (Algorithm 1).

(1) If u = v, randomly choose a new vertex u′ and set
u = v = u′. Equally choose a color red or blue for the to-be-
proposed defects; say red.

(2) Interchange u ↔ v with probability 1/2.
(3) Randomly choose one neighboring vertex un of u.

Propose to move u → un.
(4) Propose to symmetrically update the edge-uun state: red

↔ vacant and blue ↔ red + blue.
(5) Accept the proposal with probability

Pa = min
[
1,

(
W (a)

u W (a)
un

)/(
W (b)

u W (b)
un

)]
,

according to the Metropolis-Hasting scheme. The superscripts
(b) and (a) mean “before” and “after” update, respectively.
The statistical weights are given by Eqs. (5) and (12).

Monte Carlo simulation of the AT model consists of
repetition of these steps. The detailed balance at each step
is straightforward since the algorithm is just a Metropolis-type
update. If one regards the connected pair of defects as a worm,
the above steps mimic the crawling of the worm on the lattice.
This is responsible for the terminology “worm.”

4. Measurement

Measurement can take place either in the whole enlarged
state space or in the M subspace. For the high-temperature
graph of the Ising model, it can be shown that the partition
sum of the extended model is related to the Ising model
as Zworm = χZIsing, where χ is the magnetic susceptibility.
Thermodynamic quantities can be measured in the enlarged
configuration space. Nevertheless, if one is only interested in
the original system, it is sufficient to sample in the M sector.
This would define a Markov subchain with a coarse unit of a
Monte Carlo step between two subsequent configurations in
the M sector. The detailed balance is clear since it is satisfied
in each basic step in Algorithm 1.

5. Improved version

As mentioned earlier, states 4 and 5 (Fig. 3) would dominate
in the M sector as J → −∞; analogously, only states 7′ and
8′ (Fig. 5) survive in the limit, as seen from Eq. (12). This
implies that, as soon as both u and v are in states 7′ and
8′, they will be frozen there forever, and thus Algorithm 1
becomes nonergodic.

The same difficulty occurs for the worm simulation of
the triangular Ising antiferromagnet at zero temperature. A
rejection-free technique was introduced [19,20] to overcome
this problem, based on the observation that the detailed balance
in the coarse step does not require the detailed balance in
each basic step in the W sector. Let un (n = 1,2,3) denote
the neighboring vertices of u and pn be the probability
that u moves to un in Algorithm 1; the probability for u

to be unmoved is p0 = 1 − (p1 + p2 + p3). The absorption
problem of (u,v) in states 7′ and 8′ is reflected by p0 → 1
as J → −∞. In the W sector, one can explicitly set zero for
the probability that u remains unmoved and define the new
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transition probabilities p′
n as

p′
1

p1
= p′

2

p2
= p′

3

p3
,

(13)
p′

0 = 1 − (p′
1 + p′

2 + p′
3) = 0.

The details can be found in Refs. [19,20].
The absorption problem can also be solved in the present

formulation of the worm algorithm. Actually, the absorption
problem is somewhat “artificial” here, since it arises from
the particular assignment of the statistical weights to states in
Fig. 5 by Eq. (12). There is no reason, however, why one should
use Eq. (12) if only the original AT model (6) is of interest. The
absorption problem simply dissolves if the statistical weights
are given by

W1′ = W2′ = e−2J−2K, W3′ = W4′ = e−4J ,
(14)

W5′ = W6′ = e−2J−2K, W7′ = W8′ = e−4J−2K.

Other definitions are possible.

B. Worm algorithm for J → −∞
Algorithm 1 using Eq. (14) is found to be efficient in most of

the region with 0 > J > −∞ and for small K in the J → −∞
limit. In this limit, the efficiency significantly drops as K

deviates from 0.
Here we shall make use of the exact mapping of the AT

model onto the FPLD model (8) and formulate another version
of the worm algorithm. Following the same procedure as in
the preceding section, we first introduce five additional states
in Fig. 6. The partition sum in the M sector is defined as

ZM = ZFPLD = 1

V

∑
{V,u,v}

δu=vn
�W

|V7|
7 , (15)

with n = 2. Again, the summation is over configurations with
states in Fig. 4 and over the location of u = v. The partition
sum in the W sector is given by

ZW = 1

V

∑
{V,u,v}

δu �=vn
�W

|V7|
7

13∏
j=9

W
|Vj ′ |
j ′ . (16)

The extended model is defined by Eq. (11).
The formulation of the worm algorithm follows the standard

strategy as above, except that the edge-state update should
take a different scheme. Let e = 0,1,2 denote the edge-e state
being empty, bond, and dimer, respectively, and define the
module-3 summation rule as mod3(e + �e) with �e = 1,2.
As in moving u → un, one randomly chooses �e = 1 or 2
and proposes to update the edge-uun state as mod3(e + �e).
In other words, an empty edge is proposed to randomly become
a bond or a dimer; a dimer is to be empty or bond; and a bond
is to be empty or dimer. However, not all the proposals will

9′ 10′ 11′ 12′ 13′

FIG. 6. (Color online) Vertex states in the W sector for the FPLD
model. The black filled circle denotes a defect.

generate a valid configuration that has at most two states in
Fig. 6 and the others in Fig. 4. For instance, (1) in the M sector,
when u = v is in state 7 and it is proposed that the empty edge
becomes a dimer, the resulting vertex state at u will not be in
Fig. 6; (2) in the W sector, when u is in state 9′ and the proposal
is e = 0 → e = 1, this will yield state 11′ at u, which is not
in Fig. 4 as required. A proposal will be rejected if it leads to
an invalid configuration. On this basis, a version of the worm
algorithm can be formulated as follows (Algorithm 2).

(1) If u = v, move it to a randomly chosen vertex.
(2) Same as in Algorithm 1.
(3) Same as in Algorithm 1.
(4) Randomly choose �e = 1 or 2, and propose to update

the edge-uun state as euun
→ mod3(euun

+ �e). The proposal
will be rejected if it yields

(a) for u = v, Vv or Vun
�∈ {9′, . . . ,13′} in Fig. 6;

(b) for u �= v and v �= un, Vu �∈ {6,7} in Fig. 4 or
Vun

�∈ {9′, . . . ,13′};
(c) for u �= v and v = un, Vu or Vun

�∈ {6,7}.
In this case, step 5 will be skipped. The symbol Vu

represents the vertex state at u.
(5) Accept the update with probability

Pa = min
[
1,n��

(
W (a)

u W (a)
un

)/(
W (b)

u W (b)
un

)]
,

where �� denotes the change of the loop number in the update.
We recall that the constant ξw in Eq. (11) is set ξw = 1.

The simulation consists of repetition of these steps, and the
measurement is taken in the M sector.

A practically important matter for implementing Algorithm
2 is that a nonlocal query is needed to calculate the loop-
number difference ��. We shall follow the simultaneous
breadth-first searching technique and the trick to avoid queries
as much as possible described in Ref. [20].

More importantly, one can apply the so-called coloring
method to avoid altogether the need for such global queries
for n � 1. The key ingredient of the coloring method is the
trivial identity n = 1 + (n − 1) for the statistical weight n of
each loop. One can introduce an auxiliary variable c = 0,1 and
rewrite the identity as

n =
∑
c=0,1

[1δc,0 + (n − 1)δc,1]. (17)

The variable c is generally referred to as the coloring variable,
and c = 0 (1) is said to be “active” (“inactive”). See Ref. [20]
for details. In practice, the coloring variable is assigned to each
vertex in the M sector as follows (coloring assignment).

(1) Set all vertices off loops as active (c = 0).
(2) Independently for each loop, choose c = 0 with prob-

ability 1/n and c = 1 with probability (1 − 1/n), and assign
the value to all the vertices on the loop.

On the basis of the coloring assignment, the whole lattice
G is divided into the active sublattice Ga and the inactive
sublattice Gi . In Ga the vertices are active and the edges
connect two active vertices; in Gi the vertices are inactive and
the edges connect two inactive vertices. The edges connecting
one active and one inactive vertex form the boundaries
separating Ga and Gi . We state that, conditioned on this
decomposition, the vertex-state configuration on the induced
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sublattice Ga and Gi is nothing but a generalized FPLD model
with n′ = 1 and (n − 1), respectively.

One has now the right to update these generalized FPLD
models via any valid Monte Carlo algorithm. We choose
Algorithm 2 to update the model with n′ = 1 on Ga and the
identity operation (“do nothing”) on Gi . Because n′ = 1, the
loop-number change �� does not matter anymore. Therefore,
one can formulate another version of the worm algorithm as
follows (Algorithm 3).

(1) Do the coloring assignment if u = v.
(2) Do M times the coarse Monte Carlo steps (from and

back to the M sector) by performing Algorithm 2 on the
induced subgraph Ga with n′ = 1.

The parameter M � 1 can be set such that steps 1 and 2
take comparable CPU time.

For the actual implementation of Algorithms 2 and 3,
positive statistical weights have to be assigned to vertex states
in Fig. 6. Before discussing this, we mention that there exists
some freedom to choose which vertex state is allowed in the W
sector. As long as ergodicity is satisfied, the consideration is
to optimize the efficiency. In Fig. 6, we do not allow the state
with two bonds and a dimer, because the only way to generate
this state is to add a dimer to state 7 and the only way to return
to Fig. 4 is to delete the newly generated dimer. Thus, such a
state will not help in updating the configuration while it will
increase the computational burden. In contrast, states 9′ and
10′ (11′ and 13′) are important for moving around the dimers
(bonds). We set

W9′ = W10′ = 1, W12′ = min(1,W7),
(18)

W11′ = W13′ = W7 = e−2K.

State 12′ is useful for switching between dimer and bond, but
should not occur more frequently than state 6 or 7.

IV. RESULTS

The complete phase diagram of the AT model on the
triangular lattice is shown in Fig. 7. In following, we present
numerical results and discuss the phase boundary in the
antiferromagnetic two-spin coupling region (J < 0).

FIG. 7. (Color online) Phase diagram of the AT model on the
triangular lattice. Points P, I, and O correspond to the four-state Potts,
the Ising, and the O(2) loop model, respectively. Points F, C, and D
denote the zero-temperature Ising antiferromagnet with variable στ ,
σ or τ (decoupled), and σ or τ (correlated), respectively. Point E is
the zero-temperature four-state Potts antiferromagnet.

A. Finite J

We employ Algorithm 1 with Eq. (14) to simulate the AT
model in the region of finite J < 0 on triangular lattices with
periodic boundary conditions, using system sizes in the range
6 � L � 192.

For a given loop configuration, we generate the associated
spin configuration on the triangular lattice according to
the low-temperature expansion rule. Note that, due to the
periodic boundary condition, a loop configuration may not
correspond to a spin configuration. This occurs when there
exists an odd number of red or blue loops winding around
the boundary. In this case, we take no measurement, and
the simulation continues until the next try. Let X be the
indicator function, which is 1 if the loop configuration is
measuring and corresponds to a spin configuration, and 0
otherwise; let O be the operator computed in one of the
four compatible spin configurations; therefore, what we are
computing is [OX]/[X], with [ ] the statistical average over
loop configurations. The nonvalid loop configuration is not
weighted, and thus it does not influence any of the numerical
data related to the spin variables. Further, since the special
cases where the loop configuration does not correspond to any
spin configuration result from boundary effects, such cases do
not dominate in large systems.

Two types of magnetization are measured as

Mσ = 1

V

∑
i

σi and Mστ = 1

V

∑
i

σiτi, (19)

where the summation is over the whole lattice. Accordingly,
the susceptibilities are defined as

χσ = V
〈
M2

σ

〉
and χστ = V

〈
M2

στ

〉
, (20)

with 〈 〉 for the statistical average. Dimensionless ratios are
found to be very powerful in locating the critical points of
many systems under continuous phase transitions. On the basis
of the fluctuation of the magnetization, we define two distinct
dimensionless ratios as [25]

Qσ =
〈
M2

σ

〉2
〈
M4

σ

〉 and Qστ =
〈
M2

στ

〉2
〈
M4

στ

〉 . (21)

We also measure energylike quantities as

Eσ = −J
∑
〈i,j〉

σiσj , (22)

Eστ = −K
∑
〈i,j〉

σiτiσj τj , (23)

E = Eσ + Eτ + Eστ , (24)

as well as the associated specific-heat-like quantities Cσ =
(〈E2

σ 〉 − 〈Eσ 〉2)/V , Cστ , and C.
The AT model for J = 0 reduces to the standard Ising model

in the Ising spin variable στ , and undergoes an Ising-like
transition at Kc. For K < Kc, the configurations in the Ising
variables σ , τ , and στ are all in the disordered (paramagnetic)
state; for K > Kc, στ is in the ferromagnetic state while σ

and τ are still in the paramagnetic state. We expect that this
scenario continues into the region J < 0.

We choose J = −0.2, − 0.6, − 1.0, and −2.0, and perform
some preliminary and coarse simulations to approximately
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FIG. 8. (Color online) Quantity Qστ versus K at J = −1.0. Lines
connecting the data points are for illustration purpose.

locate the intersection of Qστ for various linear system sizes
L. Then, fine and extensive simulations are carried out near
the estimated critical point. Figure 8 displays Qστ versus K

for different L at J = −1.0, indicating a critical point near
K ≈ 0.1265.

The finite-size scaling behavior of Qστ (K,L) near the
critical point Kc is described by

Q(K,L) = Q(tLyt ,bLyi ), (25)

where t and i represent the leading and the subleading ther-
mal scaling fields, with t ∝ (K − Kc) + · · ·. The associated
renormalization exponents are denoted as yt and yi . A Taylor
expansion of Eq. (25) yields [26]

Q(K,L) = Qc + a1�KLyt + a2(�K)2L2yt

+ bLyi + c�KLyt+yi + · · · , (26)

with �K ≡ K − Kc. The parameters a1, a2, b, and c are
unknown constants.

According to the least-squares criterion, we fit the Qστ

data to Eq. (26). Assuming the transition is Ising-like, we
expect that the leading two finite-size correction exponents
are y1 = 2 − 2yh = −7/4 and y2 = yi = −2 for Qστ , where
yh = 15/8 is the magnetic renormalization exponent. With y1

and y2 fixed and L � Lmin = 48, we obtain Kc = 0.126 53(2),
yt = 1.01(2), and Qc = 0.8587(1) for J = −1.0. The χ̄2

per degree of freedom (DOF) is 1.14. The estimate of yt

is consistent with the exact result yt = 1, and the universal
ratio Qc = 0.8587 also agrees well with the earlier estimate
Qc = 0.858 725 28(3) for the Ising model on the triangular
lattice [27].

The data of susceptibility χστ is analyzed by

χ (K,L) = L−2yh+d (a0 + a1�KLyt + a2(�K)2L2yt

+ bLyi + c�KLyt+yi + · · ·), (27)

and we determine the magnetic exponent as yh = 1.876(2), in
good agreement with the exact value yh = 15/8. The specific-
heat-like quantity C is also found to diverge approximately
on a logarithmic scale as L increases. No phase transition is
observed for Ising variable σ or τ . Similar results are found for
other values of J , and the estimated critical points are listed in
Table I.

On this basis, we conclude that the phase transition of the
AT model in the region (K > 0,J < 0) with finite J is in the

TABLE I. Details in the data fits according to Eq. (26).

J −0.2 −0.6 −1.0 −2.0

Kc 0.25303(2) 0.18164(2) 0.12653(2) 0.06306(3)
Lmin 48 48 48 48
χ̄ 2/DOF 1.05 0.86 1.14 1.21

Ising universality class. Finally, we mention that the worm-
type algorithm here does not suffer much from critical slowing
down.

B. J → −∞
Table I suggests that the critical coupling Kc becomes

smaller as J becomes more negative, and that the ending
point of the critical line for J → −∞ is very close to K = 0,
since Kc(J = −2) = 0.063 06(3) is already near 0. To locate
the ending point more accurately, we directly simulate the
J → −∞ limit, which makes use of the exact mapping to the
n = 2 FPLD model and employs Algorithm 3. System sizes
take six values in the range 30 � L � 960.

Note that the loops in the FPLD model serve as domain
walls for the Ising variable στ in the AT model. According to
the low-temperature expansion rule, on the triangular lattice
we sample the magnetization density Mστ , susceptibility χστ ,
dimensionless ratio Qστ , energy Eστ , and specific heat Cστ ,
whose definitions can be found in Eqs. (19)–(24). Further, to
explore the loop-length distribution, on the honeycomb lattice
we measure the length of the longest loop as S1.

The finite-size data for the dimensionless ratio Qστ are
plotted in Fig. 9; an fitting by eye yields the critical point as
Kc = 0.00(2). For K > Kc, the Qστ value rapidly approaches
1 as the size L increases. This reflects the fact that the Ising
variable στ exhibits a long-range ferromagnetic order on the
triangular lattice; correspondingly, on the honeycomb lattice
loops are small—i.e., in a disordered state. For K < Kc, Qστ

converges to a constant Qc which deviates from the trivial
Gaussian value 1/3. This implies that, despite the absence of
a long-range order, the spin-spin correlation function decays
algebraically over distance.

In Fig. 9, one can observe that Qστ at K < 0 rapidly
converges to a K-dependent value, as expected in the low-
temperature Berezinsky-Kosterlitz-Thouless (BKT) phase.
This reminds us of the analogy between the FPLD and
Nienhuis’s O(n) honeycomb loop model with n = 2. The

FIG. 9. (Color online) Dimensionless ratio Qστ versus K for the
n = 2 FPLD model.
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FIG. 10. (Color online) Phase diagram of the O(n) loop model
[23]. Red vertical lines denote the directions of the renormalization
flows.

phase diagram of the latter is shown in Fig. 10, where x is the
statistical weight for an occupied bond. For a given 0 � n � 2,
the O(n) loop model exhibits three distinct phases: a dilute
and disordered phase (small x), a densely packed phase (large
finite x), and a fully packed phase (infinite x). Furthermore,
the model is exactly solvable on the curves [23]

1

x±
=

√
2 ± √

2 − n. (28)

The system is equivalent to the tricritical q = n2 Potts model
along the critical line x+, belongs to the critical q = n2

Potts universality class in the densely packed phase, and is
in another critical universality in the fully packed phase. For
n = 2, the two solvable lines x± merge at a single point; the
renormalization field is marginally relevant (irrelevant) for
x < x± (x > x±). In other words, the phase transition at x± is
BKT-like. At the special point x±(n = 2), the amplitude of the
renormalization field is zero, and thus logarithmic corrections,
present at most BKT-like critical points, disappear. This
explains the absence of logarithmic corrections in the critical
Baxter-Wu model, which can be exactly mapped onto the
O(2) loop model at x±. For the critical O(2) loop model, it has
been identified that S1 ∝ LyH = L3/2 and χστ ∝ L2yt0−2 = L,
where yH = 3/2 is the hull exponent and yt0 = 3/2 is the
leading thermal renormalization exponent in the language of
the Potts model [28].

Since the state space of the FPLD model is a subspace of
the O(2) loop model, it is reasonable to conjecture that the
two models are in the same universality class. Namely, we
expect that the FPLD model undergoes a BKT-like transition
at Kc, where the logarithmic corrections are absent; for K <

Kc the system is in the same universality class as at Kc but
with logarithmic corrections; for K → −∞ it is in another
universality class. Making use of the known exponents yH =
3/2 for S1 and 2yt0 − 2 = 1 for χστ , we plot L−3/2S1 and
L−1χστ versus K in Figs. 11 and 12, respectively. They both
display a nice intersection at K = 0.000. From Fig. 12 one
can observe that the exponent yH varies along the BKT critical
line, which reconciles the difference of yH between the present
model and the two-dimensional XY models.

To further explore the potential logarithmic corrections, we
assume Kc = 0 and plot L−3/2S1 and L−1χστ at K = 0 versus
L−1. As shown in Fig. 13, the rapid convergence implies the

FIG. 11. (Color online) L−3/2S1 versus K for the n = 2 FPLD
model.

absence of logarithmic corrections; corrections with the term
L−1 are also very weak if they exist.

According to the least-squares criterion, the S1 and χστ data
are fitted by

Y (K,L) = c0 + c1�K + · · · + LXY [a0 + a1�K ln L

+ a2(�K)2 ln2 L + b1L
y1 + b2L

y2 + · · ·]. (29)

Here ai are coefficients of the finite-size scaling variable
�K ln L with �K = K − Kc, bi are amplitudes of finite-size
corrections, and the terms with ci account for analytical
background. There are also cross-terms involving products
of terms arising from these three sources. The exponent
XY is a general label for the quantity Y . Equation (29) has
assumed the absence of logarithmic corrections. Both the S1

and the χστ data with L � Lmin = 60 can be well described
by Eq. (29) with fixed correction exponents y1 = −1 and y2 =
−2. The results for S1 are XY = 1.498(3), Kc = 0.001(2),
and χ̄2/DOF = 1.22; for χστ they are XY = 1.001(2), Kc =
−0.001(1), and χ̄2/DOF = 0.87. These agree well with the
known exponents 3/2 for S1 and 1 for χστ , as well as with the
expectation Kc = 0. If the exponents XY are further fixed at the
known values, we obtain Kc = 0.0002(3), χ̄2/DOF = 0.94
from S1 and −0.0003(4), χ̄2/DOF = 1.09 from χστ . On this
basis, we estimate the critical point as Kc = −0.0001(6),
which covers the uncertainties of Kc from S1 and χστ .

We mention that, when an external field of strength h/T is
applied to the triangular Ising antiferromagnet, the critical state
of the system is not immediately destroyed. Instead, the system
has a BKT-like transition at hc = 0.266(10) [29]. However,

FIG. 12. (Color online) L−1χστ versus K for the n = 2 FPLD
model.
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FIG. 13. (Color online) Quantities L−3/2S1 − a0,s1 and L−1χστ −
a0,χ at K = 0 versus L−1 for the n = 2 FPLD model. Constants a0,s1

and a0,χ are obtained from the fits.

our Monte Carlo results suggest that a critical point Kc �= 0 is
rather unlikely for the n = 2 FPLD model.

In the limit K → ∞, the Ising variable στ is in the
ferromagnetic state. However, in terms of the σ or the τ

variable, it can be easily derived that the system is also an Ising
model with coupling 2J . Namely, along the tanh K = 1 line,
the AT model has an Ising-like transition at tanh 2J = √

2 − 1.
Further, the corner point D :≡ (tanh K = 1, tanh J = −1)
corresponds to the triangular antiferromagnet at zero
temperature, which is critical. Together with the earlier
discussions in Sec. I, this means that, in Fig. 7, the limiting
points D, C, O, F, and E are all critical. From our simulations
in the range −0.2 � K � 0.1 along the tanh J = −1 line
(EC + CD), we observe that, in the whole range, there exists
an algebraically decaying two-point correlation function for
the σ or the τ variable. On this basis, we conjecture that
the whole tanh J = −1 line (EC + CD) is critical for the
σ or the τ variable. Simulation along the tanh K = −1 line
using the present worm algorithms suffers significantly from
critical slowing down. Nevertheless, we suspect that the
whole tanh K = −1 line is critical for the στ variable.

V. DYNAMIC CRITICAL BEHAVIOR

In this section, we briefly report the efficiency of Algorithm
2 for the n = 2 FPLD model, using the standard procedure
described in Ref. [30].

For each observable (say O), we calculate its autocorrela-
tion function

ρO(t) = 〈O(t)O(0)〉 − 〈O〉2,

FIG. 14. (Color online) ln(TE/L2) versus lnL at K = 0.

FIG. 15. (Color online) ρEστ
(t/τint,Eστ

) versus t/τint,Eστ
at K = 0.

where 〈 〉 denotes expectation with respect to the stationary
distribution. We then obtain the corresponding integrated
autocorrelation time as

τint,O = 1

2

∞∑
t=−∞

ρO(t). (30)

The dynamic critical exponent zint,O is defined by

τint,O ∼ ξzint,O . (31)

where ξ is the spatial correlation length. On a finite lattice at
criticality, ξ is cut off by the system size L. Therefore, one has

τint,O = a + bLzint,O , (32)

with a and b unknown parameters.
We simulate at the critical point Kc = 0. Note that during

the worm simulations we measure the observables only when
the chain visits the Eulerian subspace, roughly every TE ∼
Ld−2Xe hits. However, it is natural to define zint,O as in Ref.
[19] to measure time in units of sweeps of the lattice, i.e.,
Ld hits. Since one sweep takes of order L2Xe visits to the
Eulerian subspace, we have τ ∼ Lz+2Xe . As shown in Fig. 14,
the exponent 2Xe is estimated to be 0.50(1).

Among the measured quantities including the longest-loop
length S1, the loop number �, and the energylike quantity Eστ ,
etc., Eστ is found to have the largest value of τint. Figure 15
displays ρEστ

(t/τint,Eστ
) as a function of t/τint,Eστ

, where an
approximately exponential decay is observed. The τint,Eστ

data
are analyzed, and we obtain zint,Eστ

= 0.28(1), which is shown
in Fig. 16. Similar fits are done for other quantities, and we
have zint,S1 = 0.26(1) and zint,� = 0.27(1). In these fits, the χ̄2

FIG. 16. (Color online) ln(τint,O) versus lnL for different observ-
ables at K = 0.
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FIG. 17. (Color online) Phase diagram of the AT model on the
kagome lattice.

per DOF ranges from 0.74 to 1.31. Therefore, our numerical
results suggest that the present worm algorithm is even more
efficient than the one in Ref. [19].

Simulations were also carried out for K = −0.05, and the
dynamic critical behavior cannot be distinguished from that
for K = 0.

VI. DISCUSSION

In summary, we have formulated two versions of worm-type
algorithms for the AT model on the triangular lattice. The
algorithms are based on the low-temperature expansion graph
of the AT model, and use the language of vertex states. Such
a formulation not only provides us with a different angle to
understand the worm method, but also offers an easy way
to overcome the absorption difficulty. The efficiency of our
algorithm was studied and is also reflected in the fact that we
can simulate up to size L = 960. Apparently, Algorithm 1 can
be applied to the ferromagnetic region J > 0 of the triangular
AT model and to the AT model on other planar lattices. Further,
we mention that worm-type algorithms can be developed on
the basis of the high-temperature expansion graph of the AT
model. This yields a graphical model also by Eq. (3), but
defined on the original lattice for the AT model. The statistical
weights of the occupied bonds are

Xr = Xb = (e2K sinh 2J )/(e2K cosh 2J + 1),
(33)

Xr+b = (e2K cosh 2J − 1)/(e2K cosh 2J + 1).

TABLE II. Details in the data fits according to Eq. (26) on the
kagome lattice.

J −0.2 −0.4 −0.6 −1.0 −2.0 −∞
Kc 0.442(2) 0.408(2) 0.386(2) 0.370(2) 0.366(2) 0.3655(3)
Lmin 36 36 36 36 36 36
χ̄ 2/DOF 1.21 0.91 1.07 1.23 0.85 1.15

It is reasonable to expect good efficiency for the AT model on
nonplanar lattices—e.g., in higher spatial dimensions—with
non-negative weights Xr = Xb and Xr+b.

The high efficiency of the worm algorithms allows us to
explore the triangular-lattice AT model in the antiferromag-
netic region, and accordingly we conjecture a complete phase
diagram in the (J,K) plane. Of the particular interest is the
J → −∞ limit, where the AT model is mapped onto the
FPLD model with n = 2. As suggested by the Monte Carlo
simulation, the AT model undergoes a BKT-like transition
along the tanh J = −1 line, in the same universality class
as the classical XY model. We also mention that it remains
to be explored whether or not, for other values of n, the
FPLD and Nienhuis’s O(n) models are in the same universality
class.

Finally, we perform simulations for the AT model on the
kagome lattice in the region (J < 0,K � 0), and determine
a line of Ising-like critical points. The results are shown in
Table II. Unlike on the triangular lattice, the critical line ends at
Kc = 0.3655 > 0, still in the Ising universality region. Taking
into account that the frustration on the kagome lattice is only
partial, this is not surprising. Accordingly, the phase diagram
is shown in Fig. 17.

ACKNOWLEDGMENTS

The work of Q.H.C. was supported by National Basic
Research Program of China (Grant Nos. 2011CBA00103 and
2009CB929104). The work of Y.D. was supported by NSFC
(Grant No. 10975127), Anhui Provincial Natural Science
Foundation (Grant No. 090416224) and CAS.

[1] C. Fan, Phys. Lett. A 39, 136 (1972).
[2] J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943).
[3] J. X. Le and Z. R. Yang, Phys. Rev. E 68, 066105 (2003); 69,

066107 (2004).
[4] A. Giuliani and V. Mastropietro, Phys. Rev. Lett. 93, 190603

(2004).
[5] C. Naón, Phys. Rev. E 79, 051112 (2009).
[6] J. Salas and A. D. Sokal, J. Stat. Phys. 85, 297 (1996).
[7] F. Iglói and J. Zittartz, Z. Phys. B 73, 125 (1988).
[8] P. Bak, P. Kleban, W. N. Unertl, J. Ochab, G. Akinci, N. C.

Bartelt, and T. L. Einstein, Phys. Rev. Lett. 54, 1539 (1985).
[9] E. Domany and E. K. Riedel, Phys. Rev. Lett. 40, 561 (1978).

[10] N. C. Bartelt, T. L. Einstein, and L. T. Wille, Phys. Rev. B 40,
10759 (1989).

[11] H. N. V. Temperley and S. E. Ashley, Proc. R. Soc. London, Ser.
A 365, 371 (1979).

[12] Y. Deng, J. Salas, and A. D. Sokal (unpublished).
[13] H. T. Diep and H. Giacomini, Frustrated Spin Systems

(World Scientific, Singapore, 2005).
[14] G. H. Wannier, Phys. Rev. 79, 357 (1950); Phys. Rev. B 7,

5017(E) (1973).
[15] J. Stephenson, J. Math. Phys. 11, 413 (1970).
[16] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
[17] G. M. Zhang and C. Z. Yang, Phys. Rev. B 50, 12546 (1994).

021125-10

http://dx.doi.org/10.1016/0375-9601(72)91051-1
http://dx.doi.org/10.1103/PhysRev.64.178
http://dx.doi.org/10.1103/PhysRevE.68.066105
http://dx.doi.org/10.1103/PhysRevE.69.066107
http://dx.doi.org/10.1103/PhysRevE.69.066107
http://dx.doi.org/10.1103/PhysRevLett.93.190603
http://dx.doi.org/10.1103/PhysRevLett.93.190603
http://dx.doi.org/10.1103/PhysRevE.79.051112
http://dx.doi.org/10.1007/BF02174209
http://dx.doi.org/10.1007/BF01312163
http://dx.doi.org/10.1103/PhysRevLett.54.1539
http://dx.doi.org/10.1103/PhysRevLett.40.561
http://dx.doi.org/10.1103/PhysRevB.40.10759
http://dx.doi.org/10.1103/PhysRevB.40.10759
http://dx.doi.org/10.1098/rspa.1979.0023
http://dx.doi.org/10.1098/rspa.1979.0023
http://dx.doi.org/10.1103/PhysRev.79.357
http://dx.doi.org/10.1103/PhysRevB.7.5017
http://dx.doi.org/10.1103/PhysRevB.7.5017
http://dx.doi.org/10.1063/1.1665154
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevB.50.12546


WORM-TYPE MONTE CARLO SIMULATION OF THE . . . PHYSICAL REVIEW E 84, 021125 (2011)

[18] P. D. Coddington and L. Han, Phys. Rev. B 50, 3058 (1994).
[19] W. Zhang, T. M. Garoni, and Y. Deng, Nucl. Phys. B 814, 461

(2009).
[20] Q. Q. Liu, Y. Deng, and T. M. Garoni, Nucl. Phys. B 846, 238

(2011), and references therein.
[21] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87, 160601

(2001).
[22] Y. Deng, T. M. Garoni, and A. D. Sokal, Phys. Rev. Lett. 99,

110601 (2007).
[23] B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982).
[24] U. Wolff, Nucl. Phys. B 824, 254 (2009). See also PoS Lattice

2010, 020, and references therein.

[25] K. Binder, Z. Phys. B 43, 119 (1981).
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