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Exact results in the large system size limit for the dynamics of the chemical master equation,
a one dimensional chain of equations
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We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation
(CME). We found exact analytical expressions (in large system-size limit) for the probability distribution,
including explicit expression for the dynamics of variance of distribution. We also give the solution for some
simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the
HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential
equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with
stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in
one-dimensional CMEs.
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I. INTRODUCTION

The statistical physics of a living cell requires a theory
for chemical reactions with few molecules [1,2]. One of
the mathematical tools used here is the chemical master
equation (CME) [3,4], describing the dynamics of probability
P (X,t) of having different (integer) numbers X of molecules.
The same CME could be applied to other areas of science
as well, even in the financial market theory [5]. Recently,
Ge and Qian [6] considered a kinetic model [7] for the
phosphorylation-dephosphorylation cycle in the cell, and
the corresponding CME was investigated. We considered
the model with the bistability phenomenon, and derived some
results for the existence of bistability. Here we solve exactly
the dynamics of the CME, a very important topic according
to [6]. The accurate (exact) solution of the CME dynamics is
important for financial market modeling [5]. In this paper we
will derive the exact dynamics for the CME.

The master equation is formulated as a system of linear
differential equations for P (X,t) of having X molecules, 0 �
X � N , where N is a large integer:

dP (X,t)

Ndt
= R+

(
X − 1

N

)
P (X − 1,t)

+R−

(
X + 1

N

)
P (X + 1,t)

−
[
R+

(
X

N

)
+ R−

(
X

N

)]
P (X,t). (1)

Here R+ is the growth rate and R− is the degradation rate.
Actually, we should modify the equation at the border:

dP (0,t)

Ndt
= R−

(
1

N

)
P (1,t) − R+(0)P (0,t) (2)
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and

dP (N,t)

Ndt
= R+

(
1 − 1

N

)
P

(
1 − 1

N
,t

)
− R−(1)P (N,t).

(3)

The large parameter N describes the system volume.
Similar master equations have been considered in [8] and

evolution theory in [9,13]. Let us introduce the coordinate x

and function p(x,t):

x = X/N, p(x,t ; N ) ≡ NP (X,t). (4)

Assuming that the probability distribution is a smooth function
of x,

P (X + 1,t) − P (X ± 1,t) � 1, (5)

one obtains the Fokker-Planck equation for the model by
Eq. (1).

The investigation of CMEs via Fokker-Planck equations
meets some problems [14,15]. An alternative approach is to
assume that p(x,t) is not a smooth function of x, but the
function u(x,t) is, where

p(x,t ; N ) = exp[Nu(x,t)]. (6)

Thus the p(x,t ; N ) might be unsmooth in the limit of N → ∞,
but still have smooth u(x,t). Such an ansatz has been assumed
for the statics in [8], and for the dynamics in [11,12],
while considering the evolution models. This ansatz gives
the solution of the dynamics and steady state with accuracy
O(1/N ), while the approximation of the master equation
via the Fokker-Planck equation, assuming the smoothness of
p(x,t), is certainly wrong. We already discussed this topic
in [11], and then again in [13].

In Sec. II we calculate the dynamics of variance for
population distribution, using HJE. In Sec. III we solve the
CME dynamics for the simple case of time-dependent rates. In
the Appendix we rederive the variance of distribution using the
Van Kampen method. We also used that method to calculate the
variance for a general one-dimensional (1D) multistep CME,
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as well as give ODEs to derive the variance in the case of
two-dimensional (2D) CMEs.

II. THE MASTER EQUATIONS WITH CONSTANT RATES

A. Hamilton-Jacobi equation for the chemical master equation

Using ansatz by Eq. (6), the model equation (1) can be
written as Hamilton-Jacobi equations for u ≡ ln p(x,t)/N ,

∂u

∂t
+ H (u′,x) = 0, (7)

where u′ = ∂u/∂x,

H (u′,x) = R+(x) + R−(x) − R+(x)e−u′ − R−(x)eu′
. (8)

Equations (7) and (8) were derived in [16,17], where the
corresponding Hamilton equations have been investigated
mainly to calculate the time of extinction from metastabile
state. We are interested in the investigation of the whole
distributions, using the traditional mathematical method of
characteristics. To solve the HJE, we consider the Hamilton
equation for x and the corresponding momentum, getting the
system for the characteristics [18,19]

ẋ = Hv(x,v) = R+(x)e−v − R−(x)ev,

v̇ = −Hx(x,v), (9)

u̇ = v Hv(x,v) − H (x,v) = vẋ + q,

subject to initial conditions x(0) = x0, v(0) = v0(x0), and
u(0) = u0(x0). Here v := ∂u/∂x, v0(x) := u′

0(x), and q :=
∂u/∂t. The respective solution to Eq. (9) in (x,t) space is
called the characteristic of Eq. (7).

Our Hamiltonian is time independent. Then Eqs. (7) and
(9) result in

q̇ = 0. (10)

Along the characteristic x = x(t) the variable q is constant, so
q is selected to parametrize these curves.

Consider the equation

q = −[R+(x) + R−(x)] + R+(x)e−v + R−(x)ev. (11)

It has a solution for

q � 0, (12)

if at some point

R+(x) = R−(x), (13)

and we take q � 0.
Using Eq. (11), we transform the first equation in Eqs. (9)

into

ẋ = ±
√

(q + R+ + R−)2 − 4R+R−. (14)

Consider the following initial distribution:

u0(x) = −a(x − x0)2, (15)

with large a. The maximum of the distribution corresponds to
the point u′ = 0, therefore q = 0. Thus for the maximum of
distribution we should consider a characteristic with q = 0.

Integrating Eq. (14), we derive

T =
∫ x

x0

dy

R+(y) − R−(y)
. (16)

Such an equation was derived in [6].
We can now define the dynamics of the full distribution.

Let us define the function

T (x,q) =
∫ x

x0

dy√
[q + R+(y) + R−(y)]2 − 4R+(y)R−(y)

.

(17)

To calculate u(x,t) we first calculate q for the given x from
the equation

T (x,q) = t. (18)

Equation (18) defines an implicit function

q = Q(x,t). (19)

B. The elasticity

It is important to calculate u′′(x,t) at the point of the
maximum of distribution, the “elasticity” [6].

We calculate q ′
x ≡ ∂2u/∂x∂t from Eq. (19):

∂q

∂x
= ∂Q(x,t)

∂x
. (20)

We can calculate the last derivative at fixed t from the
expression

T (x,q) = const,
∂T (x,q)

∂x
+ ∂T (x,q)

∂q
q ′

x = 0. (21)

It is equivalent to calculate q ′
x from Eq. (17) at fixed t . Thus

we get the following equation for q ′ at the point of maximum
[u′(x,t) = 0]:

1

R+(x) − R−(x)
− q ′

∫ x

x0

dy [R+(y) + R−(y)]

[R+(y) − R−(y)]3
= 0. (22)

From Eq. (11) we can obtain

q ′
x = −[R+(x) − R−(x)]v′. (23)

Thus eventually we get

−1

v′
x

= [R+(x) − R−(x)]2
∫ x

x0

dy [R+(y) + R−(y)]

[R+(y) − R−(y)]3
. (24)

Equation (24) is the main result of our work.
A comparison of the analytical results with the numerics is

given in Fig. 1.

C. Probability distribution

Equation (17) defines q(x,t) for given x,t ; we can define
v(x,t) also using Eq. (7). To calculate u(x,t) at the given (x,t),
let us consider the trajectory of points (x(τ ),τ ) connecting that
point with the starting point (x0,0).

We have chosen the trajectory to have q(x(τ ),τ ) = q. We
take x(τ ) just as a solution of the equation

τ = T (x(τ ),q). (25)
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FIG. 1. (Color online) The graphics for the elasticity V (t) ≡
−1
v′(t) for the model with N = 100, R+(x) = exp(−x), R−(x) =
exp(x), x(0) = 0.5. The smooth line is the analytical result by
Eq. (24) and the dashed line is the numerical result. The difference is
less than 0.5%.

At any point of our trajectory (x(τ ),τ ), we can calculate
v(x(τ ),τ ), while q(x(τ ),τ ) = q is constant. Equation (11)
gives

R−e2v − (q + R+ + R−)ev + R+ = 0,

(26)
v(y) = − ln 2R− + ln(q + R+(y) + R−(y)

±
√

[q + R+(y) + R−(y)]2 − 4R+(y)R−(y)),

where we denoted x(τ ) = y.
We derive the solution of the original Eq. (2), integrating the

equation u̇ = vẋ + q along our trajectory [the characteristics
connecting the points (x,t) and (x0,0)]:

u(x,t) = u(x,0) +
∫ x

x0

dy v(y) + qt

=
∫ x

x0

dy[− ln 2R−(y) + ln(q + R+(y) + R−(y)

±
√

[q + R+(y)+R−(y)]2 − 4R+(y)R−(y))]+qt.

(27)

Having the expression u(x,t) we can calculate p(x,t).

D. The restricted meaning of probability distributions
in master equations

In the case of evolution models [9,13], we have master
equations similar to Eqs. (1)–(3); only the negative term
∼P (X,t) has a coefficient other than −(R+ + R−), and
therefore there is no balance condition.

Contrary to the case of master equations in evolution models
[9–13] where all the initial distributions have a meaning, now
there are some restrictions. We should clarify the meaning
of the probabilities P (X,t). At every moment of time the
system has only one value of X, and P (X,t) just gives such
probabilities. We should solve the system (1)–(3) for the given
initial value P (X0,t) = 1 and P (X,t) = 0 for other X; other
initial distributions have no meaning.

Another difference is connected with the stable point
solutions. Equation (13) gives the steady-state solution. If that
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FIG. 2. (Color online) The graphics for the U (x) =
ln[R+(x)/R−(x)] at K1 = 44, K2 = 10, a = 0. There are three
solutions for the equation U (x) = 0.

equation has two stable solutions x1,x2 and the probability of
these two positions is the same, i.e.,∫ x2

x1

dx log
R+(x)

R−(x)
= 0, (28)

we again should accurately interpret the HJE results [6]. For
the rates given by Eq. (27) at a = 0, k2 = 10, the transition
is at k1 = 43.1274. One can use the HJE method to calculate
the mean period of time that solution, initially located at one
stationary point, will move to the other stationary point [20].
Then it should again return back, as every moment the system
could exist only with one value of X. In the case of the
evolution model, the system goes to the equilibrium state
instead of oscillatiing between two stable solutions.

E. The dynamics for the stationary but random rates

Consider now the case when the rates are smooth functions
of x plus some random noises. The noise in the rates is well
confirmed experimentally [21]. We took the case of rates
from [6],

R+(k1,x) = (1 − x)(0.5 + k1x
2),

(29)
R−(k2,x) = x(k2 + 0.01x2),

where now k1 and k2 are random variables,

k1 = K1 exp[aξ1(x) − a2/2)x2],
(30)

k2 = K2 exp[aξ2(x) − a2/2],

and ξ1(x),ξ2(x) have normal distributions. We consider the
model with N = 100, and performed numerics for different
values of parameters K1,K2,a. For K1 = 50, K2 = 10, at a ≈
0.9 there is a phase transition: instead of two steady-state
solutions we get one steady state x ≈ 0.088.

We can analytically estimate the transition point (from one
stabile point to bistability), considering the behavior of

U (x) =
〈
ln

R+(k1,x)

R−(k2,x

〉 ∣∣∣∣
k1,k2

. (31)

We found that the function U (x) changes its behavior with the
level of the noise. At a = 0 it has only three roots U (x) = 0,
while for a > 0.75 there is one root.
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FIG. 3. (Color online) The graphics for U (x) =
〈ln[R+(x)/R−(x)]〉 at K1 = 44, K2 = 10, and a = 0.8. There
is only one solution for U (x) = 0.

III. MASTER EQUATION WHEN THE RATES VARY
WITH TIME

A. The simplest solvable case

Consider the case when birth and death rate coefficients in
CMEs change with the time as g(t) and f (t), while they are
the same for all x. We have the following Hamiltonian:

−H = g(t)e−v + f (t)ev − g(t) − f (t), v = ∂u

∂x
. (32)

We get the following system of equations:

dp

dt
= −∂H

∂x
= 0. (33)

Thus the p is constant:

v = v0. (34)

For the coordinate we have a simple equation:

dx

dt
= ∂H

∂v
= g(t)e−v0 − f (t)ev0 . (35)

Thus we have a simple solution

x − x0 = e−v0

∫ t

0
g(τ ) − ev0

∫ t

0
f (τ ). (36)

We find v0 as a function of x,t from the solution of the last
equation.

u(x,t) = u(x0,0) + v0(x − x0) +
∫ t

0
[g(τ )e−v0 + f (τ )ev0

− g(τ ) − f (τ )]dτ. (37)

For the maximum of distribution we have v0 = 0, therefore we
get

x − x0 =
∫ t

0
[g(τ ) − f (τ )]dτ. (38)

It is interesting to find the variance of distribution. Differenti-
ating Eq. (36), we get, putting v0 = 0 at the maximum point,

−v′(x,t) = 1∫ t

0 [g(τ ) + f (τ )]
dτ. (39)

Thus the variance of distribution decreases with the time.

B. Rates as linear functions of the number of molecules

Consider now the Hamiltonian

−H = [ax + g(t)]e−v + [bx + f (t)]ev

− (a + b)x − f (t) − g(t). (40)

We have

dv

dt
= ae−v + bev − (a + b). (41)

We can solve this case:∫ v

v0

dv

ae−v + bev − (a + b)
= t. (42)

We can define the function v = V (v0,t) from the latter
equation,

V (v0,t) = log

[
aeat − aebt − beat+v0 + aebt+v0

aeat − bebt − beat+v0 + bebt+v0

]
. (43)

We also have

dV

dv0
(t) = −beat+v0 + aebt+v0

aeat − aebt − beat+v0 + aebt+v0

− −beat+v0 + bebt+v0

aeat − bebt − beat+v0 + bebt+v0
. (44)

Now we solve the equation for x:

dx

dt
= (b − a)x + f (t)eV − e−V g(t). (45)

Its solution gives

x − x0 = e(b−a)t
∫ t

0
[f (τ )eV (v0,τ )

− g(τ )e−V (v0,τ )]e−(b−a)τ dτ. (46)

Equations (42) and (46) together define the trajectory of
characteristics.

To get the solution for the maximum, we put v = 0 on the
left-hand side of Eq. (42). In this way we get a simple explicit
equation for v0 as a function of time t :

aeat − aebt − beat+v0 + aebt+v0

aeat − bebt − beat+v0 + bebt+v0
= 1. (47)

Putting that solution into Eq. (46), we find the trajectory of the
maximum of distribution.

To calculate v′ we should differentiate the expression in
Eq. (46) via x. Using the relation V ′(v0,t) = 1, we derive

1

v′ = e(b−a)t
∫ t

0
[f (τ )eV (v0,τ )

+ g(τ )e−V (v0,τ )]
dV

dv0
(τ )e−(b−a)τ dτ, (48)

where v0 is defined by Eq. (46) as a function of t .
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IV. CME IN MULTIDIMENSIONAL SPACE

Consider now the CME in multidimensional space, when
we have d-dimensional �X.

dP ( �X,t)

N dt
=

K∑
nl=−K

R�n

( �X − �n
N

)
P ( �X − �n,t)

−
∑

�n
R�n

( �X
N

)
P ( �X,t). (49)

In Eqs. (49), (50), (56), (57) we dropped in the sums the

terms with n = 0. We get a HJE for the function u(
�
�x) with the

following Hamiltonian:
∂H

∂t
+ H (�x, �p) = 0,

(50)

−H (�x, �p) =
K∑

nl=−K,1�l�d

R�n(�x)[ exp[−�n �p] − 1].

Let us investigate the motion of the maximum of distribution.
We denote �y(t) = �x the maximum of distribution at moment
of time t , and assume the following ansatz for u(x,t) near the
maximum of distribution:

u(�x,t) = −1/2〈�x − �y(t)|V |�x − �y(t)〉 (51)

putting this ansatz into

u′′
xl t

+ H ′
xl

(�x, �p) +
∑
m

H ′
�pm

(�x, �p)
dpm

dxl

= 0. (52)

Consider the point �x = �y(t), �p = 0, and use the identity
dpm

dxl

= −Vml. (53)

We get

∑
m

Vlm

dym

dt
−

⎛
⎝ K∑

nh=−K

Rn1,...,nd

∑
m

nm

⎞
⎠ Vlm = 0. (54)

We get the following ODE for the dynamics of the maximum
of distribution:

dyl(t)

dt
=

∑
m

Qm, Qm =
∑

1�h�d

∑
−K�nh�K

Rn1,...,nd
nm.

(55)

V. DERIVATION OF ELASTICITY IN 1D CASE

Let us get a system of ODEs for V . We consider the
multistep version of CME in one dimension.

dP (X,t)

N dt
=

K∑
n=−K

Rn

(
X − n

N

)
P (X − n,t)

−
∑

n

Rn

(
X

N

)
P (X,t). (56)

Now we have the following Hamilton-Jacobi equation:

−H (u′,x) =
K∑

n=−K

Rn(x)[e−nu′ − 1]. (57)

Now we have to consider the higher terms in the expansion of
u(x,t) near the maximum:

u = −V [x − y(t)]2/2 − T [x − y(t)]3/6 (58)

Equation (56) gives

dy(t)

dt
= b, b =

∑
−K�n�K

Rn(x)n. (59)

We also denote

a(x) =
∑

−K�n�K

Rn(x)n2, (60)

With the ansatz by Eq. (58) we have

u′′′
xxt = −V̇ + T b, (61)

On the other hand, differentiating the right-hand side of HJE,
we have

−u′′′
xxt = H ′′

ppV 2 − 2H ′′
xpV − T H ′

p = aV 2 − 2b′V − bT ,

(62)

We derived Eqs. (61) and (62) putting x = y(t).
Then

2b
d

dt
V = −4bb′V + 2baV 2 (63)

or using dy/dt = b

b
d

dx

1

V
= 2b′ 1

V
− a, (64)

which gives Eq. (24) for the one-step CME case.
For the multistep CME we have the following expression

for the elasticity:

−1

v′
x

= [b(x)]2
∫ x

x0

dy a(y)

[b(y)]3
. (65)

VI. CONCLUSION

In conclusion, we calculated exact probability dynamics
Eq. (27) for the chemical master distribution using the
Hamilton-Jacobi equation method. Using the method of
characteristics for solution of the HJE, we gave explicit
expressions for the variance of distribution equation (24).
The latter is important both for chemical [2] and financial
applications. We also derived the variance directly from the
HJE, using a special ansatz. The latter is equivalent to the
Van Kampen method [4]. Using the Van Kampen method, in
the Appendix we give an exact expression for the variance
for a general 1D model, as well as a system of ODEs to
define the variance in the 2D case. Both the HJE and the
Van Kampen methods gave identical results for the variance
and the maximum point dynamics of the CME: The HJE gives
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a directly differential equation for the variance, while the Van
Kampen method originally gives a differential equation for
the probability distributions, Eq. (A5), which later proved
the differential equation for the variance. The HJE also gives
the exact steady-state distribution, and is more adequate for
investigation of metastabile points [16,17]. Using the HJE, we
derived exact dynamics equations (44)–(46) for the case of 1D
CMEs when the rates are linear functions of the coordinate
(number of molecules) plus some time-dependent functions.

We performed some numerics in the case of static noise,
and also give analytical criteria for the level of noise when the
bistability disappears. Our choice of potential for the averaging
equation (31) is rather arbitrary (contrary to all other results
in this paper, which are derived rigorously and are exact). A
further investigation of the problem is necessary. Perhaps it is
possible to investigate the more realistic case of nonstationary
noise [21].
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APPENDIX: THE CALCULATION OF VARIANCE
DYNAMICS USING THE VAN KAMPEN METHOD

A. 1D multistep models

Consider the CME defined through the system of equations:

dP (X,t)

N dt
=

K∑
l=−K

Rl

(
X + l

N

)
P (X + l,t)

−
∑

l

Rl

(
X

N

)
P (X,t). (A1)

In Eq. (A1) we drop in the sum the term l = 0. Following Van
Kampen, we assume that near the maximum

X = Nφ(t) + √
Nξ (t),

(A2)
P (X,t) = �(ξ,t).

For the maximum point φ(t) = ∑
i iP (i,t) we will derive

Eq. (A4) later.

We consider terms with different scaling by N in the
equation

d�(ξ,t)

dt
−

√
Nφ′(t)

∂�

∂ξ

= N

K∑
l=−K

Rl

[
φ(t) + ξ√

N
− 1

N

]
P (X − l,t)

−N
∑

l

Rl

[
φ(t) + ξ√

N

]
P (X,t). (A3)

Collecting together the ∼√
N terms, we get

dφ(t)

dt
=

K∑
l=−K

lRl[φ(t)]. (A4)

The N0 terms give an equation

d�(t)

dt
= −b′ ∂

∂ξ
(ξ )� + a

2

∂2

∂ξ 2
�,

(A5)
b =

∑
l

lRl, a =
∑

l

l2Rl.

We derive the following equations for 〈ξi〉:
d〈ξ 〉
dt

= b′(t)〈ξi〉. (A6)

The initial condition 〈ξ (0)〉 = 0 gives 〈ξ (t)〉 = 0.
For the variance we get

d

dt
〈ξ (t)2〉 = a[ψ(t)] + 2b′[ψ(t)]〈ξi(t)〉2. (A7)

We can consider ODEs via ψ instead of t . Then Eq. (A4) gives
dψ/dt = b and

b
d

dψ
〈ξ 2〉 = a(ψ) + 2b′(ψ)〈ξ 〉2. (A8)

Eventually we get Eq. (64), with R+ − R− → b ≡∑
l Rll, R+ + R− → a ≡ ∑

l l
2Rl .

B. 2D case

We will apply the Van Kampen method, giving ODEs to
calculate the variance of distribution in the 2D case.

Consider the following system of equations for
P (X,Y,t), 0 � X � N, 0 � Y � N :

dP (X,Y,t)

dt
= −

[
R1+

(
X

N
,
Y

N

)
+ R1−

(
X

N

)
,
X

N

]
+

[
R2+

(
X

N
,
Y

N

)
+ R2−

(
X

N

)
,
X

N
)

]
P (X,Y,t)

+R1+

(
X − 1

N
,
Y

N

)
P (X − 1,Y,t) + R1−

(
X + 1

N
,
Y − 1

N

)
P (X + 1,Y,t) + R2+

(
X

N
,
Y − 1

N

)
P (X,Y − 1,t)

+R2−

(
X

N
,
Y + 1

N

)
P (X,Y + 1,t). (A9)

Following [4], we introduce the fluctuating variables ξ1,ξ2 and
replace P (X,Y,t) by �(ξ1,ξ2,t) (see [4]):

X = Nφ1(t) + √
Nξ1(t),

Y = Nψ2(t) + √
Nξ2(t), (A10)

P (X,Y,t) = �(ξ1,ξ2,t),

where ψ1(t),ψ2(t) give the solution in the case of infinite N :

dψ1(t)

dt
= b1(ψ1(t),ψ2(t)),

dψ2(t)

dt
= b2(ψ1(t),ψ2(t)),

b1(ψ1,ψ2) = R1+(ψ1,ψ2) − R1−(ψ1,ψ2), (A11)

b2(ψ1,ψ2) = R2+(ψ1,ψ2) − R2−(ψ1,ψ2).
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We can solve Eq. (A11) and calculate ψ1(t),ψ2(t).
Following the methods of [4], we derive
d�(t)

dt
= −

∑
α

(
R′

α+ − R′
α−

) ∂

∂ξα

(ξα�(ξ1,ξ2,t))

+
∑

α

Rα+ + Rα−
2

∂2

∂2ξα

�(ξ1,ξ2,t)

≡ −
∑

α

∂bα

∂ξα

∂

∂ξα

� + 1

2

∑
α

aα

∂2

∂ξ 2
α

�, (A12)

where we denoted R′
α± ≡ ∂Rα±(ψ1(t),ψ2(t))

∂ξα
, Rα± ≡

Rα±(ψ1(t),ψ2(t)).

We derive the following equations for 〈ξi〉:
d〈ξi〉
dt

= b′
i(t)〈ξi〉. (A13)

The initial condition 〈ξ (0)〉 = 0 gives 〈ξ (t)〉 = 0.
For the variance we get

d

dt
〈ξi(t)

2〉 = ai(ψ1(t),ψ2(t))

+ 2b′
i(ψ1(t),ψ2(t))〈ξi(t)〉2 (A14)

We can calculate the variance numerically as a function of t ,
using the solution of Eq. (A11).
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