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Slow dynamics of stress and strain relaxation in randomly crumpled elasto-plastic sheets
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Stress and strain relaxation in randomly folded paper sheets under axial compression is studied both
experimentally and theoretically. Equations providing the best fit to the experimental data are found. Our findings
suggest that, in an axially compressed ball folded from an elastic or elasto-plastic material, the relaxation
dynamics is ruled by activated processes of an energy foci rearrangement in the crumpling network. The
dynamics of relaxation is discussed within a framework of Edwards’s statistical mechanics. The functional forms
of the activation barrier between admissible jammed folding configurations of the crumpling network under axial
compression are derived. It is shown that relaxation kinetics can be mapped to activated dynamics of depinning
and creep of elastic interface in a disordered medium.
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I. INTRODUCTION

Recently, there has been much interest in crumpling under
the external loading of different kinds of thin materials,
ranging from the microscopic level—graphene membranes to
the macroscopic level—hand-folded paper and fault-related
geological formations [1–8]. The relevant property that all thin
materials share is that their stretching rigidity is much more
than the bending rigidity. Consequently, the forced crumpling
of thin matter provides a particularly clean and simple form of
stress focusing [9] because the elastic energy is concentrated
principally in the crumpling creases (ridges) joining adjacent
vertex points of maximal curvature [10–14]. But perhaps the
most salient feature of randomly crumpled matter is its behav-
ior under external loads—folded materials offer a low resis-
tance to axial compression [15–17], whereas, their resistance
to hydrostatic compression is anomalously high [4,12,18].

The mechanical response of a crumpled sheet on an external
force is determined by the crumpling network [2,4,12],
[15–19]. The jammed configurations of a crumpling network
in randomly folded matter can evolve under an external
driving force. This evolution involves movements of ridges
and vertices and leads to the rearrangement of energy foci
[20–22]. Statistical mechanics and thermodynamics of soft
jammed systems in inherent states can be treated within
a framework of the Edwards approach to the statistical
mechanics description of granular materials [23]. The proposal
of Edwards may be summarized as follows: Given a certain
configuration attained dynamically, physical observables are
obtained by averaging over the usual equilibrium distribution
at the corresponding volume, energy, etc., but restricting the
sum to the jammed configuration or inherent states defined as
the stable configurations in the potential energy landscape. The
strong ergodic hypothesis that all jammed configurations of a
given volume can be taken to have equal statistical probabilities
leads to the definition of configurational entropy S as the
logarithm of the number of jammed configurations (�) of
a given volume (V ) and an energy of jammed configuration
(E), etc. [23]. Associated with configurational entropy are the
state variables, such as compactivity �−1 = (∂S/∂V )E and
configurational temperature,

T −1
conf = (∂S/∂E)V , (1)

which play the role of effective temperature in statisti-
cal mechanics of frozen systems in inherent states (see
Refs. [23–25]). In general, � and Tconf are independent vari-
ables. Specifically, the configurational temperature determines
the energy fluctuations in the system, while compactivity
governs the volume fluctuations.

Following the original ideas developed by Edwards and
Oakeshott [23], in a previous paper [16], we have suggested
that mechanical properties of randomly crumpled thin matter
can be understood within a framework of Edwards’s ther-
modynamics of the crumpling network. Generally, in this
way, the mechanical response of a randomly crumpled sheet
on external loads is determined by the volume and shape
dependences of the free energy of the crumpling network
[16]. In particular, the mechanical behavior of the randomly
folded sheet in a thee-dimensional stress state is dominated by
the volume dependence of the crumpling network enthalpy,
whereas, the response of the crumpling network to axial
compression is controlled by the shape dependence of network
entropy [16].

Accordingly, under increasing hydrostatic pressure, the
diameter (R) of a ball, folded from a thin sheet, decreases
as R ∝ P −α , where the scaling exponent α is expected to
be universal for elastic sheets [26], whereas, in the cases of
elasto-plastic and plastic sheets, the value of α is dependent
on the energy dissipation in crumpling creases [18,27,28].
Besides, at a fixed pressure (P = const), the diameter of a ball
folded from an elasto-plastic or predominantly plastic sheet
decreases logarithmically in time for periods of up to several
hours [18]. Furthermore, once the folding force is withdrawn,
the diameter of the ball, folded from the elasto-plastic sheet,
increases logarithmically in time for periods of up to several
days [29]. In contrast to this, a ball folded from a predominantly
plastic material, such as aluminum foil, does not swell in
size after the folding force is withdrawn [30] because of an
insufficient amount of elastic energy stored in the crumpling
creases.

Under increasing axial compressive force, the mechanical
behavior of a ball folded from an elastic or elasto-plastic
sheet with free-lateral dimensions is governed by the shape
dependence of the crumpling network entropy [16]. In this
way, it was demonstrated that the applied force F is related to
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the compression ratio λ = H/R as

F = K0

(
1 − c

λ − c
− 1

)
, (2)

where K0 is the ball stiffness, R is the ball diameter
before compression, H = R − u is the ball height in the
direction of compression (see the insets in Fig. 3 of Ref. [16]),
u is the corresponding displacement, and c = nh/R is the
minimal compression ratio, while nh is the minimal possible
thickness of the folded sheet of the initial diameter R under
axial compression (h is the sheet thickness, and n is the number
of incompressible layers) [16]. Moreover, it was shown that
the axial stiffness of the randomly crumpled sheet is a linear
function of configurational temperature defined by Eq. (1), i.e.,

K0 = κ0Tconf, (3)

where κ0 is a function of the thickness and mechanical
properties of paper [16].

If lateral dimensions of the test specimen, folded from
thin sheets, are free of any confinement, an axial compression
of the specimen is accompanied by its lateral expansion.
It has been found experimentally that the lateral expansion
ratio λ⊥ = R⊥/R is related to the axial compression ratio
as λ⊥ = λ−ν , where R⊥ is the specimen size in the plane
perpendicular to the compression direction, while ν is the
Poisson index [17]. Conversely, when the lateral dimensions
of the crumpled sheet are confined, the sheet resistance to the
axial compression is dominated by the volume dependence of
the crumpling network enthalpy such that, when compressive
force F0 is applied, an instant compression ratio λ0 is
related to F0 according to the power law relation λ0 ∝ F

α1
0 ,

where α1 = 3α/(1 + 2α) [4,26].
Under a constant axial compressive force F0 = const, the

size H of a ball folded from an elasto-plastic sheet slowly
decreases [4,19] (in some experiments, this creep deformation
was observed for several weeks, after which the crumpled sheet
had not yet reached its minimum height [4]). The dependence
of H on time is not continuous but rather is interrupted by
sudden changes, which can be attributed to sudden ridge
collapses [19]. Even so, it was found that the overall change
in the ball height 	H (t) = H (0) − H = R [λ(0) − λ] can
reasonably be fitted by a simple relation of the form

λ = a − μ ln(t/s), (4)

where a and μ are fitting parameters [4,19]. It should be
pointed out that logarithmic behavior (4) was observed in
experiments with free lateral dimensions (see Ref. [19]) as
well as when the lateral dimensions of the axially compressed
specimen were confined (see Ref. [4]). It is also pertinent
to note that logarithmic creep was observed in many elasto-
plastic materials [31–34] and is commonly associated with
an Arrhenius-like relaxation kinetics [35], while the effective
temperature, which accounts for temporal fluctuations, can be
of thermal or nonthermal nature (see Refs. [4,36–40]).

On the other hand, if a crumpled sheet is axially compressed
up to a compression ratio, which is further held constant
(λ = const), the compressive force slowly decreases in time.
Albuquerque and Gomes [41] demonstrated that, under a
constant compression ratio, the relaxation of compressive force

applied to hand-folded aluminum foil can be well fitted with
the stretched exponential function,

F = F0 exp

[
−

(
t

τ0

)η]
, (5)

where η and τ0 are fitting parameters. Furthermore, the
exponent η = 0.28 ± 0.03 was suggested to be universal,
while the experimental values were varied in the range from
0.24 to 0.4 [41]. However, numerical simulations performed
in Ref. [42] suggest that η should be a function of the fractal
dimension of the folded sheet.

To summarize, the forms and mechanisms of slow stress
and strain relaxation in randomly folded matter under external
forces still are not understood well. Specifically, while the
axial deformation (creep) of a folded ball under a constant
force displays logarithmic decay (2) within a wide range of
time, a strong deviation from logarithmic behavior is observed
for the early times [19]. Furthermore, the force relaxation (5)
was studied only in axially compressed predominantly plastic
aluminum foils [41], the mechanical behavior of which differs
from that of balls folded from elasto-plastic sheets, such as a
paper (see Refs. [17,28]). The relaxation of compressive force
in specimens folded from crumpled papers has not been tested.

Accordingly, the purpose of this paper is to clarify the
mechanisms and functional forms of stress and strain re-
laxation in hand crumpled elasto-plastic sheets subjected to
axial compression. This paper is organized as follows. In
Sec. II, we describe the details of experiments performed
in this paper. Experimental results and their best empirical
fittings are reported in Sec. III. Section IV is devoted to
the discussion of experimental findings. Phenomenological
equations, describing the stress and strain relaxation, are
derived, and their physical interpretation is discussed. A brief
summary of the main findings and conclusions are given in
Sec. V.

II. EXPERIMENTAL DETAILS

In this work, the experiments were performed with hand-
folded sheets of Kraft (thickness of h = 0.141 mm) and
Biblia (thickness of h = 0.039 mm) papers. Square sheets
with edge sizes of L = 100, 200, 400, and 600 mm were
hand crumpled into approximately spherical balls. At least
6 balls were folded from sheets of each size of Kraft paper, and
15 balls were folded from sheets of the size of L = 400 mm
of Biblia paper. Once the folding force is withdrawn, the ball
diameter increases with time for approximately 6–8 days due
to the strain relaxation in the folding creases (see Ref. [29]).
Therefore, all experiments reported below were performed at
least 10 days after a sheet was folded.

Paper is a composite visco-elasto-plastic material [43].
Paper properties are sensitive to variations in paper moisture
and temperature, which are strongly dependent on ambient
temperature and humidity [34,43]. Accordingly, in this work,
the ambient temperature and humidity were monitored con-
tinuously during each experiment. Furthermore, some force
and strain relaxation experiments had been carried out in
a climatic chamber with controlled temperature (variations
are less than 1◦C) and relative humidity (variations are less
than 3%).
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Two series of experiments were performed with balls
folded from paper sheets. In the first series of experiments,
folded balls were tested under a constant axial compression
rate. Test specimens were compressed with a loading rate of
2 mm/s using a universal test machine MTS-858-5. Figure 1(a)
shows the force-compression behavior of a randomly folded
paper ball under axial compression. Under the increasing
compression force, the compression ratio λ follows relation (2)
[see Fig. 1(a)], which can be rewritten in the form F = K0εe,
where εe = u/He is the effective strain, while

He = H − nh = (R − nh) − u (6)

is the effective ball size in the direction of compression [see
Fig. 1(b)].

Once the compression is suddenly stopped at a fixed
compression ratio λ = λF1, which is further held constant,
the compressive force decreases in time, as shown in Fig. 1(c).
When, after several hours of relaxation, the compression is
reinitiated, the compressive force quickly increases as λ is
decreased up to λF2 [see the inset in Fig. 1(a)] such that,
for compression ratios λ � λF2, the force-compression curve
follows the same relation (2) as before relaxation [see Figs. 1(a)
and 1(b)]. Furthermore, during unloading at the rate of 2 mm/s,
the force-compression curve goes downward up to F (λR) = 0,
where λR is the remanent compression ratio [see Fig. 1(a)], the
value of which depends on the loading and unloading rates as
well as on the time of compressive force relaxation under the
constant compression ratio of λ = λF1. Once the compression
force is withdrawn, λ slowly (and almost logarithmically)
increases with time of approximately 1 week.

It should be pointed out that the force-compression relation
(2) cannot be presented in terms of apparent stress (σ = F/Aλ)
and effective strains because the area of loading (Aλ) is
ill defined during the axial compression test as well as
during ball compression under a constant force. Moreover, the
distributions of stress and strains within an axially compressed
ball are essentially inhomogeneous. However, we noted that,
during stress relaxation under a constant deformation ratio
(λ = λ0 = const), a change in the apparent loading area was
less than 2%. Hence, one can assume that, in this case, the
equality,

σ (λ0,t)

σ0(λ0)
= F (λ0,t)

F0(λ0)
(7)

holds with acceptable accuracy. Notice that equality (7)
was already employed in Ref. [41]. Nevertheless, in this
paper, experimental data and their fittings are given using the
compressive force as the primary experimental attribute.

Figure 2 shows the graph of compressive force relaxation in
a paper ball under a constant compression ratio together with
graphs of air temperature (T ) and humidity (WH ) obtained
in an experiment carried out in a climatic chamber. One
can see that abrupt changes in air humidity and temperature
are accompanied by changes in compressive force behavior.
We also noted that slow but large variations of T or/and
WH also affect the force relaxation behavior. Accordingly,
the experimental data reported below were obtained either in
experiments carried out in a climatic chamber with controlled
air temperature and humidity or in an ambient air environment,
when the variations in air temperature and humidity, during

FIG. 1. (a) The force - compression curve of the ball folded
from a square sheet of Kraft paper with an edge size of L =
400 mm under axial compression with the rate of 2 mm/s: circles,
experimental data; curve 1, data fitting with Eq. (2); curve 2
corresponds to the compressive force relaxation shown in panel
(c); curve 3, the transient regime in the range of the compression
ratio of λF1 = 0.2775 � λ � λF2 = 0.3279, which is shown in more
detail in the inset; and curve 4, unloading with the rate of 2 mm/s.
(b) The force - effective strain curve obtained from the data presented
in panel (a); the top inset shows the amplified initial part of F (εe)
behavior, while the bottom inset shows the log-log plot of F versus
εe: straight lines, data fitting by Eq. (2) with K0 = 80.17 N and
c = 0.058. (c) Force relaxation at the fixed compression ratio of
λF1 = 0.3279; the inset shows the semilogarithmic plot of the force
relaxation. Circles, experimental data; solid curve 1, data fitting by
Eq. (8) with τF = 10.92 s and β = 0.044; dashed curve 2, data fitting
with the stretched exponential function (5) with τ0 = 6.6 days and
η = 0.245.

the experiment, were less than 2 ◦C and 5%, respectively. If,
during a relaxation test, a change in temperature or humidity
was greater, only the data of the initial time interval (during
which 	T � 1◦C and 	WH � 0.1WH ) were analyzed.

Besides, in this paper, to have a more intimate reference to
stress relaxation in balls folded from aluminum foil, we also
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FIG. 2. Effects of abrupt changes in ambient temperature
(curve 1) and humidity (curve 2) on the relaxation of the compressive
force (curve 3) in the test of an axially compressed ball folded from
a square sheet of Kraft paper with an edge size of L = 400 mm
performed in a climatic chamber.

have performed three stress relaxation tests with balls with
diameters of R = 27 mm folded from square sheets with edge
sizes of L = 240 mm of aluminum foil with thicknesses of
h = 0.02 mm.

In the second series of experiments, the folded balls were
subjected to constant compressive forces FM = Mg supplied
by a mass M , where g is the gravitational acceleration constant.
The compressive weight was provided by metal plates with
diameters of 16 cm placed horizontally on the top of the ball
positioned inside of an acrylic tube with a diameter of 16.2 cm,
which ensured that, at all times, the compressive weight was
horizontal within a few degrees (see bottom inset in Fig. 3).
Notice that, in our experiments, the diameters of balls tested
were less that 10 cm such that the lateral sides of the balls were
not subjected to any confinement. The ball height (distance
between steel plates) was monitored with a laser micrometer
MTS LX-500.

Once a weight M was placed on the ball, the ball almost
instantly was compressed up to a compression ratio of
λ = λM such that FM = Mg and λM obeyed the relation (1).
Thereupon, the compression ratio slowly decreased with time
(see the top inset in Fig. 3) for more than 1 month [44].

In some experiments, after several hours of compression
(t1), the weight plate was suddenly trapped such that its
position was fixed (using a rigid steel string attached to the
weight plate) at λ = λt1 = const for a period of time 	t =
t2 − t1 (see Fig. 3). It should be pointed out that, during this
period (	t = t2 − t1), the compressive force did not become
zero, rather it slowly decreased in time in the same way as
observed in the stress relaxation experiments at the constant

FIG. 3. Semilogarithmic graph of compression ratio λ versus
time t for a ball folded from a square paper sheet of Kraft paper with
an edge size of L = 400 mm subjected to constant compressive force.
After the compressive force is supplied by mass M = 20.718 kg, the
ball, almost instantaneously, is compressed up to λM = 0.3279 and
then λ decreases with time up to the compression ratio λt1 = 0.2658,
at which the position of the plate is fixed for 3 h; when after
	t = 3 h, the plate is liberated, the ball, almost instantaneously, is
compressed up to λt2 = 0.2611; circles, experimental data; solid
curve 1, data fitting by Eq. (9) with c = 0.058; τλ = 15.61 s, and
γ = 0.068; dashed line 2, data fitting by logarithmic equation (4)
with a = 0.3432 and μ = 0.0082; the top inset shows the graph of
λ versus time excluding the data between t1 and t2, while the bottom
inset shows the experimental setup.

compression ratio described above. When the plate was
liberated again, the ball was compressed almost instantly up to
λt2, and further compression followed the tendency observed
before the compression was stopped (see Fig. 3). Notice that
similar behavior was observed early in the experiments with
crumpled Mylar sheets [45] reported in Ref. [4].

III. EXPERIMENTAL FINDINGS

The main aim of this paper is to find analytical expressions
for the functions providing the best fits to the experimental
data of force and effective strain relaxations. Accordingly, we
have tried to fit the experimental data with many of the known
forms of a relaxation function [46]. A comprehensive review
of relaxation function forms can be found in Ref. [47]. The
results of our efforts are reported below.

A. Compressive force relaxation under a fixed
compression ratio

We found that the compressive force relaxation under a
fixed compression ratio λ = λF is best fitted with the following
relationship:

F = F0

[
1 − β ln

(
1 + t

τF

)]
, (8)

where the force F0 is related to λF according to relationship (2),
while β and τF are fitting parameters [see Figs. 1(b) and 4].
Moreover, we found that fitting parameters are statistically
independent of the sheet size, the ratio L/R, and the initial
force F0(λF ) [see the captions of Figs. 1(c), 4, and 5]. At
the same time, we noted that τF was very sensitive to the
paper properties, ambient humidity, and temperature during
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FIG. 4. Compressive force relaxation under the fixed compres-
sion ratios in balls folded from square sheets of (a) and (b) Kraft
paper [L = 600 mm, λM = 0.230(1), L = 400 mm, λM = 0.148(2),
L = 200 mm, λM = 0.3(3), and L = 100 mm, λM = 0.135(4)] and
(c) and (d) Biblia paper with L = 300 mm [λM = 0.180(5), λM =
0.185(6), and λM = 0.265(7)]. (a) and (c) Semilogarithmic graphs
of F versus 1 + t/τ ; (b) and (d) log-log graphs of ln(F0/F ) versus
t . Circles, experimental data; solid lines, data fitting by Eq. (8)
with β = 0.043 and τF = 15.99 s. (1), β = 0.0397 and τF = 5.63 s
(2), β = 0.0424 and τF = 15.5 s (3), β = 0.0423 and τF = 0.31 s (4),
β = 0.0427 and τF = 31.1 s (5), β = 0.0489 and τF = 27.8 s (6), β =
0.043 and τF = 24.4 s (7); dashed lines, data fitting by the stretched
exponential function (5) with η = 0.28 (1), 0.16 (4), and 0.26 (6).

the test, whereas, values of β, obtained in 16 force relaxation
experiments with balls folded from two different papers, varied
in a relatively narrow range of 0.39 � β � 0.49 with the mean
β = 0.041 ± 0.006 (see Fig. 5). These findings suggest that
characteristic time scale τF can be associated with the internal
relaxation process and is determined by the paper properties
that are strongly dependent on the paper moisture and
temperature [48], whereas, β seems to be universal. However,
a statistically small number of available experimental data are
rather insufficient to affirm this universality.

We noted that force relaxation in axially compressed paper
balls could not be fitted well with Eq. (5) [see Figs. 4(b) and
4(d)]. At the same time, we found that the compressive force
relaxation in an axially compressed ball folded from aluminum
foil seemed to more closely follow the stretched exponential
function (5) suggested in Ref. [41] rather than Eq. (8) (see
Fig. 6). This finding suggests that mechanisms of the compres-
sive force relaxation in axially compressed balls folded from
elasto-plastic paper sheets and from predominantly plastic
aluminum foil are different. Notice that, previously, the role of
plastic deformations in crumpling mechanics was discussed in
Refs. [11,13,27,28].

B. Strain relaxation (creep) under a constant compressive force

In the case of creep deformation of a crumpled sheet
under constant compressive force FM = Mg, we found that

FIG. 5. Statistical distributions f of fitting parameters β (1)
and γ (2) for balls folded from sheets of Kraft and Biblia papers
in arbitrary units. Bins, experimental data; curves, data fitting by
normal distributions with means β = 0.041(1) and γ = 0.066(2),
respectively.

experimental data on the time dependence of the compression
ratio are best fitted with an empirical relationship of the form

λ(t) = c + λM − c

1 + (1 − λM )γ ln (1 + t/τλ)
, (9)

where initial compression ratio λ(0) = λM is related to FM =
Mg according to the force-deformation relationship (2), while
τλ and γ are fitting parameters (see Figs. 3, 7, and 8). Notice
that coefficient (1 − λM ), before γ , assures that there is no
creep without external compressive force (M = 0). We also
found that values of γ , obtained in 19 experiments from
two different papers, vary in a range of 0.033 � γ � 0.085,

FIG. 6. Compressive force relaxation under a fixed compression
ratio in a ball folded from aluminum foil: (a) graph of F versus t

(inset shows the initial part of the same graph); (b) log-log graph of
ln(F0/F ) versus t ; (c) semilogarithmic graph of F versus (1 + t/τ ),
where τF = 3.25 s. Circles, experimental data; dashed curves 1, data
fitting by Eq. (8) with τF = 3.25 s and β = 0.0415; solid curves 2,
data fitting by Eq. (5) with η = 0.17 and τ0 = 9.91 h.

021118-5



ALEXANDER S. BALANKIN et al. PHYSICAL REVIEW E 84, 021118 (2011)

FIG. 7. Creep deformation of balls folded from square sheets with
different edge sizes subjected to axial compressive force FM = Mg.
(a) Semilogarithmic graph of λ versus t for the ball folded from Kraft
paper with the size of L = 400 mm under the weight of M = 15.3 kg:
small gray circles, experimental data taken each minute for 12 h;
large black circles, experimental data taken each hour for 30 days;
solid line, data fitting by Eq. (9) with c = 0.056, τλ = 14.4 s, and
γ = 0.076. Insets show semilogarithmic graphs of Y = 1/ (λ − c)
versus X = 1 + t/τ of data taken each minute for 12 h [bottom inset,
data fitting by Eq. (9) with c = 0.056, τλ = 14.4 s, and γ = 0.065]
and each hour for 30 days [top inset, data fitting by Eq. (9) with
c = 0.056, τ = 17.8 s, and γ = 0.07].

which is considerably wider than the interval of β variations
(see Fig. 5). Furthermore, while one may expect that the
characteristic time scale τλ has the same nature as τF , we
have no sufficient experimental data to support this assumption
statistically because of the high sensitivity of τλ and τF to
ambient conditions.

Here, it should be pointed out that, while the available
experimental data for t � τ can be fitted well with Eq. (4), we
found that, for any time interval, Eq. (9) provides a somewhat
better fit than Eq. (4) (see Fig. 3) or its modification in the
form

λ = λM − μ∗ ln(1 + t/τλ), (10)

where μ∗ and τ ∗ are fitting parameters (see Fig. 8). Notice
also that, according to Eq. (9), the compression ratio is λ → c

as t/τ → ∞, whereas, Eqs. (4) and (10) both suggest that the
minimum possible compression ratio λ = c can be achieved in
a finite time τC ≈ τλ exp [(λM − c) /μ∗] on the order of several
years. However, for times t 
 τC, it is appropriate to note that
Eq. (10) can be viewed as the two first terms of the series
expansion of Eq. (9), and so μ∗ = (λM − c)(1 − λM )γ , while

FIG. 8. Data fittings for the strain relaxation in axially com-
pressed balls folded from Kraft paper with the size of L = 400 mm
under the weight of M = 20.718 kg for 25.83 h (1) and Biblia paper
with the size of L = 300 mm under the weight of M = 5 kg for
5 days (2): (a) semilogarithmic graphs of Y = 1/ (λ − c) versus
X = 1 + t/τ : symbols, experimental data; straight lines, data fitting
by Eq. (9) with: c = 0.058, τλ = 15.3 s, γ = 0.069 (line 1, squared
correlation coefficient R2 = 0.9998), and c = 0.022, τλ = 8.8 s, and
γ = 0.077 (line 2, R2 = 0.9999); (b) semilogarithmic graphs of λ

versus X∗ = 1 + t/τ ∗: symbols, experimental data from panel (a);
straight lines, data fitting by Eq. (10) with: λM = 0.3279, τ ∗ = 6.9 s,
μ∗ = 0.0085(curve 2, R2 = 0.9977), and λM = 0.4823, τ ∗ = 8.8 s,
and μ∗ = 0.0123 (curve 2, R2 = 0.9974).

Eq. (4) is the asymptotic of Eq. (10) for times t � τλ � 1
min, and so one expects that μ = μ∗ and a = λM + μ ln(τλ).
In this way, Eq. (9) is consistent with the experimental results
reported in Ref. [19].

IV. DISCUSSION

Creep and compressive force relaxation are inherent
mechanical behaviors of crumpled matter under external
loads. It seems reasonable to assume that both are different
performances of the same physical processes. In this paper,
we also assume that relation (2) can be extended to the case
of time-dependent stiffness of the folded sheet under axial
compression as

F = Kε(t)εe, when εe = const, (11)

while

εe = K−1
F (t)F, when F = const, (12)

where Kε(t) and KF (t) are the time-dependent stiffness at the
constant compression ratio and at the constant compression
force, respectively. If so, the compressive force relaxation at
the fixed deformation ratio and the effective strain relaxation
at the constant compression force both are controlled by the
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time dependence of the ball stiffness. Specifically, Eqs. (8),
(11), and (12) imply that

Kε(t) = K0

[
1 − β ln

(
1 + t

τF

)]
, (13)

while

K−1
F (t) = K−1

0

[
1 + γ (1 − c) ln

(
1 + t

τλ

)]
, (14)

such that Kε(t)/KF (t) �= 1, while Kε(0) = KF (0) = K0. The
difference in the time behavior of the ball stiffness at
the constant compression ratio and at the constant compressive
force can be attributed, at least partially, to different time
behaviors of loading area Aλ, which almost holds constant
during stress relaxation under a constant compression ratio
[see Eq. (7)], whereas, Aλ is an increasing function of time
during ball compression under the force F = Mg.

A. Evolution equations

From Eqs. (11) and (13), it immediately follows that, in an
axially compressed ball folded from an elasto-plastic sheet,
the compressive force relaxation at constant effective strain
εe = ε0 obeys the following evolution equation:(

dF

dt

)
ε

= ε0

(
dKε

dt

)
ε

= −βF0

τF

exp

(
− F0 − F

βK0ε0

)
, (15)

where F0 = K0ε0 and F = Kεε0. Notice that by taking relation
(7) into account, Eq. (15) can be rewritten in terms of apparent
stresses in the form

dσ/dt = β(σ0/τσ ) exp [− (σ0 − σ ) /βσ0] ,

which was widely used in the studies of shear and stain
hardening in fcc metals [36–38] and band formation in plastic
materials [36,38] and granular media [40].

On the other hand, Eqs. (12) and (14) imply that, under
a constant axial compressive force (F = Mg), the creep
deformation is governed by the following evolution equation:(

dεe

dt

)
F

= −Mg

K2
F

(
dKF

dt

)
F

= γ (1 − c)

τλ

εM exp

[
−K0 (εe − εM )

γ (1 − c)Mg

]
, (16)

where εM = uM/(R∗ − uM ) = (1 − λM )/(λM − c) is the ini-
tial effective strain, while λM obeys the force-deformation
relationship (2) with F = Mg.

At this point, it is appropriate to note that an exponential
dependence of the relaxation rate on a driving force (equal to or
smaller than its threshold value) is commonly associated with
fluctuation controlled kinetics, while temporal fluctuations in
the system can have a thermal or nonthermal nature (see, for
example, Refs. [4,36–40]). The fluctuation controlled kinetics
can be of thermodynamic or pure mechanical nature. However,
in Sec. I, we already stated that the mechanical behavior of
crumpled sheets can be understood within the framework of
Edwards’s statistical mechanics of a crumpling network (see
Ref. [16]). Accordingly, below, the relaxation in the crumpled
sheet is also discussed within the same framework.

B. Thermodynamics of relaxation processes

Equations (16) and (17) suggest that relaxation processes
in a crumpled sheet, subjected to axial compression, are
ruled by temporal fluctuations, which allows overcoming an
activation barrier 	U between jammed configurations of the
crumpling network. The intensity of temporal fluctuations in
the crumpling network is controlled by the configurational
temperature (1). Accordingly, in the spirit of Edwards’s
statistical mechanics, one can expect that the axial compression
of the randomly folded ball leads to the rearrangement of
energy foci such that the activation barrier 	U between
admissible jammed configurations of the crumpling network
is a function of compressive force and effective strain. Hence,
the relaxation rates are expected to obey the Arrhenius-like
relation,(

∂F

∂t

)
εe

,

(
∂εe

∂t

)
F

∝ −exp

(
− 	U

kTconf

)
, (17)

where k is the constant analogous to the Boltzmann one (see
Refs. [23,24]).

Taking relationship (3) into account, from the comparison
of Eq. (17) with evolution equation (15), it follows that, in a ball
under a constant compression ratio λ0 = (1 + cε0)/(1 + ε0),
the activation barrier between admissible folding configura-
tions,

	Uλ = k

βκ0ε0
(F0 − F ) (18)

increases as the compressive force decreases due to dissipation
and/or redistribution of the deformationenergy,

E0 =
∫ u0

0
Fdu (19)

supplied to the crumpling network during the ball compression
from R to H0 = λ0R = R − u0.

In the case of balls folded from elastic sheets, deformation
energy (19) is redistributed due to the rearrangement of energy
foci in the crumpling network, including the redistribution of
elastic energy between the crumpling creases as well as the
buckling and/or disappearance of folds. In the case of elasto-
plastic sheets, a part of deformation energy (19) dissipates due
to plastic deformations in the crumpling creases. Accordingly,
when the compressive force is withdrawn, the ball, which is
folded from an elastic sheet, recuperates its initial size, which
is determined by the initial restrictions [49] but not the initial
shape (see Fig. 2 in Ref. [16]). In contrast to this, the ball,
which is folded from an elasto-plastic material, resets in a
state with remanent deformation λR < 1 (see Fig. 1(a) of this
paper and Fig. 1 in Ref. [16]) after the compressive force is
withdrawn.

On the other hand, from Eqs. (3), (12), (16), and (17), when
compression ratio λ decreases under a constant compressive
force F = Mg, it follows that the activation barrier between
admissible folding configurations,

	UF = kK0

γ κ0(1 − c)

[
εe

εM

− 1

]
(20)

increases as the compression ratio decreases due to the
rearrangement of the energy foci in the crumpling network
and/or the strain relaxation in the crumpling creases.
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Furthermore, Eq. (20) can be rewritten in the following
form:

	UF = K0(1 + εM )

γ κ0(1 − c)εM

[
�M

�
− 1

]−1

= kK0

γ κ0 (1 − c)

(
1 + K0

Mg

) (
�

	�

)
, (21)

where

� = Mg(u − uM ) (22)

is the work of the gravitational force during creep displace-
ment u − uM = 	u, while �M = Mg (R − nh − uM ) is the
available potential energy of the weight plate before creep and
so,

	� = �M − � = Mg(R − nh − 	u) (23)

is the available potential energy of the weight plate after creep
displacement 	u.

Equations (21)–(23) suggest that, in the case of the ball
folded from an elastic sheet, the energy supplied to the
crumpling network by the work of the gravitational force
during creep displacement (22) is dynamically distributed
in the crumpling network in such a way that the strength
of jammed folding configurations fC increases, whereas,
the available potential energy of the weight plate (23),
playing the role of driving force f , decreases. As a result,
the activation barrier increases with the creep displacement.
Once the compressive force is withdrawn, the ball, which
is folded from an elastic sheet, recuperates its initial size
H = R, nonetheless, the ball shape, which is associated with
a specific jammed configuration of the crumpling network,
can differ from the ball shape before compression (see Fig. 2
in Ref. [16]) because there are many equivalent folding
configurations for given experimental conditions. In the case
of the balls folded from elasto-plastic sheets, a part of the
energy, which is supplied by the work (22), dissipates due to
plastic deformations in the crumpling creases. This manifests
in the remanent deformation of the elasto-plastic sheet after
unloading.

It is interesting to note that evolution equation (17), with
the activation barrier that is defined by Eq. (21), takes the form
of an equation for the creep velocity of an interface, which is
driven in a disordered medium by a driving force f less than
a pinning strength fc [50],

v ∝ exp

[
− Uc

kTeff

(
fc

f

)χ]
,

where Uc is the energy scale, Teff is the effective temperature of
the disordered medium, while χ is the creep exponent. Hence,
the dynamics of relaxation in the crumpling network, which is
subjected to axial compression, can be mapped into dynamics
of depinning and creep motions of an elastic interface in a
medium with quenched disorder. This mapping implies that

the driving force of the creep motion is f ∝ (	�)1/χ , while
the pinning strength of the jammed folding configurations is
fC ∝ �1/χ . Further analysis is needed to derive an analytic
expression for the creep exponent χ .

C. Remark

In balls that are folded from predominantly plastic sheets,
such as aluminum foil, most parts of the deformation energy
(19) as well as most parts of the work (22) are irreversibly
dissipated in crumpling creases such that the amount of
accumulated elastic energy is insufficient to initiate the
reverse transitions between jammed folding configurations
of the crumpling network after the compressive force is
withdrawn. Moreover, under increased compression, dynamic
rearrangements in crumpling networks of predominantly
plastic materials are repressed by plastic deformations (see
Refs. [11,13,27]) and so, the relaxation of the compression
force and the creep deformation is determined by the energy
dissipation in the folding creases rather than by the rear-
rangement of the energy foci. As a result, the compressive
force relaxation and creep in balls that are folded from plastic
sheets do not obey evolution equations (15) and (16), rather,
they are controlled by another mechanism that is associated
with the plastic deformations, which are localized in the
crumpling creases. While stretched exponential function (5)
provides a good fitting of experimental data on the stress
relaxation in hand-folded aluminum foil (see Fig. 6 and
Ref. [41]), further experimental and theoretical studies are
needed to clarify the mechanisms and functional forms of
stress and strain relaxation in randomly crumpled plastic
sheets.

V. CONCLUSIONS

To summarize, we found experimentally that, in axially
compressed hand crumpled paper, the relaxation of the
compressive force under the constant compression ratio and
the creep deformation under the constant force follow the
relaxation equations (8) and (9), respectively. These equations
determine the form of the corresponding equations of evolution
(15) and (16), which suggest that the relaxation dynamics
in crumpled elastic and elasto-plastic sheets is ruled by
activated processes of the rearrangement of the energy foci
in the crumpling network, whereas, the stress relaxation
in predominantly plastic sheets is controlled by the energy
dissipation in the crumpling creases. We pointed out that
thermodynamics of activated processes in crumpled sheets can
be understood within the framework of Edwards’s statistical
mechanics. In this way, explicit functional forms of the
activation barrier between admissible jammed configurations
of the crumpling network under axial compression are derived.
Our findings suggest that, under a constant compression
ratio, the compressive force decreases due to dissipation
and/or redistribution of the deformation energy supplied to
the crumpled network during ball compression. On the other
hand, under a constant compressive force, the activation
barrier between admissible jammed configurations increases
as an elastic energy, which is supplied by a compressive
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force, is released during creep deformation, which is
accompanied by the rearrangement of the energy foci in the
crumpling network and energy relaxation in the crumpling
creases.
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and D. Samayoa, Physica A 388, 1780 (2009).
[29] A. S. Balankin, O. Susarrey, R. Cortes, D. Samayoa, J. Martı́nez,

and M. A. Mendoza, Phys. Rev. E 74, 061602 (2006).
[30] A. S. Balankin, I. Campos, O. A. Martı́nez, and O. Susarrey,

Phys. Rev. E 75, 051117 (2007).
[31] M. Davis and N. Thompson, Proc. Phys. Soc. London, Sect.

B 63, 847 (1950); A. H. Cottrell, J. Mech. Phys. Solids 1, 53
(1952); N. F. Mott, Philos. Mag. 44, 742 (1953); O. H. Wyatt,
Proc. Phys. Soc. London, Sect. B 66, 459 (1953); G. C. E. Olds,
ibid. 67, 832 (1954).

[32] R. W. K. Honeycombe, The Plastic Deformation of Metals,
2nd ed., Chap. 13 (Arnold, London, 1984).

[33] F. R. N. Nabarro, Mater. Sci. Eng. A 309-310, 227 (2001).
[34] H. W. Haslach Jr., Mech. Time-Depend. Mater. 4, 169

(2000).

021118-9

http://dx.doi.org/10.1119/1.15094
http://dx.doi.org/10.1088/0305-4470/25/7/012
http://dx.doi.org/10.1088/0305-4470/25/7/012
http://dx.doi.org/10.1088/0022-3727/40/12/017
http://dx.doi.org/10.1088/0022-3727/40/12/017
http://dx.doi.org/10.1126/science.270.5241.1482
http://dx.doi.org/10.1103/PhysRevE.54.278
http://dx.doi.org/10.1103/PhysRevE.54.278
http://dx.doi.org/10.1103/PhysRevLett.94.166107
http://dx.doi.org/10.1103/PhysRevLett.94.166107
http://dx.doi.org/10.1103/PhysRevLett.96.136103
http://dx.doi.org/10.1209/0295-5075/91/56003
http://dx.doi.org/10.1103/PhysRevLett.106.074301
http://dx.doi.org/10.1103/PhysRevLett.106.074301
http://dx.doi.org/10.1103/PhysRevLett.106.105702
http://dx.doi.org/10.1103/PhysRevLett.106.128102
http://dx.doi.org/10.1103/PhysRevLett.88.076101
http://dx.doi.org/10.1103/PhysRevLett.88.076101
http://dx.doi.org/10.1103/PhysRevE.76.032101
http://dx.doi.org/10.1103/PhysRevE.81.061126
http://dx.doi.org/10.1103/PhysRevE.81.061126
http://dx.doi.org/10.1103/PhysRevE.83.036310
http://dx.doi.org/10.1103/PhysRevE.83.036310
http://dx.doi.org/10.1103/PhysRevLett.96.078101
http://dx.doi.org/10.1103/PhysRevLett.96.078101
http://dx.doi.org/10.1103/PhysRevLett.105.156603
http://dx.doi.org/10.1103/PhysRevLett.105.106802
http://dx.doi.org/10.1103/PhysRevLett.105.026103
http://dx.doi.org/10.1103/PhysRevLett.105.026103
http://dx.doi.org/10.1103/PhysRevLett.103.263902
http://dx.doi.org/10.1103/PhysRevE.80.066114
http://dx.doi.org/10.1103/PhysRevE.82.066112
http://dx.doi.org/10.1016/j.jsg.2008.10.006
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1103/PhysRevE.53.3750
http://dx.doi.org/10.1038/386439a0
http://dx.doi.org/10.1103/PhysRevLett.78.1303
http://dx.doi.org/10.1098/rspa.1997.0041
http://dx.doi.org/10.1103/PhysRevLett.80.2358
http://dx.doi.org/10.1038/43395
http://dx.doi.org/10.1038/43395
http://dx.doi.org/10.1103/PhysRevE.65.016603
http://dx.doi.org/10.1103/PhysRevE.65.016603
http://dx.doi.org/10.1103/PhysRevE.66.016601
http://dx.doi.org/10.1103/PhysRevE.76.026108
http://dx.doi.org/10.1103/PhysRevE.76.026108
http://dx.doi.org/10.1016/j.cpc.2008.12.036
http://dx.doi.org/10.1016/j.cpc.2008.12.036
http://dx.doi.org/10.1021/jp807548s
http://dx.doi.org/10.1021/jp807548s
http://dx.doi.org/10.1103/PhysRevLett.105.066102
http://dx.doi.org/10.1103/PhysRevE.60.6091
http://dx.doi.org/10.1103/PhysRevLett.87.206105
http://dx.doi.org/10.1103/PhysRevLett.87.206105
http://dx.doi.org/10.1209/epl/i2002-00157-x
http://dx.doi.org/10.1103/PhysRevE.83.036607
http://dx.doi.org/10.1103/PhysRevE.83.036607
http://dx.doi.org/10.1088/0022-3727/22/8/030
http://dx.doi.org/10.1103/PhysRevE.77.051124
http://dx.doi.org/10.1103/PhysRevB.77.125421
http://dx.doi.org/10.1103/PhysRevLett.101.125504
http://dx.doi.org/10.1103/PhysRevLett.101.125504
http://dx.doi.org/10.1103/PhysRevE.77.051608
http://dx.doi.org/10.1038/35037535
http://dx.doi.org/10.1038/35037535
http://dx.doi.org/10.1103/PhysRevLett.101.106101
http://dx.doi.org/10.1103/PhysRevLett.101.106101
http://dx.doi.org/10.1038/nmat2893
http://dx.doi.org/10.1016/0378-4371(89)90034-4
http://dx.doi.org/10.1016/0378-4371(89)90034-4
http://dx.doi.org/10.1080/0001873021000030780
http://dx.doi.org/10.1080/0001873021000030780
http://dx.doi.org/10.1103/PhysRevLett.85.5034
http://dx.doi.org/10.1103/PhysRevLett.85.5034
http://dx.doi.org/10.1103/PhysRevE.63.051301
http://dx.doi.org/10.1103/PhysRevE.66.061301
http://dx.doi.org/10.1103/PhysRevE.71.030301
http://dx.doi.org/10.1103/PhysRevE.71.030301
http://dx.doi.org/10.1103/PhysRevLett.97.158001
http://dx.doi.org/10.1103/PhysRevLett.97.158001
http://dx.doi.org/10.1209/0295-5075/85/24002
http://dx.doi.org/10.1209/0295-5075/85/24002
http://dx.doi.org/10.1088/1742-5468/2010/11/P11027
http://dx.doi.org/10.1038/nmat1581
http://dx.doi.org/10.1038/nmat2343
http://dx.doi.org/10.1038/nmat2343
http://dx.doi.org/10.1016/j.physa.2009.01.021
http://dx.doi.org/10.1103/PhysRevE.74.061602
http://dx.doi.org/10.1103/PhysRevE.75.051117
http://dx.doi.org/10.1088/0370-1301/63/11/303
http://dx.doi.org/10.1088/0370-1301/63/11/303
http://dx.doi.org/10.1016/0022-5096(52)90006-9
http://dx.doi.org/10.1016/0022-5096(52)90006-9
http://dx.doi.org/10.1088/0370-1301/66/6/303
http://dx.doi.org/10.1088/0370-1301/67/11/305
http://dx.doi.org/10.1016/S0921-5093(00)01692-0
http://dx.doi.org/10.1023/A:1009833415827
http://dx.doi.org/10.1023/A:1009833415827


ALEXANDER S. BALANKIN et al. PHYSICAL REVIEW E 84, 021118 (2011)

[35] G. I. Taylor, Proc R. Soc. London, Ser. A 145, 362 (1934).
[36] P. Hähner, A. Ziegenbein, E. Rizzi, and H. Neuhäuser, Phys.
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