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Fractal structure of a three-dimensional Brownian motion on an attractive plane
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Consider a Brownian particle in three dimensions which is attracted by a plane with a strength proportional to
some dimensionless parameter α. We investigate the fractal spatial structure of the visited lattice sites in a cubic
lattice by the particle around and on the attractive plane. We compute the fractal dimensions of the set of visited
sites both in three dimensions and on the attractive plane, as a function of the strength of attraction α. We also
investigate the scaling properties of the size distribution of the clusters of nearest-neighbor visited sites on the
attractive plane and compute the corresponding scaling exponent τ as a function of α. The fractal dimension of
the curves surrounding the clusters is also computed for different values of α, which, in the limit α → ∞, tends
to that of the outer perimeter of planar Brownian motion, i.e., the self-avoiding random walk (SAW). We find
that all measured exponents depend significantly on the strength of attraction.
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I. INTRODUCTION

The laws of Brownian motion, formulated first by Einstein
more than a century ago [1], have now found many applications
and generalizations in all quantitative sciences [2]. Many
fractal structures in nature can be derived from the sample
paths of Brownian motion characterized by appropriate fractal
dimensions [3].

A d-dimensional Brownian motion is known to be recur-
rent, i.e., the particle returns to the origin, for d � 2 and
escapes to infinity for d > 2. It is also known that the fractal
(Hausdorff) dimension of the graph of a Brownian motion is
equal to 3

2 for d = 1 and 2 for d � 2.
The scaling limit of interfaces in various critical 2d lattice

models are proven or conjectured to be described by the family
of conformally invariant random curves, i.e., a Schramm-
Loewner evolution (or SLEκ ) [4], which is driven by a 1d

Brownian motion of diffusivity κ [5].
One of the most important invariance properties of planar

Brownian motion is conformal invariance. Although the
scaling limit of 2d random walk (i.e., 2d Brownian motion
because of self-crossing) itself does not fall in the SLE
category, variations of Brownian motion are described by SLE.
Loop-erased random walk (LERW), where loops are removed
along the way, is one of the examples that Schramm’s studies
have shown to be described by SLE2. The external perimeter
of 2d random walk is also a nonintersecting fractal curve that
can be defined by SLE. Verifying an earlier conjecture by
Mandelbrot [3], Lawler et al. used SLE techniques [6] to prove
that the fractal dimension of the Brownian perimeter is df = 4

3 ,
i.e., the same as the fractal dimension of self-avoiding random
walk (SAW) and the external perimeter of the percolation
hull.

In this paper, we investigate the statistical and fractal
properties of a 3d random walker attracted by a plane. We
believe that this study can provide useful intuitive exten-
sions for many related physical phenomena including the
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problems with a discrete time lattice walk [7,8], relaxation
phenomena [9], exciton trapping [10], and diffusion-limited
reactions [8,11].

II. THE MODEL

We consider a random walker moving along the bonds
of a cubic lattice with the xy plane as an attractive plane.
The “walker” source is considered to be the origin of the
coordinate system. At each lattice point with z �= 0, there are
six possibilities for the random walker to select a link and
move along. In our model, the random walker prefers walking
on and near the attractive plane, and thus the probability that
the random walker chooses the link that approximates it to the
attractive plane is set to be αp, and for the remaining five links
is considered to be p, such that α > 1 (this will be called the
strength of attraction) and p = 1

α+5 . For each lattice point on
the attractive plane with z = 0, the probability that each of
the four links on the plane to be chosen is set to be αp′ and
for two other links perpendicular to the plane is considered to
be p′, where p′ = 1

4α+2 . The single parameter α in our model
controls the strength of attraction. Note that in the limiting
case α → ∞ our model reduces to the pure 2d random walk
on the plane, and for α = 1 the pure 3d random walk would
be recovered.

Thus there are four possible probabilities: αp′ for links that
are in the attractive plane, p′ for links from the attractive plane
to either of the neighboring planes, p for links in all of the
neighboring planes or leading from them into the bulk, and αp

for links from all the neighboring planes to the attractive plane.
By detailed balance, in equilibrium at inverse temperature β,
the ratio αp/p′ of the probabilities onto and off of the attractive
plane defines an attraction energy βε = ln 2α(1+2α)

(α+5) .

III. FRACTAL DIMENSION OF THE SET OF ALL VISITED
SITES AND ITS LEVEL SET

In random walks, systems exhibit a generic scale invari-
ance, meaning that the systems can exhibit self-similarity and
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FIG. 1. (Color online) The average number of total lattice sites
M (3d) visited at least once by the attracted random walker (ARW)
(main panel), and those M (2d) on the attractive plane (inset), as
function of their average radius of gyration for two different values
of the strength of attraction α = 1.3 (�) and α = 10 (�). The solid
lines show the best fit to our data. The error bars are almost the same
size as the symbols.

power laws without special tuning of parameters. This is why
we already expect that our model would exhibit rich fractal
properties for all values of α.

Let us first look at the fractal spatial structure of the 3d

attracted random walk (ARW) and its intersection with the
attractive plane. In order to estimate the fractal dimension df

of the set of points visited at least once by the random walker,
we examine the scaling relation between the average number
of such points M (3d) and their corresponding radius of gyration
Rg , i.e., M (3d) ∼ R

df

g . Each ensemble averaging for M (3d) (also
for M (2d) in the following) and Rg was taken over 5 × 104

independent samples for a fixed number of random walk steps
N . The measurements were done for 103 � N � 105 with
the number interval δN = 2 × 103. We have also computed
the fractal dimension of the total number of sites on the
attractive plane (i.e., M (2d)) visited by the random walker.
(In this case the corresponding radius of gyration is computed
for all sets of distinct visited sites only on the attractive plane.
See Fig. 1)

We find that the fractal dimensions have a remarkably
continuous dependence on the parameter α. The results of these
fractal dimensions as function of the strength of attraction α

are illustrated in Fig. 2. As can be seen from Fig. 2, for large
values of α, since the problem reduces to the 2d random walk
on the attractive plane, these two fractal dimensions converge
to the same value close to the value ∼1.83. (This is comparable
with the fractal dimension of the set of distinct sites visited by
a 2d random walk (RW) on a square lattice, deduced from the
results reported in [12].)

All error bars in this paper are estimated using standard
least-squares analysis and are almost the same size as the
symbols used in the figures.
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FIG. 2. (Color online) The fractal dimension of the set of all
lattice points visited at least once by the attracted random walker
(ARW) (�), and the set of all number of visited points on the attractive
plane (�), as function of the strength of attraction α. The error bars
are almost the same size as the symbols.

For an ideal linearly self-similar fractal of dimension df ,
one expects the fractal dimension of the intersection to be d ′

f =
df − 1 [3]. This is not apparently the case for α �= 1, since in
our model the attractive plane has disturbed the homogeneity
of the probability distribution in the z direction. Only for α = 1
where df = 21 do we find d ′

f = 1 = df − 1.

IV. CLUSTER SIZE DISTRIBUTION ON THE
ATTRACTIVE PLANE

Henceforth, we investigate the fractal and scaling properties
of the set of all distinct sites visited by the 3d ARW only on the
attractive plane. Each of these sites is visited at least once by
the 3d ARW and marked upon visiting (if not already visited
and marked).

In this section, rather than analyzing the properties of the
whole set after marking all visited sites on the plane, we
identify with a specific color each cluster site as a set of
all nearest-neighbor visited sites on the lattice. Two typical
examples of such clustering are shown in Fig. 3 for two
different values of the strength of attraction α = 2 and α = 10.
As Fig. 3 shows, for lower values of α, there exist many
isolated clusters of different scales that are accessed by the
ARW only via the third dimension. By increasing the strength
of the attraction, the number of isolated clusters decreases until
α → ∞, for which there will be only one large cluster on the
attractive plane.

To examine the possible scale invariance of cluster en-
sembles for small values of α, we compute the cluster size
distribution and check whether it follows a power-law scaling.
In critical statistical physics, the scaling properties of fractal

1The random walk on a simple cubic lattice is a transient process,
since it has a finite escape probability of ≈0.66. Therefore, the number
of distinct visited sites by the random walker is almost the same as
the number of steps or (equivalently) the trajectory length, and thus
it is expected for both to have the same fractal dimension 2.
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FIG. 3. (Color online) Typical samples of clusters of the visited
sites on the attractive plane by a 3d ARW of N = 106, shown in
different colors, for α = 2 (left) and α = 10 (right).

clusters can be described by the percolation theory [13], where
the asymptotic behavior of cluster distribution ns(λ) near the
critical point λ → λc has the general form

ns(λ) = s−τF [(λ − λc)sσ ], (1)

where σ is a critical exponent and the scaling function F (u)
approaches a constant value for |u| � 1 and decays quickly
for |u| 	 1.

We undertook simulations for several values of α to measure
the distribution of the cluster sizes of the visited lattice sites by
the 3d ARW on the attractive plane (this is the probability that
a visited lattice site on the attractive plane belongs to a cluster
of size s). We gathered ensembles of a number (5 × 104 for
smaller α and 1.5 × 106 for larger values of α) of independent
samples of fractal patterns with marked-visited sites on the
attractive plane. The number of random-walk steps was chosen
to be N = 4 × 106 in all simulations. The number density ns

of clusters of size s was then computed for each specific value
of α by counting the number of clusters of size s divided by
the total number of all clusters.

We find that for small- and intermediate-scale clusters, the
distribution shows a power-law behavior compatible with the
scaling relation in Eq. (1). As can be seen in the inset of Fig. 4,
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FIG. 4. (Color online) Cluster size distribution exponent τ de-
fined in Eq. (1), as a function of the strength of attraction α. Inset:
number density ns of clusters of the visited lattice sites of size s on
the attractive plane for three different values α = 1.2, 4, and 8. The
solid lines show the power-law behavior in the scaling region. The
error bars are almost the same size as the symbols.

the curves for different values of α exhibit a sharp drop-off,
indicating that they indeed contain only small clusters. By
increasing α, the interval for the scaling region decreases and
a peak appears, which signals the formation of large-scale
clusters.

Our estimation of the cluster size distribution exponent τ

in the scaling region as a function of α is also shown in Fig. 4.
One observes that the exponent τ has a significant dependence
on the strength of attraction α.

V. FRACTAL DIMENSION OF THE CLUSTER
BOUNDARIES ON THE ATTRACTIVE PLANE

The remainder of this paper is dedicated to investigating the
fractal properties of the boundaries of the visited-sites clusters
on the attractive plane.

Given a configuration of visited sites by the 3d ARW on the
attractive plane, the first step is to identify different clusters,
as outlined before. After that, the boundary curve of each
isolated cluster has to be identified. However, as the definition
of interfaces and cluster boundaries on a square lattice can
contain some ambiguities, there has been introduced a well-
defined tie-breaking rule in [14] that generates nonintersecting
cluster boundaries on a square lattice without any ambiguity.

To define the hull for each identified cluster according to
the algorithm defined in [14], a walker (which, of course,
has to be distinguished from the 3d ARW) moves clockwise
along the edges of the dual lattice (which is also a square
lattice) around the cluster starting from a given boundary edge
on the cluster. The direction at each step is always chosen such
that walking on the selected edge leaves a visited site on the
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FIG. 5. (Color online) The fractal dimension of the perimeter of
a cluster of visited sites on the attractive plane by 3d ARW as a
function of the strength of attraction α. Inset: the average length of
the perimeter l of a cluster versus its average radius of gyration rg ,
for two different strengths of attraction, α = 1.2 (upper graph) and
α = 16 (lower graph). The solid lines show the power-law behavior
in the scaling region. The error bars are almost the same size as the
symbols.
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right and an empty plaquette on the left of the walker. If there
are two possible ways of proceeding, the preferred direction
is to the right of the walker. The directions right and left are
defined locally according to the orientation of the walker.

According to this procedure, we have generated an ensem-
ble of cluster-boundary loops for several different strengths
of attraction in the range 1.1 � α � 16. Using the scaling
relation l ∼ r

df

g between the average length of the perimeter
of the loops l and their average radius of gyration rg , we
computed the fractal dimension df of the cluster boundaries
as a function of α. The results are shown in Fig. 5.

The fractal dimension again shows a significant dependence
on the strength of attraction α. In the limit α → ∞, df

converges to the value 4
3 = 1.33̄, which is the fractal dimension

of the SAW, i.e., the outer perimeter of the planar Brownian
motion.

VI. CONCLUSIONS

In this paper, we have studied the scaling properties and
the fractal structure of the lattice sites visited by a Brownian
particle in 3d which is attracted by a plane with strength α.
The fractal dimensions of the set of sites visited by the 3d

random walker in both three dimensions and on the attractive
plane are computed, which both converge to the same value of
∼1.83 for a large α. We also found that the size distribution of

the cluster of visited sites by the particle on the attractive plane
has a scaling form characterized by an exponent that depends
significantly on the strength of attraction.

The fractal dimension of the surrounding loops of the
clusters on the plane has been computed as a function of
α. This also converges asymptotically to the expected value
for SAW, i.e., the external perimeter of a planar Brownian
motion.

These results, however, need some theoretical framework
and mathematical proof. Another interesting feature for future
investigation is the possible conformal invariance of the cluster
boundaries on the attractive plane, which can be treated
using SLE techniques (such study is already done only for
the limiting case α → ∞ where the problem reduces to a
2d random walk in the attractive plane whose boundary is
described by SLE8/3). The fractal dimension of an SLEκ

curve is given by df = 1 + κ/8. In our model, when cluster
boundaries on the attractive plane are conformally invariant,
they would be defined by a diffusivity κ , which depends on
the strength of attraction.

ACKNOWLEDGMENTS

I thank H. Dashti-Naserabadi for his help with program-
ming. This work is financially supported by the National Elite
Foundation of Iran and INSF Grant No. 87041917.

[1] A. Einstein, Ann. Phys. (Berlin) 322, 549 (1905).
[2] M. Haw, Phys. World 18, 19 (2005).
[3] B. B. Mandelbrot, The Fractal Geometry of Nature (W. H.

Freeman and Company, New York, 1983).
[4] O. Schramm, Isr. J. Math. 118, 221 (2000).
[5] J. Cardy, Ann. Phys. 318, 81 (2005).
[6] G. F. Lawler, O. Schramm, and W. Werner, Math. Res. Lett. 8,

401 (2001).
[7] J. Haus and K. W. Kehr, Phys. Rep. 150, 263

(1987).

[8] A. Bunde and S. Havlin, Fractals and Disordered Systems
(Springer-Verlag, Berlin, 1991).

[9] C. A. Condat, Phys. Rev. A 41, 3365 (1990).
[10] H. B. Rosenstock, Phys. Rev. 187, 1166 (1969).
[11] G. H. Weiss and R. J. Rubin, Adv. Chem. Phys. 52, 363 (1983).
[12] J. W. Lee, J. Phys. A 31, 3929 (1998); J. Korean Phys. Soc. 28,

S403 (1995).
[13] D. Stauffer and A. Aharony, Introduction to Percolation Theory,

2nd ed. (Taylor & Francis, London, 1994).
[14] A. A. Saberi, J. Stat. Mech. (2009) P07030.

021113-4

http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1007/BF02803524
http://dx.doi.org/10.1016/j.aop.2005.04.001
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1103/PhysRevA.41.3365
http://dx.doi.org/10.1103/PhysRev.187.1166
http://dx.doi.org/10.1002/9780470142769.ch5
http://dx.doi.org/10.1088/0305-4470/31/16/018
http://dx.doi.org/10.1088/1742-5468/2009/07/P07030

