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Coherence, decoherence, and memory effects in the problems of quantum surface diffusion
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We consider surface diffusion of a single particle, which performs site-to-site under-barrier hopping, fulfils
intrasite motion between the ground and the first excited states within a quantum well, and interacts with surface
phonons. On the basis of quantum kinetic equations for one-particle distribution functions, we study the coherent
and incoherent motion of the adparticle. In the latter case, we derive the generalized diffusion coefficients and
study various dynamic regimes of the adparticle. The critical values of the coupling constant Gcr(T ,�), which
separate domains with possible recrossing from those with the monotonic motion of the adparticle, are calculated
as functions of temperature T and vibrational frequency �. These domains are found to coincide with the regions
where the experimentally observed diffusion coefficients change their behavior from weakly dependent on T

to quite a sensitive function of the temperature. We also evaluate the off-diagonal distribution functions both
in the Markovian limit and when the memory effects become important. The obtained results are discussed in
the context of the “long tails” problem of the generalized diffusion coefficients, the recrossing/multiple crossing
phenomena, and an eventual interrelation between the adparticle dynamics at short times and the temperature
dependence of the diffusion coefficients measured experimentally.
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I. INTRODUCTION

Quantum diffusion of light particles (mostly, hydrogen and
its isotopes), adsorbed at solid surfaces, in the last decades
has been a subject of joint efforts of investigators in various
fields of science. The attention is dictated by its relevance
in the technological processes like heterogeneous catalysis
[1], fuel cell production [2], chemical reactions of hydrogen
transfer [3], and series of physical phenomena occurring at
the fluid-gas interfaces. On the other hand, the diffusion
of hydrogen is of a fundamental interest, being a favorite
system for theoretical analysis [4–6] and computer simulations
[7,8]. Wide perspectives have been opened after creation of
the scanning tunneling microscope (STM) [9]. At the same
time, rapid development of powerful methods of computer
experiments such as quantum molecular dynamics [10] or
Monte Carlo Wave Function formalism [11] allows a direct
analysis of the particle trajectories in real space and time.
Recent results [12] showing that even such “heavy” atoms
like Cr on the Au(111) surface manifest a great deal of
the underbarrier tunneling bring us to a conclusion that the
traditional viewpoint on the quantum diffusion as an inherent
feature of light particles only is far from reality, and a fresh
look at such processes is quite topical.

Theorists have put much effort into creation of reliable
models of quantum diffusion and development of effective
methods for calculation of the diffusion coefficients, taking
into account all the interactions. In particular, a bulk quantum
diffusion of light particles has been studied in [13–15]. Its de-
scription requires similar theoretical methods, and elaborated
schemes can be considered as starting points for investigation
of the surface quantum diffusion. Later, in Refs. [4–6,16–18],
the quantum hopping was moved from the bulk to the surface.
Generally, the concept of a small polaron [4,16,17] or its
modification [6] has been applied with going beyond the
linear “adatom-phonon” coupling to consider the anharmonic
terms in “adsorbate-substrate” interaction [18]. The latter case
together with consideration of electronic friction in the system

[13,19] and direct “adsorbate-adsorbate” interactions [20] are
very important because they provide additional channels of
particle scattering and ensure finite values of the diffusion
coefficients [21].

Diffusion coefficients are usually determined via the Green-
Kubo relations [21], the low-frequency and small wave-vector
limit of the dynamic structure factor [6,22], or zeroth moments
of the “flux-flux” time correlation functions for classical
[22,23] or quantum systems [7,8]. The latter approach is of
particular interest because it allows one not only to study in
detail the well-known “recrossing/multiple crossing” problem
[7,8] but also to revise a quantum transition state theory
(TST) [24,25].

The quantum diffusion coefficient is known to consist of
two terms of a different physical origin. A coherent term [5,17]
characterizes the way in which the dephasing limits the band
motion of the adatom by destruction of the coherence of
hopping probabilities, when the adatom-thermal bath coupling
induces random fluctuations of each phase. This term is
of a pure quantum origin and related to the competition
between the tunneling mechanism, which tends to preserve the
coherence, and the dephasing, which characterizes damping
due to the scattering processes. The coherent part Dcoh(T ) of
the diffusion coefficient weakly depends on temperature at
low T in contrast to the incoherent one Din(T ), which tends
to zero when T → 0. The incoherent contribution describes
processes in which the surface dynamics induces fluctuations
of the tunneling matrix elements between two Wannier states,
allowing the adparticle to perform a transition from one state to
another by creating or annihilating surface phonons. Though
the temperature dependence of the diffusion coefficients was
studied profoundly for the small polaron model and its modi-
fication [6], some questions remain unclarified (especially, in
the weak-coupling limit, where the contributions of Dcoh(T )
and Din(T ) are of the same order). The most challenging
ones are dealt with: (i) justification of the multiphonon
expansion; (ii) correct definition of the activation energies;
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(iii) introduction of the additional channels of particles
scattering; (iv) investigation of the memory effects influence
on the temperature dependence of the diffusion coefficients
and on the short-time dynamics of the adsorbate.

The last problem should be considered from several
standpoints. First, a study of the short-time dynamics of
the adparticle allows one to distinguish between various
scenarios of the adsorbate motion (loss of coherence, presence
of multiple or long hopping, etc.) that provides a deeper
insight into the microscopic picture of the process [26].
Second, we can answer the question: What can enhance
or suppress the particle motion? For instance, an eventual
recrossing reduces the values of the diffusion coefficients,
whereas a multiple crossing increases them. At last, such
a theoretical analysis can give some recommendations for
experimentalists as to how to evaluate the diffusion coefficients
more efficiently. It is known [9] that at temperatures above
80 K, the diffusion rate of hydrogen is too fast to be followed
by the standard atom-tracking technique, while below 50 K the
opposite problem occurs, and it is necessary to minimize the
influence of the STM tip on the adsorbate due to a prolonged
interaction. Thus, it would be tempting to relate changes in
the character of the short-time dynamics of the adsorbate
to possible crossover from one typical temperature behavior
of the diffusion coefficients to another. It could give us a
possibility to prognose the temperature dependence of the
diffusion coefficient, having only an information about the
adatom dynamics at the initial stage of its motion.

In the present paper, which is a logical continuation of
Ref. [26], we try to give an answer to the question about the
interrelation between the process of the decoherence in the
“adsorbate-substrate” system (leading to the dissipative dy-
namics of the adsorbate) and the memory effects. Here, we also
use the method of the quantum kinetic equations [17,21,27].

The subject of our study is a single adsorbate that performs
an underbarrier hopping to the nearest adsorption sites, moves
between two different quantum states within a quantum
well, and interacts with acoustic phonons. We define the
conditions of memory damping, derive expressions for the
generalized (time-dependent) diffusion coefficients, and study
the influence of their long-time asymptotics on the temperature
behavior of the transport coefficients measured experimentally.
A particular emphasis is put on the critical regimes separating
dynamics with either coherent or incoherent prevailing contri-
bution to the diffusion coefficient. We show that the transition
between oscillating and monotonic dynamics of the adparticle
takes place at the same values of the critical coupling constant
Gcr(T ,�), as those at which the temperature behavior of the
diffusion coefficients changes from weakly dependent to quite
a sensitive function of temperature.

A special attention is paid to evaluation of the off-diagonal
(relative to the site labels) distribution functions, which
describe the rate of the loss of coherence. While the study
of the generalized diffusion coefficients allows one to make a
conclusion about the recrossing phenomenon, behavior of the
off-diagonal distribution functions shows us how a multiple
crossing of the dividing surfaces (placed at the neighboring
adsorption sites) by the moving adparticle can proceed. We
discuss the obtained results in the context of some exisisting
theoretical approaches: TST [24,25], description based on

Fokker-Planck equation [22,23], and study of the frustrated
longitudinal mode (T-mode) of the adsorbate [28,29].

The paper is organized in the following way. In Sec. II we
define a basic Hamiltonian for a dissipative two-level system.
In Sec. III using the obtained earlier [26] non-Markovian equa-
tions for nonequilibrium distribution functions, we investigate
a long-time asymptotic of the kinetic kernels, determining a
dissipative motion of the adsorbate. A particular case of a com-
pletely coherent dynamics is considered, which corresponds to
zero coupling. The expressions for the generalized diffusion
coefficients are obtained in the next section. In Sec. V, the
Markovian approximation for these functions is considered, a
temperature behavior of the diffusion coefficient is studied in
a weak-coupling limit and compared with the experimentally
observed surface diffusion in H/W(110) system [30]. In
Sec. VI, a thorough analysis of the critical diagrams separating
different kinds of the adparticle motion is performed, and
the interconnection of the obtained results with those of the
previous section is established. In Sec. VII, the off-diagonal
nonequilibrium distribution functions are evaluated at different
values of the tunneling amplitude under an assumption of con-
tinuous media; the obtained results are considered in the con-
text of the multiple crossing, and a conclusion about validity of
the Markovian approximation is made. In the last section we
discuss briefly the obtained results and draw final conclusions.

II. SYSTEM HAMILTONIAN

To specify all interactions in the system, we choose the
Hamiltonian, considered in Refs. [16,17],

H = HA + Hint + HB, (2.1)

where the adsorbate is described by the two-band constituent

HA =
∑
〈ss ′〉

(−t0a
†
s0as ′0 + t1a

†
s1as ′1)+

∑
s

h̄�

2
(ns1 − ns0). (2.2)

Here, s denotes the site of the lattice; 0 and 1 are the ground
and excited states within a given well, and 〈ss ′〉 denotes a sum
over the nearest-neighbor sites. The quantum states within a
well are referred to as “vibrational” states with the vibrational
frequency �, and we have taken zero of energy to lie midway
between the two levels. a

†
si (asi) creates (destroys) a particle

on the site s in the vibrational state i; nsi = a
†
siasi is the

number operator for this state, and ns = ns0 + ns1. Hereafter,
we will deal with a single adparticle only, hence the adparticle
statistics becomes irrelevant. t0 and t1 are the nearest-neighbor
tunneling amplitudes in the ground and the first excited states,
respectively, and we expect that t1 � t0.

The coupling to phonons is considered to be local within
each well. Phonons may couple both to the adsorbate density
operators and to the vibrations within a quantum well. The
interaction Hamiltonian is [16]

Hint =
∑

s

{
ns

∑
q

γsq(bq + b†q) + (a†
s0as1 + a

†
s1as0)

×
∑

q

χsq(bq + b†q)

}
, (2.3)

021111-2



COHERENCE, DECOHERENCE, AND MEMORY EFFECTS IN . . . PHYSICAL REVIEW E 84, 021111 (2011)

where b
†
q (bq) creates (destroys) a phonon with a normal mode

frequency ωq . The strengths γsq (χsq) describe coupling of
phonons to the density (oscillation) modes of the adsorbate.
The bandwidths t0, t1, and vibrational frequency � are
evaluated in the framework of the eigenvector-eigenvalue
problem for a periodic potential, felt by an adsorbate due to the
static lattice. The coupling strengths are expressed via the mean
values � = 〈s,i|V s

int|s,j 〉 of the lattice distortion potential V s
int

over the localized Wannier states |s,j 〉 times the phase factor
depending on site s and wave-vector q [16]. As in the cited
paper, we suppose � to be the same for different quantum
states {i,j} = {0,1}.

The last term in Eq. (2.1),

HB =
∑

q

h̄ωqb
†
qbq, (2.4)

corresponds to the phonon bath; longitudinal acoustic phonons
only are taken into account in this model.

It is convenient to use the hybrid set of states for each site:

as
L

R
≡ 1√

2
(as0 ± as1), (2.5)

and similarly for the creation operators. The designation L or
R means that a single adparticle is now localized on the left
or right side of the given well. We will refer to the transitions
with i 	= j , {i,j} = {L,R}, as the end-changing processes, and
transitions with i = j will be termed as the end-preserving
ones. If the tunneling part of Eq. (2.2) equals zero, then a
Hamiltonian on the hybrid set of Eq. (2.5) is a generalization
of the ubiquitous “spin-boson” model, which allows us to use
some of the methods applied previously to the spin-boson case.

Usually, in the quantum diffusion problems, one can
consider the “substrate-adsorbate” coupling to be arbitrary
(either weak or strong). On the other hand, the one-particle
characteristics of the system, described by Eq. (2.2), are treated
as small parameters. In such a case, the further advance lies
in performing a sequence of unitary transformations [16,17]
on the Hamiltonian that has the effect of changing to a
representation, in which the adsorbate is localized at the certain
end of the adsorption site and in which there is a correlated
displacement of the lattice.

To specify the “substrate-adsorbate” interaction, it is natural
to introduce spectral weight functions:

J (ω) =
∑

q

χ2
sqδ(ω − ωq), (2.6)

JLR(ω) =
∑

q

[(γsq − γs ′q)+(χsq + χs ′q)]2 δ(ω − ωq),

(2.7)
JRL(ω) =

∑
q

[(γsq − γs ′q)−(χsq + χs ′q)]2 δ(ω − ωq),

JLL(ω) =
∑

q

[(γsq − γs ′q)+(χsq − χs ′q)]2 δ(ω − ωq),

(2.8)
JRR(ω) =

∑
q

[(γsq − γs ′q)−(χsq − χs ′q)]2 δ(ω − ωq).

The function of Eq. (2.6) describes the intrasite dynamics;
the functions of Eq. (2.7) are related to the intersite end-
changing processes, while Eq. (2.8) deals with the intersite

end-preserving processes. The spectral weight function of
Eq. (2.6) can be considered as site-independent if the system
has a translational symmetry, whereas Eqs. (2.7) and (2.8) can
be presented as dependent only on s − s ′. This approximation
is quite natural in the one-dimensional case (and if the labels
s and s ′ refer to nearest neighbors) for the single particle
diffusion, when the boundary effects are not essential. In the
two-dimensional case, further crystal symmetries (e.g., of a
geometrically isotropic square lattice) are required, and we
consider them to be present yielding site-independent kinetic
kernels. The opposite situation is briefly discussed in Sec. IV.

At low frequencies, the end-changing spectral weight
functions (labeled by the subscript c) and the end-preserving
ones (with the subscript p) are approximately given [17] by

Jc(ω) ≈ ηcω
d−2, Jp(ω) ≈ ηcω

d (2.9)

at ω0 � ω � ωmax with

ηc = 10G, ηp = 12.5G, (2.10)

given in units of the dimensionless coupling constant

G = �2

Mω3
max

. (2.11)

Here, d = D, where D is the lattice dimensionality, ωmax

stands for the Debye frequency, M denotes the mass of the
substrate atom, and the coupling strength � has been defined
earlier. It is seen from Eq. (2.9) that for a 2D lattice the
end-changing spectral weight functions are sub-Ohmic, while
the end-preserving ones are super-Ohmic. Such a behavior is
a consequence of the equality of the coupling strengths � for
all the quantum states. On this point, it differs from the results
of Refs. [14,21], where d = D + 2.

The lattice is assumed to possess a nonzero lowest fre-
quency ω0, which is introduced to take into account the finite
size of the system. It not only removes the divergencies [31],
when the sub-Ohmic spectral functions have the power index
n = 0, but also allows one to describe the adsorbate-induced
surface reconstruction [16], when the particles become self-
trapped due to the overlap of lattice distortions.

It has been shown in Ref. [14] that for a 2D crystal there is
a loss of the coherence even in absence of electronic friction
and/or nonlinear phonon coupling. If both linear and nonlinear
couplings are taken into account, the dynamical destruction of
the band is enhanced due to the one-phonon interaction, but the
decisive role in this destruction is still played by two-phonon
processes. It is possible to show that the results, obtained
within the framework of our model at the assumption of the
gap ω0 	= 0, reproduce those of Ref. [14], where a concept of
finiteness of the particle life-time τ in a quantum well was
adopted (though the underlying physics is different in the two
cases). For instance, the band narrowing, to be presented in
the next section, corresponds to the linear phonon contribution
to the coherent transition amplitude obtained in Ref. [14].
We would like to note that the calculated surface quantum
diffusion coefficients are quite insensitive to the value of ω0,
if temperature is much higher than h̄ω0/kB [17,26].
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III. KINETIC EQUATIONS FOR ONE-PARTICLE
NONEQUILIBRIUM FUNCTIONS OF ADSORBATE

The system of quantum kinetic equations for one-particle
nonequilibrium distribution functions of the adsorbate can
be obtained using the equation for the reduced density
matrix ρS(t) [21]. Considering the one-particle Hamiltonian
[Eq. (2.2)] as a small perturbation, we can construct a
closed system of kinetic equations up to the second order
in one-particle parameters. These equations are nonlocal in
time, so it is convenient to perform a Laplace transformation
for the diagonal fs,s(t) = ∑

i=L,R〈a†
siasi〉tS and off-diagonal

fs,s ′ (t) = ∑
i=L,R〈a†

s ′iasi〉tS one-particle nonequilibrium
distribution functions. In the single particle limit we
obtain [26] the following chain of equations for the Laplace
transforms f̃s,s(z), f̃s,s+n(z) (the index s + n means the
nearest neighboring site to s):

zf̃s,s(z)−fs,s(t =0) = − i

h̄
tinter

∑
n

[f̃s,s+n(z) − f̃s+n,s(z)]

− γ̃inter(z)

[
2f̃s,s(z) −

∑
n

f̃s+n,s+n(z)

]
,

(3.1)

zf̃s,s+n(z) −fs,s+n(t =0) = − i

h̄
tinter[f̃s+n,s+n(z) − f̃s,s(z)

+ f̃s−n,s+n(z) − f̃s,s+2n(z)]

− [γ̃inter(z)+γ̃intra(z)]f̃s,s+n(z)

+ γ̃ +
LL(z)f̃s+n,s(z). (3.2)

The first terms of the r.h.s. of Eqs. (3.1) and (3.2) describe
a coherent motion of the adsorbate with the renormalized
tunneling amplitude [17,26]:

tinter = t1ω
ηpkBT

0

[
2kBT sinh

(
1

2kBT

)]−ηpkBT

. (3.3)

In fact, tinter corresponds to the polaron band narrowing
due to the “substrate-adsorbate” interaction. Hereafter we
use dimensionless frequencies in the units of ωmax and
temperatures in the units of h̄ωmax/kB .

The kinetic kernel

γ̃inter(z) = 4γ̃LL(z) + 2γ̃LR(z) + 2γ̃RL(z) (3.4)

corresponds to the dissipative intersite motion of the
adsorbate and describes processes, when the adparticle
performs random site-to-site hoppings (with or without the
change of its quantum state) owing to the interaction with
the bath. The kinetic kernel γ̃intra(z) in Eq. (3.2) describes a
dissipative intrasite dynamic, when the adsorbate during its
scattering from the lattice gets enough energy from the bath to
be excited from the ground state to the upper level within one
adsorption site (the opposite process of particle de-excitation
with a phonon emission is also taken into consideration).

The rates γ̃intra(z), γ̃inter(z) can be obtained from the Laplace
transformation of the kinetic kernels

γx(τ ) = ωmaxλ
2
xRe{exp[−(ϕx(0) − ϕx(τ ))] − exp[−ϕx(0)]},

(3.5)

γ +
LL(τ ) = ωmaxt

2
1 Re{exp[−(ϕLL(0) + ϕLL(τ ))]

− exp[−ϕLL(0)]}, (3.6)

where

ϕx(τ ) =
∫ 1

ω0

Jx(ω)

ω2

[
coth

(
h̄ω

2kBT

)
cos(ωτ ) − i sin(ωτ )

]
, (3.7)

and one-particle parameters λx = {t1,�} are related to the cor-
responding end-changing/end-preserving spectral functions of
Eq. (2.9) (see also table in Ref. [26]).

A study of the long-time asymptotics of the kinetic kernels
allows us to establish a one-to-one correspondence between
the low-frequency behavior of the spectral weight functions
J (ω) and a damping of the kernels of Eqs. (3.5) and (3.6) at
long times. These results are summarized in Table I, where the
constants ai , i = {0, . . . ,3}, are introduced just to describe a
particular time behavior of γ (τ ) (in general case, these values
are defined by the system parameters). It is seen from Table I
that we pass from a fast relaxation of the kinetic kernels
at J (ω) ∼ ωn, n = {0,1}, through long tails at n = 2 to the
divergent transport coefficients at n > 2.

Note, that the system dimensionality strongly influences
the long-time asymptotics of the kinetic kernels: in the bulk,
the linear “substrate-adsorbate” coupling alone does not ensure
finite values of the diffusion coefficients. As it has been already
mentioned, this divergency can be eliminated by introduction
of additional channels of the particle scattering that change
the low-frequency asymptotics of the spectral functions. For
instance, taking into account the electronic friction and/or
anharmonic terms in “adsorbate-substrate” interaction yields
damping of the kinetic kernels as exp(−a1t) [13,14,19].

Keeping in mind the data of Table I, we find the long-time
asymptotics of the end-changing and end-preserving kinetic
rates γ c

p
(τ ) at T � h̄ω0/kB . Both rates in the strong-coupling

limit (G � 0.1) decay as Gaussian functions

γc(τ ) ∼ exp[−ηc| ln ω0|(kBT τ 2 + iτ )], (3.8)

γp(τ ) ∼ exp

[
− ηp

2
(kBT τ 2 + iτ )

]
, (3.9)

TABLE I. Relation between low-frequency asymptotics of the
spectral weight functions and long-time relaxation of the kinetic
kernels.

J (ω) ∼ γ (τ ) ∼
ω0 exp(−a0τ

2)
ω1 exp(−a1τ )
ω2 1/τ a2

ωn, n > 2 exp(−a3)
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while in the weak-coupling limit (G � 0.01) the first of them
still decays as a Gaussian function, but the second of them
behaves as

γp(τ ) ∼ 1/τ 2ηpkBT − ω
2ηpkBT

0 . (3.10)

Again, the presence of the gap allowed us to obtain a
power law dependence, which extends up to the finite times
∼ ω−1

0 , whereupon the damped oscillatory dynamics of γp(τ )
around zero value begins. In this aspect our result differs
from the nontruncated (ω0 = 0) “long tail” behavior of the
kinetic kernels, leading to the infinite values of the diffusion
coefficients, which can be eliminated only due to the electronic
friction or nonlinear phonons coupling.

Let us make two remarks here. First, the limiting sub-Ohmic
case with n → 0 allows one to express the kinetic kernels in
quite a simple way as the Gaussian functions of Eq. (3.8),
which is essential when obtaining analytical expressions
for activation energies of the diffusion coefficients. The
generalization of our theory for the sub-Ohmic case 0 < n < 1
is straightforward and does not require the introduction of ω0.
Second, in the zero-temperature limit in Eq. (3.7), one gets “the
death of linear response” [32] for the sub-Ohmic case, when the
particle becomes localized and its mean-square displacement
〈r(t)2〉 tends to a constant value at infinite time. However,
this interesting aspect of the adsorbate dynamics, related to the
intrinsic width of the T-mode [29], is beyond the scope of the
present paper.

Now we consider a limiting case of the vanishing coupling
constant, when the adparticle motion becomes completely
coherent. For simplicity, we limit ourselves to the 1D, single-
band (� = 0) approximation. In such a case, the kinetic
Eqs. (3.1) and (3.2) can be rewritten as

ḟs,s(t) = − i

h̄
t0

∑
n

[fs,s+n(t) − fs+n,s(t)], (3.11)

ḟs,s+n(t) = − i

h̄
t0[fs+n,s+n(t)−fs,s(t)+fs−n,s+n(t)−fs,s+2n(t)].

(3.12)

It is seen that in the site representation we have a coupled chain
of equations involving all the lattice labels s. It can be solved
in the wave-vector representation (the details can be found in
the Appendix), giving the final result via the s-th order Bessel
functions Js as follows:

fs,s(τ ) = J 2
s (2t0τ/h̄), (3.13)

fs,s+1(τ ) = Re[fs,s+1(0)] + iJs(2t0τ/h̄)Js+1(2t0τ/h̄).

(3.14)

The real part of the off-diagonal distribution function can be
evaluated by the methods of equilibrium statistical mechanics.
It defines the transition strength and does not evolve in time.
Instead, the imaginary part of the fs,s+n(τ ) is shifted by
the quarter-period with respect to the diagonal distribution
functions (see Fig. 1). A particle, initially located, say, at
s = 0, starts its motion toward the nearest adsorption site
s = 1. At that time, the probability to find the adparticle at the
site s = 0 reduces, whereas the probability to find it at the site
s = 1 increases. When the particle approaches the site s = 1 at
τ ∗ = 2, and the value of f1,1(τ ) is maximal, the inverse motion

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

f s
,s

'( τ
∗ )

τ∗

FIG. 1. Time dependence of the one-particle nonequilibrium
distribution functions f0,0(τ ∗) (solid line), f1,1(τ ∗) (dotted line), and
imaginary part of f0,1(τ ∗) (dashed line), given by Eqs. (3.13) and
(3.14). The symbol τ ∗ denotes a time in the units h̄/(2t0).

of the part of wave packet toward the site s = 0 begins, giving
the negative branch of Im[f0,1(τ )] at the subsequent period of
time. The other part of the wave packet keeps moving toward
the site s = 2, yielding positive branches of Im[f0,2(τ )] and
Im[f1,2(τ )] (not presented in Fig. 1).

In contrast to the classical picture, when a free parti-
cle performs quasicontinuous motion over the barriers, the
oscillations of the distribution functions are of a purely
quantum mechanical origin: a superposition of the wave
packets reflection from the potential barriers and tunneling
through them.

IV. GENERALIZED DIFFUSION EQUATION
FOR THE ADPARTICLE AT THE SURFACE

Our further advance is in the manner of the generalized
collective modes approach [33,34]. To find the generalized
diffusion coefficient, let us solve Eq. (3.2) with respect to
the hopping probabilities f̃s,s+n(z) and insert the obtained
result into Eq. (3.1). After grouping the terms, one obtains
the following equation:

zf̃s,s(z) − fs,s(0)

=
{

2t2
interh̄

−2

z + γ̃inter(z) + γ̃intra(z) + γ̃ +
LL(z)

+ γ̃inter(z)

}

×
[∑

n

f̃s+n,s+n(z) − 2f̃s,s(z)

]

+ t2
interh̄

−2

z + γ̃inter(z) + γ̃intra(z) + γ̃ +
LL(z)

× Re[2f̃s−n,s+n(z) − f̃s,s+2n(z) + f̃s,s−2n(z)]. (4.1)

The ratio in the braces describes a coherent contribution,

D̃coh(z) ∼ 2t2
inter

h̄2

1

z + γ̃total(z)
, (4.2)
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to the generalized diffusion coefficient. It can be interpreted
[17,26] in terms of a simple model of band-type motion limited
by scattering from the lattice at temperatures large relative to
the bandwidth:

D̃coh(0) ∼ v2/γ̃total(0), (4.3)

where v = atinter/h̄ is the average velocity of the adsorbate, a

stands for the substrate interatomic spacing, and

γ̃total(z) = γ̃inter(z) + γ̃intra(z) + γ̃ +
LL(z) (4.4)

means the total rate of scattering from the lattice. The
coherent contribution D̃coh(z) characterizes the way in which
the dephasing limits the band motion of the adatom by
destruction of the coherence of the hopping probabilities
f̃s,s+n(z). Whereas the eigenstate of a free particle on the
surface is described by a superposition of localized Wannier
states (this limiting case corresponds to the ballistic regime of
motion), the coupling with the thermal bath induces random
fluctuations of each phase, which destroys the coherence of
the state.

The second term D̃in(z) ≡ γ̃inter(z) in the braces in Eq. (4.1)
is an incoherent contribution to the generalized diffusion coef-
ficient. This is the result expected from the random walk model
for diffusion with site-to-site hopping rate γ̃inter(z), describing
processes of the surface phonon creation/annihilation when
the particle performs a transition from one Wannier state to
another.

When the coupling between the adparticle and the surface
is strong enough, the time scales for the two mechanisms of
dissipation are different. Thus one can use the exponential
approximation

D̃m
coh(z) = a2

4

(
2tinter

h̄

)2 1

z + γ̃total(z = 0)
(4.5)

for D̃coh(z) and a zero-width approximation for the Gaussian
functions of Eqs. (3.8) and (3.9) to obtain the Telegrapher’s
equation for the nonequilibrium distribution function n(r,t) in
the continuous media limit [26].

The last term in the r.h.s of Eq. (4.1) involves the long
hopping (|s − s ′| > a) transition probabilities. As shown in
the Appendix, it does not contribute to the total diffusion
coefficient. The factor

∑
n f̃s+n,s+n(z) − 2f̃s,s(z) at the braces

in Eq. (4.1) in the continuous media limit converts to the
second derivative with respect to the space variable (for
1D lattice) times a2 or to the Laplace operator (for 2D
lattice in absence of the next-to-nearest-neighbor hopping)
times 4a2.

Let us remind that in Sec. II we assumed the site-
independent spectral weight functions that leads to a spatial
locality of the generalized diffusion coefficients of the single
adsorbate. At finite adsorbate coverage, the interparticle
interaction can break the symmetry of jumps in the systems. It
Ref. [35], the corrections to the tracer and chemical diffusion
coefficients were reported, which are proportional to the
squared gradient of the coverage. The most general case of
the wave-vector-dependent diffusion coefficients also with
the time nonlocality is a challenging topic of the surface
diffusion theory but lies beyond the scope of the present
paper.

At the end of this section, we would like to make the
following remark. We call time-dependent diffusion coeffi-
cients D(t) the generalized ones, even though this denotation
is usually [34,36] used for the Laplace-transforms of D(t).
The generalized diffusion coefficient D(t) is directly related
to the velocity autocorrelation function, determined at the
adsorption site s, and investigation of its temporal behavior can
help to visualize the adparticle motion both at short and long
times.

V. TEMPERATURE BEHAVIOR OF THE DIFFUSION
COEFFICIENTS

Experimentally measured diffusion coefficients Dexp are
usually associated with zeroth moments of the generalized
diffusion coefficients D0 = ∫ ∞

0 D(t)dt , which is nothing
but the Markovian approximation D0 = D̃(z = 0) for their
Laplace transforms. In fact, in experimental conditions one
deals with evaluation of the mean square displacement of
the adparticle at times much larger than 1/γ̃total(0). Thus,
measuring Dexp = 1/4 limt→∞〈r(t)2〉/t one has to be sure
that the influence of the transient states is excluded, and
duration of the atom-tracking procedure [9] is large enough
to fall into the hydrodynamic region t → ∞. Otherwise, the
value Dexp will differ from its theoretical prediction [6].

It is believed [6,26] that memory effects can be neglected
if the time scales of the adsorbate motion and of the
lattice dynamics are well separated, that is ωmax/� � 1. A
stronger substrate-adsorbate coupling favors the Markovian
approximation, while the weak-coupling limit usually requires
consideration of the memory effects at the initial stage of the
adparticle motion. Using the Markovian approximation, the
diffusion coefficient can be determined from Eq. (4.1) as

D̃(0) = a2

4

(
γ̃inter(0) + 8t2

interh̄
−2

γ̃total(0)

)
. (5.1)

Validity of the Markovian approximation at arbitrary values
of � does not contradict the condition ωmax/� � 1, as long
as we are not interested in the adsorbate motion at short time
scales. We will see in the next section that the situation changes
if one investigates the intermediate regimes t ∼ 1/γ̃total(0),
and it is necessary to consider a diffusion equation which is
nonlocal in time.

Taking into account Eqs. (3.3) for the renormalized tunnel-
ing amplitude and Eqs. (3.5), (3.6), and (4.4) for the kinetic
kernels, and noting their time dependence from Eqs. (3.8)–
(3.10), it is easy to integrate over τ and to obtain the final
result. Thus, in a strong-coupling limit, G � 0.1, the diffusion
coefficient is completely defined by the incoherent term

Dstrong = D̃in(0) = a2

ωmax

(
t1

2h̄

)2
√

2π

ηp

exp(−ηp/8kBT )√
kBT

,

(5.2)

which, in its turn, is being determined by the end-preserving
processes.
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FIG. 2. Temperature dependence of the diffusion coefficient in a
weak-coupling limit. Model parameters: G = 10−3, ω0/ωmax = 5 ×
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In the weak-coupling limit G � 0.01, and at a reasonable
assumption t1 � h̄�, the diffusion coefficient

Dweak = a2

ωmax

(
t1

2h̄

)2 [
(γp + γc) + 2 exp(−ϕp(0))

�2γc

]
(5.3)

is determined by both incoherent [the first term of Eq. (5.3)]
and coherent [the last term of Eq. (5.3)] contributions. The end-
changing γc and the end-preserving γp rates can be presented
in the following form:

γc =
√

π

ηc| ln ω0|
exp(−ηc| ln ω0|/4kBT )√

kBT
, (5.4)

γp = 2ηpkBT ω
2ηpkBT −1
0

1 − 2ηpkBT
. (5.5)

It has to be noted that the expressions for γc in both limits
coincide with those of Ref. [17], while the expression for γp

in the weak-coupling limit differs from the result of the cited
paper, which was obtained as the multiphonon expansion of the
end-preserving rates. Keeping in mind the power law behavior
[Eq. (3.10)] of the end-preserving kernel at weak-coupling,
one can show that a multiphonon expansion is not valid in this
particular case.

In Fig. 2 we present the Arrhenius plot of the diffusion
coefficients in the weak-coupling limit. It is seen that at
low temperatures and for all shown values of � the overall
diffusion coefficient is a relatively insensitive function of
temperature. The obtained results are in good agreement
with the experimentally observed temperature-independent
diffusion of the H/W(110) system [30]. Indeed, taking the

interatomic spacing for tungsten to be equal to 2.55 Å, the
lattice Debye temperature h̄ωmax/kB equal to 310 K and
estimating t1 ∼ 5 × 10−5 meV, h̄� = 15.7 meV, G ∼ 10−3

(these parameters were evaluated in Ref. [17] by the analysis
of the hydrogen-tungsten interaction potential), we obtain the
low-temperature value of the diffusion coefficient Dweak(T =
10 ÷ 80K) ∼ 10−14 cm2/s. This is close enough to the
experimental data reported in Ref. [30]. Of course, we cannot
reproduce correctly the regime above the quantum crossover
temperature T0 [24], when both underbarrier hopping and
thermally activated diffusion take place.

At stronger coupling to the lattice but still in the weak-
coupling regime, the temperature dependence is quite different
(see the inset in Fig. 2). According to Eqs. (5.3) and (5.4),
the main contribution at high temperatures comes from the
incoherent term, and Dweak is a slowly increasing function
of T . Contrary, at low temperatures the diffusion coefficient
is dominated by the coherent contribution and behaves as
exp(Ec/kBT ).

A qualitatively similar increase of the diffusion rate of H
on Cu(001) below 20 K was observed experimentally [9].
However, in our case this behavior is just a result of the
used two-level dissipative model, whereas in Ref. [9] it
was attributed to the change of nonadiabatic response of
the thermally excited e-h pairs to the diffusing particle.
In Ref. [5], where the study of hydrogen self-diffusion on
Cu(100) surface was performed by means of a similar method
of quantum kinetic equations, a power law D(T ) ∼ T −α

increase of the diffusion coefficient at low temperatures was
reported with α ≈ 3.2, which resembles the low-temperature
behavior of the muonium diffusion in solids [15]. We can
reproduce this result, taking the super-Ohmic spectral weight
functions for the end-changing processes with the power
index n ≈ 5/3.

As we have pointed out in Sec. III, we can extrapolate the
results to zero temperature. In that case, only end-preserving
(super-Ohmic) processes contribute to the incoherent part of
the diffusion coefficient, whereas the coherent part is dealt
with the intrinsic width of the T-mode peak [29]. The friction
coefficient is not zero in this limit because the excited adsorbate
can transfer its energy to the lattice, induce excitations from
the zero-point motions of the lattice modes, or create e-h
excitations in the electron distribution.

Summarizing this section, we emphasize that a transition
from one kind of temperature dependence of the diffusion
coefficient to another takes place even in a relatively simple
model. In the next section, we will show that this transition
coincides perfectly (regarding to the coupling constant G)
with the change of the character of adparticle dynamics at
short times, when the memory effects have to be taken into
account.

VI. TRANSITION REGIMES OF THE GENERALIZED
DIFFUSION COEFFICIENTS

For visualization of the processes of adparticle motion at
short and intermediate times, it is much more convenient to
perform an inverse Laplace transformation of the generalized
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diffusion coefficients

Dcoh(t) = Re

[
(atinter)2

2πih̄2 lim
ε→0

∫ ε+i∞

ε−i∞
dz exp(zt)

1

z + γ̃total(z)

]

=
(
atinter

h̄

)2

Re

[ ∞∑
i=1

exp(−zi t)
1

1 + γ̃ ′
total(zi)

]
. (6.1)

The summation in Eq. (6.1) in accordance with the residue
theorem runs over all poles zi of the integrand, which
obey the condition Re[zi] < 0. Equation (6.1) resembles the
results of the generalized collective modes theory [33,34],
postulating additive contributions of each collective excitation
to a particular time correlation function. In our case, the
summation is extended to the infinite number of poles, and
major contribution comes from terms with maximal values
of Re[zi] and weight factors [1 + γ̃ ′

total(zi)]−1. The expression
for Dcoh(t) can be even more complicated if one deals with
higher-order poles.

The expression for Din(t) follows from Eq. (3.4) of the
kernel γ̃inter(z) and can be presented via the end-changing/end-
preserving Eqs. (3.8)–(3.10) as

Din(t) = (at1/h)2Re[γc(t) + γp(t)]. (6.2)

We evaluate the generalized diffusion coefficients in the
weak-coupling regime when the memory effects are important
at the initial stage of the adparticle motion.

In Fig. 3, we present the time dependence of D(t) =
Din(t) + Dcoh(t) at different temperatures. It is nonmonotonic,
and the oscillations become more pronounced when the
system temperature decreases. The lattice distortion caused
by interaction of the adsorbate with the phonon subsystem has
no time to relax, and the initial profile of the lattice potential
has no time to be restored after the particle passage. As a
result, the effective barrier is higher than its adiabatic value,
and the particle starts to oscillate being caged in the deformed
potential well. Such a behavior of D(t) is observed even at
temperatures comparable with h̄ωmax/kB .
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FIG. 3. Generalized diffusion coefficients calculated at G =
10−3, t1/h̄ωmax = 10−5, �/ωmax = 1, and different temperatures:
kBT /h̄ωmax = 0.5 (triangles), 0.75 (circles), and 1 (squares).

At temperatures kBT /h̄ωmax < 0.5 (not shown in Fig. 3),
these oscillations persist on the time scales, which are by
two orders of magnitude higher than the inverse Debye
frequency. In Ref. [26], we calculated the generalized diffusion
coefficients at different values of T and �. The general
tendencies observed in Ref. [26] can be formulated as follows:
low temperature T and a high vibrational frequency � favor
the oscillation dynamics of the particle, and so does a weak
“substrate-adsorbate” interaction.

It would be interesting to relate this nonmonotonic behavior
of D(t) to a possible recrossing phenomenon [7,8,24,25]. One
can attribute the negative branches of D(t) to the backward
motion of the adsorbate: the particle may cross the dividing
surface, located at the adsorption site s, due to the lattice
distortions that “push” the particle in the opposite direction
(with respect to that at the initial instant of motion). The
nature of oscillations of D(t) is different from that of fs,s(t),
presented in Fig. 1. While in the coherent regime the only
reason for the oscillating behavior of fs,s(t) is an interplay
between the processes of transition and reflection of the wave
packet, the nonmonotonic dissipative motion is determined by
the adsorbate scattering from the substrate atoms. Indeed, one
can easily verify that only Dcoh(t) contributes to the oscillatory
adpartacle dynamics.

It should be emphasized that at weak coupling we are in the
energy-diffusion-controlled regime from the viewpoint of TST
[24] and in the dotted region of the “Thomas diagram,” where
the nonequilibrium effects are important. In such a case, a
description using the Smoluchowski equation is no longer valid
[23], and one has to use the Fokker-Planck equation instead
[22,24]. An alternative way is to study a time behavior of the
“velocity-velocity” autocorrelation functions or, as in our case,
the generalized diffusion coefficients. In the weak-coupling
limit it gives us a possibility to “visualize” the recrossing
phenomenon in the coordinate representation, although in the
energy-diffusion-controlled regime one normally has to use
the concept of recrossing through the dividing surface in the
energy space [25]. Investigation of the recrossing is compli-
cated by the memory friction, for which, up to our knowledge,
there is no reliable approach in the framework of TST.

Another interesting example of the short-time dynamics
of the adsorbate is the onset of the T-mode [28,29]. The
latter is known to appear when adparticle moves between
two stable positions at the surface within one adsorption site
due to the interaction with phonons or electronic subsystem
of the substrate. The above presented model admits small
longitudinal displacements of the particle, when it performs
L-R transitions within the given well. At low temperatures, the
shape of the T-mode is believed to be dominated by frictional
damping characterized by the nonadiabatic coupling to the
substrate excitations. At high temperatures, the anharmonicity
of the static lattice potential plays a dominant role.

Though the analysis of the frequency-dependent diffusion
coefficients would be more convenient in this case, since
it allows us to relate the T-mode position to the maximum
of Re[D̃(iω)], the main conclusions can be drawn from the
time behavior of D(t) as well. Some noticeable temperature-
dependent changes of the generalized diffusion coefficients are
seen in Fig. 3: a frequency shift toward the higher values and
an increase of the damping with the temperature take place.
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A detailed investigation of the temperature dependence of the
T-mode features can be the subject of a separate study. One
remark is to the point: whereas for the dynamic structure factor
the T-mode analysis is often complicated due to overlap of the
elastic and inelastic peaks [22], the method of generalized dif-
fusion coefficients allows one to study the T-mode in more de-
tail, being focused on the adsorbate motion at the well bottom.

Now let us ask the question: what happens if one increases
the value of coupling constant G? An intuitive answer would
state that oscillations of D(t) disappear at a moderate-to-strong
coupling. Indeed, at the strong coupling, when the energy
exchange between the particle and the substrate atoms is faster,
one can use the approximation Eq. (4.5), which leads to the
exponential relaxation of Dcoh(t). However, fine features of
such transition regimes, when the character of the adparticle
motion changes from oscillatory to monotonic, need to be
analyzed in the framework of the non-Markovian approach.

Thus, if one increases the coupling constant until the
oscillations of D(t) disappear, one finds a certain critical value
Gcr(T ,�) (as a function of the temperature and vibrational
frequency), which separates two dynamic regimes: a plain
relaxation of D(t) at G > Gcr(T ,�) and a nonmonotonic
behavior at G < Gcr(T ,�). A detailed analysis shows that,
at first, the negative branch of D(t) rises over the time axis;
at that, oscillations of the generalized diffusion coefficients
still remain. So recrossing is vanishing, but the particle moves
toward the nearest adsorption site with altering absolute value
of the velocity as if meeting obstacles.

We present the above-mentioned transition regimes of
the adparticle motion in Figs. 4 and 5 as plots of Gcr vs.
temperature (at the fixed value of vibrational energy) and
vs. vibrational energy (at the fixed value of temperature).
When inspecting these curves, one can observe a remarkable
feature: the transition domains of different dynamic regimes
of D(t) with respect to the coupling constant G coincide with
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(C). The inset shows the frequency dependence of Gcr(T ∗,�) that
separates domain (1), where Dcoh(t) decays as an exponential function
[see Eq. (4.5)], from that with essentially non-Markovian behavior of
Dcoh(t).

the regions, where the temperature behavior of the diffusion
coefficients changes from a weakly dependent function of T to
quite a sensitive function of temperature. Namely, the region
with a recrossing (the C-domain in Fig. 4) maps to a weakly
dependent temperature regime (see Fig. 2), and the region
with the monotonic motion of the adparticle (the A-domain
in Fig. 4) corresponds to a strongly dependent temperature
regime (see inset in Fig. 2). The domain B in Fig. 4, evidently,
corresponds to the transition of the temperature behavior of
the diffusion coefficient from weakly to strongly dependent
function of T .

At higher values of G the oscillations completely disappear,
and the adsorbate motion is governed mainly by the incoherent
term Din(t). At G∼ 0.1 no coherent contribution is evident.
Only the end-preserving rate γp(t) defines the adparticle dy-
namics, and the temperature dependence of the diffusion coef-
ficient is given by Eq. (5.2). It can be evaluated from the Smolu-
chowski equation [6,26] that the intermediate distribution
function ñ(k,t) [a Fourier transform of the nonequilibrium par-
ticle density n(r,t)] decays exponentially ∼exp(−k2Dstrongt)
in this domain of the coupling constants. This behavior is
consistent with the results for the dephasing rate, obtained
recently [37] for the diffusion in the H/Pt(111) system.
However, a quantitative estimation of the damping rate z(k) =
k2Dstrong using Eq. (5.2) for the diffusion coefficient yields
the value z(k), which is lower than that reported in Ref. [37].
Having not taken into account the influence of the thermal
activation processes, we cannot describe correctly the system
behavior at temperatures above the quantum crossover [24].

The same tendencies can be traced in Fig. 5. High values of
the vibrational frequency extend the domains (B and C) of the
nonmonotonic adparticle dynamics. The insert in Fig. 5 shows
that a transition from essentially non-Markovian dynamics to
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the case, when Dcoh(t) decays as an exponential function [see
Eq. (4.5)], occurs in a moderate-to-strong coupling domain.

One of the assumptions inferred, when comparing these fig-
ures with Fig. 2, can be formulated as follows. If the tendencies,
presented in the “critical diagrams” in Figs. 4 and 5, remain
in more sophisticated models for quantum surface diffusion,
and a correspondence between the transition “recrossing-
monotonic motion” and the change of the T -dependence of
the experimentally measured diffusion coefficients Dexp is
valid in general, then we can give a prognosis about the
temperature behavior of Dexp, having only the information
about the dynamics of the adsorbate at the initial stage of
its motion. Otherwise, one has to measure the mean square
displacement of the particle at times large enough to be sure
that all remnants of the transition regimes are excluded. As it
has been already mentioned, due to slow quantum diffusion
at low temperatures (where the aforesaid transition regimes
are the most pronounced and durable), it would be useful to
reduce the time of atom-tracking measurement.

VII. TIME DEPENDENCE OF THE TRANSITION
PROBABILITIES fs,s+n(t)

In this section we study the off-diagonal nonequilibrium
distribution functions fs,s+n(t). The decay rate of fs,s+n(t)
defines the time scales at which the contribution of Dcoh(t)
vanishes. On the other hand, fs,s+n(t) can be related to
the time-dependent “flux–flux” cross-correlation functions,
determined at the adjacent sites s and s + n. These time
correlation functions are known to describe a multihopping
regime [7,8]. The multihopping facilitates an increase of the
transport coefficients in contrast to the recrossing, which
reduces the total rate of the adparticle escape and lowers the
value of the diffusion coefficient.

We evaluate the nonequilibrium transition probabilities
fs,s+n(t), solving Eq. (3.1) with respect to the diagonal
distribution functions fs,s(t) and inserting the obtained result
in Eq. (3.2). The expressions for the real and imaginary parts
of fs,s+n(t) are the following:

Re[f̃s,s+n(z)] = fs,s+n(0)

z + Re[γ̃inter(z) + γ̃intra(z) − γ̃ +
LL(z)]

, (7.1)

Im[f̃s,s+n(z)] = − tinter

h̄

f̃s+n,s+n(z) − f̃s,s(z)

z + Re[γ̃total(z)]
, (7.2)

where only linear terms in the tunneling amplitude t1 are
retained. Comparing denominators in Eqs. (4.2) and (7.1) one
can observe that at small tunneling amplitudes the inverse
decoherence time τ−1

decoh = γ̃inter(z) + γ̃intra(z) − γ̃ +
LL(z) is

close to the decay rate of the “velocity-velocity”
autocorrelation function.

Obviously, in the zero-coupling limit, Eq. (7.1) reproduces
the value of Re[fs,s+n(t)], which does not depend on time in
the coherent regime of motion, and the inverse Laplace trans-
formation of (7.2) gives the expression (3.14) for Im[fs,s+n(t)].

To study the time dependence of the transition probabilities
in detail, we use the continuous media approximation. In such
an approximation, we are not bounded to a special geometry
of the lattice any more and can rewrite Eq. (7.2) in the
wave-vector-frequency representation for the imaginary part
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of the transition probability P̃ (k,z) as follows:

Im[P̃ (k,z)] = h̄k

2tinter

Re[D̃coh(z)]

z + k2Re[D̃coh(z) + D̃in(z)]
. (7.3)

Then, performing inverse Fourier and Laplace transforma-
tions, we find the (r,t)-dependence of the imaginary part of
the transition probability. In Figs. 6 and 7, we present the
time dependence of this function (normalized per its maximum
value) at r∗ = r/a = 1. The time dependence of the real part of
transition probability is the same as that of Dcoh(t) (see Fig. 3).

The evaluation is performed for two different values of the
tunneling amplitude t1/h̄ωmax = 10−5 and 10−2. In the first
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FIG. 7. Time dependence of the normalized function Im[P (r∗,t)]
/[Im[P (r∗,t)]]max at r∗ = r/a = 1, G = 10−3, �/ωmax = 1,
kBT /h̄ωmax = 1, and tunneling amplitude t1/h̄ωmax = 10−2 in the
non-Markovian approximation. Inset: the same in the Markovian
approximation.
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case, the adparticle approaches the point r∗ at times of about
107ω−1

max, when the imaginary value of the transition probability
reaches its maximum. The adparticle motion is very slow,
the lattice has plenty of time to relax at such huge times,
and there is no qualitative difference between the Markovian
approximation and the case, when the memory effects are taken
into account.

The situation changes drastically (Fig. 7) when the tun-
neling amplitude increases by three orders of magnitude. The
decay time of Im[P (r∗,t)] is then comparable with that of the
generalized diffusion coefficients (see Fig. 3). The adparticle
arrives at the point r∗ at times of about seven Debye periods
2π/ωmax, when the lattice has not relaxed completely, and
the memory effects are still important. A transition state that
originally obstructs a multihop from the site s to the nearest
neighboring one is stabilized by the lattice fluctuations: the
height of the effective barrier at s + n can be lower than its
adiabatic value at some instant of time, allowing the particle
to perform a multiple crossing. Note the oscillating aperiodic
behavior of the transition probability in contrast to the smooth
relaxation in the Markovian case. The negative branches of
Im[P (r∗,t)] mean that the “transition window” for the multiple
crossing is not always open, and at other instants of time the
barrier height can exceed its adiabatic value, prohibiting multi-
hops of the particle. On the other hand, the width of oscillations
grows in time while their amplitude reduces. It means that with
increasing t the multiple hops become less probable, but the
period favorable for them to proceed becomes longer.

At the end of this section, let us discuss the problem
of multiple jumps in the relation to the existing theories.
According to TST [24], at T lower than the quantum crossover
temperature T0 the quantum rate is so small that weak friction
has no impact on deviation from a thermalized Boltzmann
weighting. The validity of the low-temperature quantum-
Kramers rate starts to break only at extremely weak dissipation.

On the other hand, the nonthermalized particles can exhibit
multiple jumps, as it has been shown in Refs. [22,23] using
the Fokker-Planck equation for the nonequilibrium distribution
function, depending on both position and velocity of the adpar-
ticle. The onset of multihops was associated with the inelastic
peak of the dynamic structure factor at nonzero frequency
ωosc. At low temperatures and high barriers, the long jumps
are believed to be activated, when the velocity correlation time
τv is the largest among the other typical times of the system:
the period of oscillation ω−1

osc at the well bottom and the time τth

taken by the particle to cross over a lattice spacing with a mean
thermal velocity vth. However, no additional studies of the
temperature dependence of the inelastic peak were performed
in Refs. [22,23] to attribute it to the T-mode features.

In our case, we face a T-mode onset, too. Thus, a question
about the fraction of the multiple hops in the total diffusion
can be answered only after an additional analysis of the
T-mode behavior. If an eventual temperature-induced shift of
the T-mode toward lower frequencies and its broadening are
not so large (quasi- and inelastic peaks of the dynamic structure
factor are well resolved), one can state that there is a portion
of multihops in the system. The computer simulations within
the Monte Carlo wave function formalism [11] and direct
evaluation of the “flux-flux” time correlation functions [7,8]
support this suggestion.

VIII. CONCLUSIONS

In this paper, we analyze the dynamics of the adparticle,
which performs an underbarrier tunneling from one adsorption
site to another as well as the vibrational transitions between
two levels inside a quantum well, when its motion changes
from coherent to incoherent due to interaction with acoustic
surface phonons.

We investigate the short-time dynamics of the particle,
when its vibrational frequency is comparable with the
Debye frequency, and the memory effects have to be taken
into account. Though the latter are traditionally thought to
be important only at transition regimes, when the adparticle
motion is neither ballistic nor purely diffusive, and the total rate
of escape does not have to remember the details of intermediate
period, we show that there is a close relation between
the adparticle dynamics at intermediate times τ ∼ τdecoh

and the temperature dependence of diffusion coefficients.
Namely, as the coupling constant increases, the adparticle
motion (initially oscillatory) becomes more and more smooth,
indicating that the temperature behavior of the diffusion
coefficients D(T ) should change from weakly dependent on
T to quite a sensitive function of the temperature. Though
we restricted ourselves by a comparatively simple model, we
believe that the above-mentioned correspondence between
the short-time dynamics of the adsorbate and the temperature
behavior of the diffusion coefficients is valid for more
sophisticated systems. If so, this “T vs. t” correspondence
could be helpful at experimental evaluation of the diffusion
coefficients because it would allow us to give a prognosis
about their temperature behavior, having only an information
about the adatom dynamics at the initial stage of its motion.

We show that the coherent term of the generalized diffusion
coefficient, which is defined by the adparticle scattering from
the lattice, is responsible for the recrossing phenomenon
at weak-coupling. At high-coupling regime its contribution
diminishes, and the particle motion is completely determined
by the incoherent term. We perform a quantitative analysis
of such transition regimes in terms of the critical coupling
constants Gcr(T ,�), which depend on the temperature and
vibrational frequency.

While the generalized diffusion coefficients are connected
to the “velocity-velocity” autocorrelation functions, the tran-
sition probabilities fs,s ′ (t) can be related to the “velocity-
velocity” cross-correlation functions. We investigated the
time dependence of the transition probabilities in the model
case of continuous media. It is shown that at very small
values t1/h̄ωmax = 10−5 of the tunneling amplitude the real
part of the transition probability (which defines a multihop
strength) decays at the same rate as the generalized diffusion
coefficients. However, the particle approaches the nearest
adsorption site much later. It moves very slowly; the lattice
has plenty of time to relax, and the Markovian approximation
is quite applicable. Contrary, at t1/h̄ωmax = 10−2 the times of
decay for real and imaginary parts of the transition probability
are of the same order, and remnants of the memory effects
influence the multiple crossing.

A study of the transition probabilities is interesting for
two reasons: one, it shows how fast a loss of the adparticle
coherence occurs; two, it allows us to draw a conclusion
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about the possibility of multiple crossing. The contribution
of multiple jumps to the diffusion coefficient, being enhanced
by the fact that in a double jump the random walker goes a
double distance, can be essential even if its jump rate is much
smaller than that of a single jump. We discuss the long-jump
possibility in the context of the existing theories, pointing out
that computer simulations [6–8,11] predict a noticeable portion
of the multihops.

It can be argued that the memory effects preserve a particle
coherence to a certain extent: part of relaxation energy of
the lattice is delivered to the adparticles, preventing them
from thermalization and maintaining the transition regimes
from the coherent (ballistic) motion to the incoherent (dif-
fusive) one. This tendency will persist after introduction of
additional interactions (an electronic friction [13,19], a non-
linear “adsorbate-substrate” interaction [14,18], or a direct
“adsorbate-adsorbate” interaction [20]).

Such a generalization will render the model more realistic.
First of all, this would solve the “long tails” problem of
the kinetic kernels [21] and ensure the convergence of
the diffusion coefficients. On the other hand, additional
interactions introduce new typical time scales, which could
be well separated (the Markovian picture is then valid) or
close to each other (then the non-Markovian approach is
necessary). Investigation of the frustrated longitudinal mode
becomes especially interesting in this case, giving more
information on the lateral potential-energy surface and the
frictional damping, experienced by the adsorbate due to e-h
pair creation or phonon coupling to the metal substrate. So
far there is no unique viewpoint which factors (phonon and/or
e-h excitations, anharmonic contributions or memory effects)
are predominant in the T-mode development at different
temperatures, couplings, and interaction regimes. We believe
that all these directions are quite interesting from a viewpoint
of the study of transition regimes of the adsorbate and could
be the subject of future investigations.
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APPENDIX

To solve Eqs. (3.11) and (3.12) we perform at first a Fourier
transformation for the creation/annihilation operators

a†
s = 1√

N

∑
k

exp(iks)a†
k, as = 1√

N

∑
k

exp(−iks)ak,

(A1)

passing from the site representation a
†
s , as to wave-vector

representation a
†
k , ak with k = (2π/N )m [k = (2π/N )(m +

1/2)] for the lattice with the odd [even] numbers of adsorption
sites and m = −N/2, − N/2 + 1, . . . ,N/2 − 1 [if N is even]
or m = −(N − 1)/2, − (N − 1)/2 + 1, . . . ,(N − 1)/2 [if N

is odd].

Inserting (A1) in Eqs. (3.11) and (3.12) for the coherent
motion, we obtain the following equation for the intermediate
distribution function Fk,k′(t) ≡ 〈a†

k′ak〉t :
∂Fk,k′(t)

∂t
= −2it0

h̄
(cos k − cos k′)Fk,k′(t), (A2)

which is easily solved, giving

Fk,k′(t) = exp

[−2it0

h̄
(cos k − cos k′)t

]
. (A3)

In the infinite lattice limit N → ∞, we can pass from
summation over k to integration over continuous wave-
vector according to 1√

N

∑
k · · · −→ 1

2π

∫ π

−π
· · · dk. Then we

obtain an integral representation for the diagonal one-particle
nonequilibrium distribution function as follows:

fs,s(τ ) = 1

4π2

∣∣∣∣
∫ π

−π

dk[cos(ks) + i sin(ks)]

× exp

[−2it0

h̄
τ cos k

] ∣∣∣∣
2

= J 2
s (2t0h̄

−1τ ), (A4)

which is nothing but the squared s-th order Bessel function.
Similarly, we can obtain the Eq. (3.14) for the imaginary part
of the transition probability fs,s+1(t).

To show that the last term in Eq. (4.1) does not contribute
to the mean square displacement 〈r(t)2〉 = a2 ∑N

s=1 s2fs,s(t)
of the particle, let us perform for simplicity the Markovian
approximation in Eq. (4.1). Using Fourier transformation
(A1), we obtain the evolution equation for the intermediate
distribution function in the following form:

∂Fkk′(t)

∂t
= −Fkk′(t)

a2
{2[D̃coh(0) + D̃in(0)][1 − cos(k − k′)]

+ D̃coh(0)[cos 2k + cos 2k′ − 2 cos(k + k′)]},
(A5)

where the lower line is related to the last term in the r.h.s
of Eq. (4.1), which involves the “long distance” transition
probabilities fs±n,s∓n(t), fs,s∓2n(t).

The evolution equation for the mean square displacement
can be written down as follows:

d〈r(t)2〉
dt

= a2
N∑

s=1

∑
k,q

s2 exp(iqs)Ḟk,k−q(t)

= −a2
∑
k,q

Ḟk,k−q(t)
d2

dq2

(
N∑

s=1

exp(iqs)

)
. (A6)

Note that the sum in the brackets yields N times Kronecker
delta-symbol, which in the infinite lattice limit converts to
Dirac delta-function δ(q). Then integrating (A6) by parts with
taking into account (A5), one can verify that only the first term
in braces of Eq. (A5) contributes to the evolution equation
for 〈r(t)2〉:
d〈r(t)2〉

dt
= [D̃coh(0) + D̃in(0)]/π

∫ π

−π

dk

∫ π

−π

dq[1 − cos q]

×Fk,k−q(t)
d2

dq2
δ(q) = 2[D̃coh(0) + D̃in(0)],

(A7)
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while the second term vanishes at the integration over k:∫ π

−π

∫ π

−π

dkdq{cos(2k) + cos(k − q) − 2 cos(2k − q)}

×Fk,k−q(t)
d2δ(q)

dq2
=

∫ π

−π

dk[2 cos(2k) − cos k]Fk,k(t) = 0,

(A8)

because Fk,k(t) ≡ 1 and all derivatives of Fk,k(t) with respect
to wave-vector vanish.

The presented above calculation can be generalized to the
2D lattice or to the case when the memory effects are taken into
account. As for the 2D coherent regime, the only modification
of Eqs. (3.13) and (3.14) consists in doubling of the power
indexes at Bessel functions.
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