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Diffusive domain coarsening: Early time dynamics and finite-size effects
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We study the diffusive dynamics of phase separation in a symmetric binary (A + B) mixture with a 50:50
composition of A and B particles, following a quench below the demixing critical temperature, both in spatial
dimensions d = 2 and d = 3. The particular focus of this work is to obtain information about the effects of
system size and correction to the growth law via the appropriate application of the finite-size scaling method to
the results obtained from the Kawasaki exchange Monte Carlo simulation of the Ising model. Observations of
only weak size effects and a very small correction to scaling in the growth law are significant. The methods used
in this work and information thus gathered will be useful in the study of the kinetics of phase separation in fluids
and other problems of growing length scale. We also provide a detailed discussion of the standard methods of
understanding simulation results which may lead to inappropriate conclusions.
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I. INTRODUCTION

When a homogeneous binary mixture (A + B) is quenched
inside the miscibility gap, the system falls out of equilibrium
and moves toward its new equilibrium state via the formation
and growth of domains rich in A or B particles [1–3]. This
coarsening of domains is a scaling phenomenon, e.g., the
two-point equal-time correlation function C(r,t), the structure
factor S(k,t), and the domain size distribution function P (�d,t)
obey the scaling relations

C(r,t) ≡ C̃[r/�(t)], (1)

S(k,t) ≡ �(t)d S̃[k�(t)], (2)

P (�d,t) ≡ �(t)−1P̃ [�d/�(t)], (3)

where the average domain size �(t) increases with time (t) in
a power-law fashion,

�(t) ∼ tα, (4)

and C̃(x), S̃(y), and P̃ (z) are scaling functions independent
of �(t). In Eq. (4), the growth exponent α depends upon the
transport mechanism.

For diffusive growth, by associating the rate of increase of
�(t) with the chemical potential (μ) gradient, one can write [1]

d�(t)

dt
∼ |−→∇ μ| ∼ σ

�(t)2
, (5)

with σ being the A-B interfacial tension. The solution of Eq. (5)
gives α = 1/3, which is known as the Lifshitz-Sloyozov (LS)
law [4]. The LS behavior is the only asymptotic growth law
expected for phase-separating solid mixtures. However, for
fluids and polymers, one expects faster growth at large length
scales where hydrodynamic effects are dominant. For the
latter, in d = 3, convective transport yields additional growth
regimes [5,6] with

α = 1, �(t) � �in,

α = 2/3, �(t) � �in. (6)
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In Eq. (6), the inertial length �in � η2/(ρσ ), with η and ρ being
the shear viscosity and mass density, respectively, marks the
crossover from a low-Reynold-number viscous hydrodynamic
regime to an inertial regime.

In this work, we have undertaken a comprehensive study
to learn about the finite-size effects in domain coarsening in
the Ising model with conserved order parameter dynamics
and to understand the behavior of the growth exponent as a
function of time, via the application of the finite-size scaling
method [7,8] both in space dimensions d = 2 and d = 3. While
originally developed to understand simulations in equilibrium
critical phenomena, the finite-size scaling method has found
interesting applications [9–11] in nonequilibrium processes as
well. In this paper, we exploit this method appropriately in the
context of diffusive phase-separation kinetics to show that for
critical quench, the LS value of α sets in very early and the
effect of size is very small.

Diffusive domain coarsening in solid binary mixtures has
been extensively studied via the Ising model,

H = −J
∑
〈ij〉

SiSj ; Si = ±1, J > 0, (7)

which is the prototype for a large class of critical phase
transitions. Here one can identify the spin Si = +1 (−1)
at lattice site i with an A particle (B particle). Note that
〈ij 〉 in Eq. (7) stands for the summation over only the
nearest neighbors. One can also study the kinetics of phase
separation via dynamical equations, which can be obtained
from Ising models in a mean field approximation by using
a master equation approach [12,13] with Kawasaki exchange
kinetics [14]. Upon coarse graining, such equations lead to the
Cahn-Hilliard (CH) equation

dψ(�r,t)
dt

= − �2 [ψ(�r,t) + �2ψ(�r,t) − ψ3(�r,t)], (8)

where ψ(�r,t) is a coarse-grained, time-dependent local order
parameter. Note that such a continuum description could also
be obtained in a phenomenological manner [1,15] using a
coarse-grained Ginzburg-Landau (GL) free energy functional
with the requirement of conservation of material. The CH
equation with an added thermal noise is expected to be
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equivalent to the Monte Carlo (MC) simulations [16,17] of
kinetic Ising models.

In Eq. (8), the typical distance over which the order
parameter is coarse grained is of the size of equilibrium
correlation length ξ . In situations when one is interested
in studying the kinetics in the close vicinity of the critical
point, without focusing on the dynamics at a microscopic
level, Eq. (8) is computationally very useful in achieving
the asymptotic [18] behavior. However, for deep quenches,
one needs to incorporate higher order terms than are usually
used in the GL Hamiltonian. Also, at very low temperature,
where ξ is of the order of a lattice constant, the CH equation
would not provide information of a large effective system size
compared to the atomistic Ising model. The particular focus
of this work is to learn the finite-size effects and dynamics
at the early stage, both of which have received much less
attention compared to the identification of domain growth law
in the long-time limit, despite their obvious importance both
fundamentally and technologically, e.g., in nanoscience and
technology. In view of this, we choose to revisit the kinetics
of phase separation in the Ising model via MC simulations.

While MC simulations have been used immensely in the
understanding of nonequilibrium domain growth phenom-
ena, both with conserved [9,10,19–24] and nonconserved
[10,25,26] order parameter, earlier studies of phase ordering
in a conserved Ising model with critical (50:50) composition
reported [27,28] estimates of αε[0.17,0.25], deviating drasti-
cally from the expected LS law. Even arguments in favor of
logarithmic growth were proposed [29]. Note that these earlier
reports were based on MC simulations for very short periods of
time, where contamination of domain structures due to thermal
noise might not have been taken care of, which could act as
a source of significant error in the measurement of average
domain size.

Later, the discrepancy of the previous results with the
expected LS behavior was understood to be due to strong
corrections to scaling at early time. To account for this [20],
higher order terms in Eq. (5) were incorporated to write

d�(t)

dt
= C1

�(t)2
+ C2

�(t)3
+ O[�(t)−4], (9)

which in the long-time limit gives a solution ∝ t1/3; however,
would give rise to a leading order correction linear in 1/�(t) to
the instantaneous exponent. Thus LS behavior will be observed
only in the limit �(t → ∞) → ∞. Indeed, consistency with a
linear correction was observed for a 50:50 binary mixture [20,
21], as well as for multicomponent mixtures [24]. The present
work, however, convincingly demonstrates that the observa-
tion of the LS value of the exponent only in the asymptotic limit
was misleading, and the presence of a time-independent bare
length in �(t) is responsible for the numerical data exhibiting
such a trend.

Most of the studies to date have stressed the use of large
systems, with the anticipation of strong finite-size effects
[30] combined with the expectation that the LS law will be
realized only in the large �(t) limit. This strategy, of course,
will prove to be useful when there is dynamical crossover,
as in domain coarsening in fluids [cf. Eq. (6)], where the
system size should be significantly larger than the smallest
characteristic length scale in a particular regime. However,

consideration of arbitrarily large system sizes restricts the
access of a large time scale, particularly for the molecular
dynamics simulation of fluid phase separation [31–33]. It is
worth mentioning that the typical system sizes that authors
consider nowadays contain a number of lattice sites or particles
of the order of a million, which is too large even for present
day computers to access the long-time scale that often is a
necessity. Such choice of large systems, in addition to the
anticipation of a strong finite-size effect, was often motivated
by the expectation of better self-averaging [30], which is an
issue [25] that needs further attention to be resolved. Thus
a judicial choice of system sizes is very crucial for such
problems [34], which in turn requires appropriate knowledge
of finite-size effects [11]. While recent focus has been on
more complicated systems [35–42] with realistic interactions
and physical boundary conditions, much basic information as
discussed above is lacking, even in a situation as simple as
Ising systems.

This paper is organized as follows. In Sec. II, we describe
the details of the simulation and finite-size scaling method.
Results for both d = 2 and d = 3 are presented in Sec. III,
while Sec. IV summarizes the paper with a discussion of future
possibilities in this direction.

II. METHODS

A. Details of simulation and calculation of observables

In the MC simulation of the Ising model, the conserved
order-parameter dynamics, where the composition of up (A
particle) and down (B particle) spins remains fixed during the
entire evolution, is implemented via the standard Kawasaki
exchange mechanism [14], where the interchange of positions
between a randomly chosen pair of nearest neighbor (nn)
spins comprises a trial move. A move is accepted or rejected
according to the standard Metropolis algorithm [16]. One MC
step (MCS) consists of exchange trials over Ld pairs of spins,
with L being the linear dimension of a square (cubic) system.
Periodic boundary conditions were applied in all directions.

Note that with the increase of temperature, the accurate
measurement of average domain size becomes difficult due
to the presence of noisy clusters of the size of ξ (T ). On
the other hand, at very low temperature, growth is hampered
by metastability. To avoid the latter problem, we have set
the temperature toward the higher side and calculated all of
the physical quantities from pure domain morphology after
eliminating the thermal noise via a majority spin rule. There
a spin at a lattice site i was replaced by the sign of the
majority of the spins sitting at i and at nn of i (depending
upon the noise level, i.e., the average size of noise clusters,
extension to distant neighbors may also become necessary).
In Fig. 1, we demonstrate such a filtering process for a rather
high temperature. The left panel corresponds to the original
snapshot from the MC simulation on a 2 − d square lattice
at T = 0.85Tc with L = 64 at t = 5 × 103 MCS. One can
appreciate that the presence of substantial noise elements here
would give rise to a smaller value of �(t) than the actual.
The right panel of the figure shows the snapshot with pure
domain morphology obtained after implementing the noise
removal exercise described above. Of course, one should be
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FIG. 1. Left panel: Snapshot of a 2 − d Ising model at T =
0.85Tc obtained from the Monte Carlo simulation via Kawasaki
exchange kinetics, for L = 64 at t = 5 × 103 MCS. Right panel:
Same snapshot after removing the noise via the exercise described in
the text. A particles are marked by black dots whereas B particles are
unmarked.

careful that too many such iterations or consideration of very
distant neighbors may alter the basic structure. However, in
the present case, no such deformation has taken place. All the
quantities in our simulation were calculated by using snapshots
with a pure domain structure. In brief, the advantage of the
above procedure could be understood in the following way.
In most aging processes, fast quasi-equilibrium degrees of
freedom coexist with slow nonequilibrium degrees, leading to
an additive separation of the thermodynamic observables. Our
method gets rid of the faster equilibrium degrees of freedom.

In Fig. 2(a), we present the scaling plots of domain size
distribution function, viz., plots of �(t)P (�d,t) versus �d/�(t),
where �(t) was calculated from the first moment of the
normalized distribution P (�d,t) as

�(t) =
∫

d�d�dP (�d,t), (10)

with length �d being obtained from the separation between the
two successive interfaces (A and B domains) in the x, y, or z

directions. Figures 2(b) and 2(c) show the scaling plots of the
correlation function C(r,t) and its Fourier transform S(k,t), in
accordance with Eqs. (1) and (2), where C(r,t) was calculated
as

C(r,t) = 〈SiSj 〉, r = |�i − �j |. (11)

Note that these scaling plots for all the quantities were obtained
by using the values of �(t) obtained from Eq. (10). Of course,
independently �(t) could be calculated from the decay of
C(r,t), as well as the first moment of normalized S(k,t) as

C[r = �(t),t] = h, (12)

and

�(t) = 1∫
dkkS(k)

. (13)

When calculated from a completely noise-free morphology,
all of the above mentioned methods for the calculation of �(t)
must give results proportional to each other. When h is set to a
rather small value, particularly when the decay length is larger
than the average size of the noisy clusters, the calculation of
�(t) from Eq. (12) is not expected to be affected much by the
presence of noise. The same applies for Eq. (13). However,
when calculated via Eq. (10), either the distribution up to
the length of the average noise size should be appropriately
modified or noise should be completely eliminated. The latter

FIG. 2. Scaling plots of (a) domain size distribution P (�d,t),
(b) correlation function C(r,t), and (c) structure factor S(k,t), from
different times, as indicated, for the system in Fig. 1. The data were
averaged over 50 independent initial configurations. Note that in all
the cases, �(t) used, was calculated using Eq. (10). While the solid line
in (a) verifies exponential decay of the tail, the one in (c) corresponds
to the Porod tail.

strategy is more appropriate, since it gives better shape to
all the form functions. In our calculation, in Eq. (12), h will
correspond to the first zero of C(r,t).

All of the results presented in Fig. 2 are obtained from pure
domain morphology and the nice data collapse obtained in
each case using the measure of �(t) from Eq. (10) speaks to
the equivalence of all the definitions, given by Eqs. (10), (12),
and (13). The linear behavior of the tail region in Fig. 2(a) on
a semilogarithmic plot is consistent with an exponential decay
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FIG. 3. Average domain size is plotted on a logarithmic scale as a
function of time t . Different symbols correspond to the calculation of
�(t) from different quantities : circles from P (�d,t), squares from
first zero-crossing of C(r,t), diamonds from the first moment of
S(k,t). Results presented were obtained from pure domain structure
as demonstrated in the right panel of Fig. 1, with L2 = 1282 and
T = 0.85Tc. The solid line corresponds to the theoretically expected
t1/3 behavior.

of P (�d,t). Here the noisy look (oscillatory behavior) at late
time or large domain size limit (which was also observed in
other recent studies [43,44]) is due to a lack of statistics when
�(t) becomes of the order of the system size. On the other
hand, the linear look of large wave vector (k) data in Fig. 2(c)
confirms the generalized Porod law [1,45,46]

S(k,t) ∼ k−(d+n). (14)

Note that in the present case, d = 2 and n = 1 (number of
components of the order parameter). It is worth mentioning
that one would have observed a slower decay of the structure
factor had the noise not been removed.

In Fig. 3, we present the length scale results obtained from
all of the above mentioned methods on a logarithmic scale, all
of which look proportional to each other, as was also clear from
the exercise of Fig. 2. The data at late times look consistent with
the expected exponent α = 1/3. Note that if the temperature
is sufficiently close to Tc for a long enough time, the noise
might not have equilibrated to the equilibrium value inside the
true domains. In such a situation, the presence of two length
scales in the problem may give rise to a misleading value of
the exponent if the noise (equilibrium degree of freedom) is
not eliminated and the range of fitting is small. Indeed a fitting
of the data, obtained from the original snapshots (not shown),
at temperature 0.85Tc to the form

�(t) = C + Atα, (15)

in the range [0,20 000] MCS, gives α = [0.15,0.25] [the value
being larger when �(t) is calculated from (12) or (13)], which
is consistent with earlier reports [27,28]. On the other hand, a
similar fitting to the data obtained after removing the noise
gives α = [0.3,0.34] and, within statistical deviation, does
not depend upon the range of fitting. This latter result is
already suggestive of the absence of a strong correction to the
scaling. However, since data fitting is always not a very reliable
exercise, as will be discussed later, to further substantiate the

claim about small correction to scaling, we take the route
of a finite-size scaling analysis that will also be useful in
quantifying the finite-size effect.

B. Formulation of finite-size scaling

In equilibrium critical phenomena, the singularity of a
quantity Z is characterized in terms of ε = |T − Tc|, the
temperature deviation from the critical point, as

Z ≈ Z0ε
z ≈ Z′

0ξ
−z/ν, Z′

0 = Z0ξ
z/ν

0 , (16)

where the correlation length ξ grows as

ξ ≈ ξ0ε
−ν, (17)

with z and ν being the critical exponents. However, for finite
values of L, any critical enhancement is restricted and Z is
smooth and analytic. Such finite-size effects may appear as a
difficulty in understanding results from computer simulations.
However, this problem can be tackled by writing down the
finite-size scaling ansatz [7], thus accounting for the size
effect, as

Z ≈ Y (x)εz = Y ′(x)ξ−z/ν . (18)

In Eq. (18), Y (x) is the finite-size scaling function that depends
upon the scaled variable x = L/ξ and is independent of system
size. Note that Y and Y ′ differ by a factor originating from the
different amplitudes Z0 and Z′

0 used in Eq. (16). In further
discussion, however, we will remove the primes from both
Z0 and Y and a distinction can be derived from whether the
scaling forms are written in terms of ε or ξ .

At this stage, it is important to ask about the behavior of Y

as a function of x. While for static quantities such a question is
already addressed, for dynamics, where the finite-size effects
are found [47] to be much stronger, there is no appropriate
understanding of the variation of Y (x). Nevertheless, one can
write down the following limiting behaviors:

for x → 0(ξ → ∞; L < ∞), Y (x) ∼ x−z/ν, (19)

such that Z is finite at criticality,

Z ∼ L−z/ν . (20)

Equation (20), when compared with Eq. (16), is consistent
with the fact that the only important length in the problem at
criticality is ξ , and it must scale with the varying system size
L. Keeping this important fact in mind, in fact, one can write
(18) as

Z ≈ Y (x)L−z/ν . (21)

On the other hand,

for x → ∞(L → ∞,ε > 0), Y (x) = Z0, (22)

so that Eq. (16) is recovered in the thermodynamic limit.
With the knowledge of ν, Eq. (20) can be used to estimate

z by calculating Z at Tc for various system sizes. A better
strategy, however, is to study Z at finite-size critical points
T L

c , such that

Z|T L
c

∼ L−z/ν, T L
c − Tc ∼ L−1/ν, (23)
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FIG. 4. (a) Plot of average domain size �(t), obtained from
Eq. (10), for the 2 − d Ising model, for different system sizes
(indicated on the figure) at T = 0.6Tc. Definitions of �max and tL

eq

are demonstrated. Data for L = 32 and L = 64 were averaged over
1000 independent initial configurations, whereas only 40 different
initial realizations were used for L = 128. Note that all subsequent
results in this paper are obtained at the same temperature as this. (b)
Demonstration of the scaling behavior (29) in d = 2 and 3.

although the true meaning of a critical point can be assigned
to T L

c only in the limit L → ∞.
This general discussion about the finite-size scaling method

could be used to construct the similar formalism for the
nonequilibrium domain coarsening problem, where �(t) is the
variable analogous to ξ and 1/t is analogous to ε. In the present
problem, �(t) should scale with L, more precisely �max ∼ �(t),
where �max(L) is the equilibrium domain size and proportional
to the system size L. In Fig. 4(a), we show plots of �(t) versus
t for various values of L, in d = 2. The flat regions in the plots
at late times correspond to �max.

At this stage, we would like to quantify the domain growth
in an infinite system as

�(t ′) = �0 + At ′α, (24)

where �0 is temperature dependent (as is the amplitude A)
and could possibly be interpreted as the average cluster size
when the system becomes unstable to fluctuations at time t0
since the quench or the domain length at t0 when the system
enters the scaling regime. Of course our measurement of time
starts from there, i.e., t ′ = t − t0. Note that we are reluctant

to assign a meaning of domain size to this quantity and
this should be treated in a manner similar to a background
quantity in critical phenomena that appears from small length
fluctuations whose temperature variation is usually neglected.
Having said that, the scaling part in Eq. (24) is only At ′α .
Of course, when �(t ′) is significantly large, subtraction of the
microscopic length �0 does not result in a noticeable difference.
However, in computer simulations, where one deals with small
systems, the presence of �0 can result in completely different
conclusions.

Equation (24) is valid only in the absence of any finite-size
effect. For a finite �max(L), analogous to (18), one can write
down the scaling ansatz as

�(t ′) − �0 = Y (x)t ′α, (25)

where now

x = �max − �0

t ′α
(26)

is the scaling variable. In both Eqs. (25) and (26), �0 is
subtracted to deal with the scaling parts only. By observing
(16), (19), and (22), as well as (24), (25), and (26), one can
arrive at the limiting forms of Y (x) as

Y (x) ≈ x, for x → 0(t ′ → ∞,�max < ∞), (27)

and

Y (x) = A, for x → ∞(t ′ < ∞,�max → ∞). (28)

Of course, it would again be interesting to learn about the full
form of Y (x).

Also, analogous to T L
c in critical phenomena, one can define

a finite-size equilibration time tLeq that is needed to reach �max,
as demonstrated in Fig. 4(a). Then one can write down a scaling
equation analogous to (23) as

[�max − �0] ∼ tLeq
1/3

. (29)

This scaling behavior is demonstrated in Fig. 4(b), where we
show plots of �max versus tLeq on a logarithmic scale, in both
d = 2 and d = 3. Consistency of the simulation data with
the solid line of the form (29) confirms the validity of this
approach. Note that in this figure, we did not subtract �0

and the corresponding microscopic time from the abscissa.
As will be seen later, �max for the systems considered here
are significantly larger than �0, so one does not expect a big
difference after subtracting. Equation (29) is analogous to the
one used to obtain the equilibrium dynamic critical exponent
from simulations done at criticality [16], viz., the relaxation
time τ ∼ Lz.

III. SIMULATION RESULTS AND ANALYSIS

Having set the methodology in place, in this section we
present results from the MC simulation of the Kawasaki-Ising
model in d = 2 and 3, combined with the finite-size scaling
analysis.

A. Results in d = 2

In Fig. 5, we present snapshots during the evolution of an
Ising system, starting from a 50:50 random mixture of up and
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FIG. 5. Evolution snapshots from different times, as indicated, for
the Kawasaki-Ising model in d = 2 at T = 0.6Tc. The last snapshot
corresponds to a completely equilibrated configuration.

down spins, obtained via a MC simulation at temperature T =
0.6Tc. The times at which the shots were taken are mentioned
on the figure. While the last snapshot corresponds to a situation
when A and B phases are completely separated, the one at t =
3.5 × 105 MCS represents the situation when the finite-size
effect began to enter, which will be clear from our subsequent
discussion.

From Fig. 4(a), by observing that the data for smaller
systems are following the ones for larger systems almost all
the way up to the saturation value, it is already evident that the
finite-size effect is rather weak. However, for a quantitative
statement and to gain detailed information about the growth
exponent, more sophisticated analysis is called for. Following
the discussion in the previous section, in Fig. 6 we plot
Y = [�(t ′) − �0]/t ′α as a function of x/(x + x0). Note that
x0 was introduced to see the behavior of Y properly both for
small and large x. For convenience we set it to 5. In this
exercise we have varied α and �0 (or the microscopic time t0
associated with this length) to get the optimum collapse of data
from different system sizes. In Fig. 6(a), where �(t) is being
used from Eq. (10), the optimum data collapse is obtained for
�0 � 4a (average cluster size after 20 MCS since quench),
with a being the lattice spacing and α � 0.33. A similar
exercise when �(t) is being obtained from Eq. (12), as shown
in Fig. 6(b), gives α � 0.35 and �0 there corresponds to the
same number of MCS after quench. Note that �0 in our analysis
is a bare length, independent of time, and the scaling behavior
(25) will be obtained when this is chosen appropriately. These
numbers, as expected, provides a constant value of Y (x) in
the region unaffected due to finite system size, which should
be identified with the growth amplitude A for which we
quote 0.29 ± 0.01 [cf. Fig. 6(a)]. The arrows in Fig. 6 marks
the location where Y (x) starts deviating from its constant value.
The sharp nature of the crossover is indicative of only small
size effects. Essentially, finite-size effects that can affect the

FIG. 6. (a) Finite-size scaling plot of Y , with �0 = 3.6 lattice
constants (after 20 MCS from the quench time) and α � 0.33, as
a function of x/(x + x0),x0 = 5. The continuous curve is a fit to
Eq. (31), with the best fit parameters mentioned in the text. The arrow
roughly marks the appearance of the finite-size effect. Note that the
�(t) data used here were obtained from Eq. (10). (b) Same as (a), but
�(t) were obtained from the first zero crossing of C(r,t) [cf. Eq. (12)].
In this case, �0 � 2.7 lattice constants (at 20 MCS from quench) and
α � 0.35.

observation of expected growth law, if not appropriately taken
care of, appear very late, viz., when

�(t) = (0.75 ± 0.05)�max, (30)

which we quantified from the location of the arrow marks.
Of course, this value is significantly large compared to the
earlier understanding and expectation. Note that the snapshot
at t = 3.5 × 105 MCS in Fig. 5 corresponds to this length.

In an attempt to learn the full form of Y (x), we construct
the following functional form:

Y (x) = Ax

x + 1/(p + qxβ )
, (31)

that has limiting behaviors consistent with (27) and (28). The
continuous lines in Figs. 6(a) and 6(b) are fits to the form (31),
with

A � 0.29, p � 3, q � 6400, β = 4, (32)

and

A � 0.14, p � 7, q � 13700, β = 4, (33)
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FIG. 7. Plot of [�(t ′) − �0]−3 vs. 1/t ′, and �(t)−3 versus 1/t , for
L2 = 642, with �(t) being calculated from Eq. (10). The continuous
line has slope 39 = 1/A3.

and thus have the convergence

(x → ∞)Y (x) ≈ A(1 − f x−n), n = 5. (34)

Of course, the possibility of an exponential correction cannot
be ruled out. This may be compared with a much slower
convergence of such function in dynamic critical phenomena
[47]. Note that the understanding of the finite-size effect in
both equilibrium and nonequilibrium dynamics is a nontrivial
task and significant attention is called for.

A direct view of what happens after the corrective measure
has been taken, in terms of subtraction of �0, is shown in
Fig. 7 where we plot [�(t ′) − �0]−3 versus 1/t ′, and �(t)−3

versus 1/t , for L = 64. A logarithmic scale was used to bring
visibility to a wide range of data. The linear behavior of the
data after subtracting �0, starting from the very early time,
justifies the introduction of �0 again. The continuous line there
is a plot of the form Ãx with Ã � 39 = 1/A3. On the other
hand, notice the strong curvature when �0 is not subtracted.
The dashed lines marked by 1/t and ( 1

t
)3/5 on this figure

correspond to �(t) ∼ t1/3 and t1/5, respectively. Thus, when �0

is not appropriately subtracted, by only observing the trend on
a log-log plot, one may be misled to conclude that there is a
gradual crossover from one regime to the other. Even though
a surface-diffusion dominated regime leading to t1/4 growth
appears to be missing at this temperature, it remains to be
checked at lower temperature. (See Ref. [48] for a discussion
of a crossover from t1/4 to t1/3.) Note that the exercise here,
as well as the one in Fig. 6, where Y is very flat from very
early time all the way to the moment when the finite-size
effect enters, is already indicative of the absence of any strong
corrections to scaling.

Before moving ahead for another proof of the evidence
for the absence of negligible corrections to scaling, we first
show the scaling plot of C(r,t) in Fig. 8, where good quality
data collapse is obtained starting from the very beginning until
t = 3 × 105 MCS, when the finite-size effect begins. Next we
introduce a length �s to write

�′(t ′) = �(t ′) − �s = [�0 − �s] + At ′α, (35)

FIG. 8. Scaling plot of C(r,t) at T = 0.6Tc. Note that �(t) was
obtained using Eq. (10).

and calculate the instantaneous exponent [20]

αi = d[ln �′(t ′)]
d[ln t ′]

, (36)

to obtain

αi = α

[
1 − �0 − �s

�′(t ′)

]
. (37)

In accordance with Eq. (37), when αi is plotted as a function
of 1/�′(t ′), for �′(t ′) > 0, one expects the linear behavior with
a y intercept equal to α. Figure 9(a) shows such plots for
�s = 0.0,3.6, and 5.0, as indicated. The dashed lines have a y

intercept, α = 1/3, and slopes

m = −�0 − �s

3
. (38)

In this exercise essentially we have, by force, invoked different
initial lengths into the average domain size, which results in
different slopes in the instantaneous exponent when plotted
versus inverse length. The consistency of the slopes with (38)
(represented by dashed lines) is interesting. Particularly the
behavior of αi for �s = 3.6 again speaks to the choice of �0

and indicates that the LS scaling regime is realized very early.
In Fig. 9(b), we present results with �s = 3.6 for various system
sizes L2 = 162,322, and 642. In all of the cases, αi oscillates
around 1/3. This observation, using a system size as small as
L2 = 162, stresses against the unnecessary attempt to simulate
larger systems.

This result is in strong disagreement with the earlier [20]
understanding of domain coarsening, in a 2 − d conserved
Ising model for critical quench, that α is strongly time
dependent and the LS value is recovered only asymptotically as
�(t) → ∞. The route to this finite-time correction was thought
to be an additional term, ∝ 1/�(t)3, in Eq. (5) [cf. Eq. (9)],
accounting for an enhanced interface conductivity. Note that
the term ∝ 1/�(t)3 could also be motivated by introducing a
curvature dependence in σ as

σ [�(t)] = σ (∞)

1 + 2δ
�(t)

, (39)

with δ being the Tolman length [49]. However, our observation
of a negligible correction to the exponent, starting from the
very early time, is consistent with the growing evidence [50,51]
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FIG. 9. (a) Plot of instantaneous exponent αi as a function of
1/�′(t ′) for three different choices of �s as indicated, with L2 = 642.
The dashed straight lines have slopes −1.19,0, and 0.49, respectively.
(b) Plot of αi vs. 1/�′(t ′) for �s = 3.6 and L2 = 162,322, and 642. In
both (a) and (b), the arrows on the ordinate mark the value α = 1/3.
Note that �(t) was calculated from Eq. (10). All data sets correspond
to averaging over 1000 independent initial conditions.

that the Tolman length is absent in a symmetrical model [52],
where the leading correction is of a higher order. Also, small
corrections that may be present, coming from the curvature
dependence of the kinetic prefactor in Eq. (5), is beyond the
accuracy of data in the present work. On the other hand,
for a 50:50 composition, since the domain boundaries are
essentially flat starting from very early time, any curvature
dependence is expected to be absent. Thus, we conclude that
this misunderstanding about the strong time dependence in α

was due to the presence of a time-independent length �0 in
�(t), which our analysis subtracts out in an appropriate way.

B. Results in d = 3

In this subsection, we turn our attention to the kinetics of
phase separation in d = 3. Figure 10 shows 3 − d snapshots
of the time evolution of the Kawasaki-Ising model at four
different times, as indicated on the figure where the last
snapshot is clearly seen to have been equilibrated. Analogous
to d = 2, all results presented here were obtained at T = 0.6Tc,
with Tc = 4.51kBT /J in this case, and the composition was
chosen to be 50:50 as well.

In Fig. 11(a), we present direct plots of �(t) as a function
of t , for L3 = 163,323, and 643, where �(t) was calculated

FIG. 10. (Color online) Evolution snapshots from different times
for a 3 − d Ising model with L3 = 323 and T = 0.6Tc. A and B
particles are marked dark green and light gray, respectively.

from Eq. (12). Again, the finite-size effects look to be small.
In Fig. 11(b), we present a plot of Y (x), using the data in
Fig. 11(a), as a function of x/(x + x0), x0 = 5. The best
data collapse in this case was obtained for �0 = 2.5 [10
MCS after the quench; note that the corresponding value
of �0 from Eq. (10) is 3.0 and α � 0.315] and α � 0.35.
The very flat behavior of Y (x), starting from the beginning
again, speaks to the absence of any strong correction to
the growth law. However, compared to the d = 2 case, one
may expect a slightly stronger correction here because of the
inherent curvature present in the cylinder-like domain objects,
as opposed to the stripelike structures in d = 2. Possibly
because of that, we could not obtain a good collapse of
the data from L3 = 163 on top of the ones presented, since
the whole data set for L3 = 163 is from very early time
and suffers from corrections. The onset of the finite-size
effect, as obtained from the arrow mark where Y (x) deviates
from the flat behavior, is in quantitative agreement with the
two-dimensional situation, as quoted in Eq. (30). Here also
the third snapshot in Fig. 10 (at t = 105 MCS) is presented
at this onset. A fitting, shown by the continuous line, to the
form (31) (A = 0.24, p � 4, q � 13050, and β = 4), again
is consistent with asymptotic convergence (34).

In Fig. 12(a), we present the instantaneous exponent αi as
a function of 1/�′(t ′) for L3 = 643 and three choices of �s ,
as indicated. In all the cases, the exponent fluctuates around
the mean value 0.34. Note that α estimated from S(k,t) and
P (�d,t) are slightly higher and lower, respectively, compared
to the one presented.

The appearance of growing oscillation in αi , seen in Figs. 9
and 12, around the mean value is due to a lack of statistics and
was also pointed out by Shinozaki and Oono [30]. The results
could be made smoother by considering a bigger system size
[see Fig. 9(b)] or averaging over a large number of systems
[Fig. 12(b)]. In a finite system, as time increases, for an
extended period of time, two large neighboring domains of the
same sign may not merge, thus lowering the value of α. After a
long time, when two large domains merge, it results in a drastic
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FIG. 11. (a) Plot of �(t) obtained from the first zero crossing of
C(r,t) vs. t for the systems L3 = 163, 323, and 643. (b) Finite-size
scaling plot of Y for the data presented in (a) vs. x/(x + x0) with x0 =
5. Here t0 = 10 (10 MCS from the quench) and α = 0.35. Appearance
of the finite-size effect, obtained from the arrow mark, is estimated
to be at �(t) � 0.7�max, which is in close agreement with the one for
d = 2.

enhancement in the value of α. This character is in fact visible
in the direct plot of �(t) versus t at late times [cf. L = 128 in
Fig. 4(a) and L = 64 in Fig. 11(a)]. Note that this oscillation
could be a route to an error if one obtains α from least square
fitting without choosing the range appropriately. Finally, it will
be interesting to know the temperature dependence of �0 and
amplitude A as well as of finite-size effects. All these, however,
we leave for future work.

IV. SUMMARY

This paper contains a comprehensive study of domain
coarsening in a phase-separating system with diffusive dynam-
ics in d = 2 and d = 3. Various ways of analysis give results
for a growth law consistent with the expected LS exponent
α = 1/3. As opposed to the earlier understanding, correction
appears to be very weak, thus LS scaling behavior is realized
very early. A weak finite-size effect is a welcome message,
which is suggestive of avoiding large systems, and instead
focusing on accessing the long-time scale, which often is
necessary for systems exhibiting multiple scaling regimes.

Our observation should be contrasted with an earlier study
of Heermann et al. [9] that reports a very strong finite-size

FIG. 12. (a) Plot of instantaneous exponent αi vs. 1/�′(t ′) with
three different values of �s = 0, 2.5, and 5. The dashed lines
correspond to α = 0.34. The arrow on the ordinate marks the value
α = 1/3. The data presented here correspond to L = 64 and were
obtained from averaging over 150 initial configurations. (b) Plot of αi

vs. 1/�′(t ′) for �s = 0, showing a reduction of noise when averaged
over a larger number of initial configurations (IC).

effect. However, this latter study was based on an extremely
off-critical composition and should not be considered to have
general validity. Note that due to the expected presence of
correction in such off-critical composition, where dropletlike
structures form with a finite radius of curvature at early time,
the analysis is more difficult. Also, one should be prepared to
encounter a stronger size effect in more complicated situations,
e.g., systems exhibiting anisotropic patterns [35–39,41,42].

One may of course ask if the small finite-size effect
observed for diffusive dynamics is also valid for the kinetics
of phase separation in fluids. A comprehensive study in that
direction, for both binary- and single-component fluids, is
in progress. In fact, preliminary findings from these latter
studies are suggestive of a more general validity of the results
presented here. Such studies are important since the brute
force method of simulating very large systems, particularly
for the study of fluid phase separation via MD simulation,
is not often helpful to access long-time scales, even with the
present day high speed computers, and thus may not result in
a very conclusive understanding.

A deeper understanding of �0 requires further study;
particularly, how the system is led to instability is a
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fundamental question to be asked. Studies with different initial
configurations and quenching to different temperatures should
be able to provide a better understanding of this quantity. Even
though scaling corrections appear to be negligible for critical
quench due to the flat nature of the domain boundaries, one
expects corrections for off-critical composition. This expected
correction coming from surface tension should be of a higher
order than the linear one for a symmetric model. On the other
hand, it would be interesting to learn about the leading order
correction coming from the kinetic prefactor.

Finally, we expect the observations, understanding, and
finite-size scaling technique used in this work to find relevance
in other, systems exhibiting growing length scales, e.g.,

ordering in ferromagnets, surface growth, clustering in cooling
granular gas, dynamic heterogeneity in glasses, etc. In line
with this work, many earlier studies on domain coarsening
may need to be revisited for a better understanding, which was
not possible because of a lack of reliable methods of analysis.
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