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We study the critical behavior of the free energy and the thermodynamic Casimir force in a Ld−1
‖ × L block

geometry in 2 < d < 4 dimensions with aspect ratio ρ = L/L‖ on the basis of the O(n) symmetric ϕ4 lattice
model with periodic boundary conditions and with isotropic short-range interactions. Exact results are derived in
the large-n limit describing the geometric crossover from film (ρ = 0) over cubic (ρ = 1) to cylindrical (ρ = ∞)
geometries. For n = 1, three perturbation approaches in the minimal renormalization scheme at fixed d are
presented that cover both the central finite-size regime near Tc for 1/4 � ρ � 3 and the region well above and
below Tc. At bulk Tc, we predict the critical Casimir force in the vertical (L) direction to be negative (attractive)
for a slab (ρ < 1), positive (repulsive) for a rod (ρ > 1), and zero for a cube (ρ = 1). Our results for finite-size
scaling functions agree well with Monte Carlo data for the three-dimensional Ising model by Hasenbusch for
ρ = 1 and by Vasilyev et al. for ρ = 1/6 above, at, and below Tc.
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I. INTRODUCTION AND OVERVIEW

In the theory of finite-size effects near phase transitions,
the study of critical Casimir forces [1] has remained on a
highly active level over the past two decades [2]. Close to
criticality and for sufficiently large confining lengths, such
forces are predicted to exhibit universal features in the sense
that, for isotropic systems with short-range interactions, their
scaling functions depend only on the geometric shape, on the
boundary conditions (BC), and on the universality class of
the system. For anisotropic systems of the same universality
class (e.g., lattice systems with noncubic symmetry such as
anisotropic superconductors [3]), however, two-scale factor
universality [4] is absent [5–10] and the critical Casimir forces
are nonuniversal as they depend on the lattice structure and
on the microscopic couplings through a matrix of nonuni-
versal anisotropy parameters. This implies that the Casimir
amplitudes at bulk Tc depend, in general, on d(d + 1)/2 − 1
nonuniversal parameters in d-dimensional anisotropic systems
with given shape and given BC [5–9]. This prediction is readily
testable by Monte Carlo (MC) simulations of anisotropic spin
models; it was also noted in [7] that experiments in anisotropic
superconducting films [3] could, in principle, demonstrate
the nonuniversality of the critical Casimir force [11]. A
corresponding nonuniversality of the Binder cumulant [4,17]
has been predicted [5,7] and has been confirmed by MC
simulations for the anisotropic Ising model [18].

In this paper, the focus is on isotropic systems with periodic
BC for the (n = 1) Ising universality class on the basis of the
O(n) symmetric ϕ4 lattice model.

Theoretical studies (beyond mean-field theory) of the
Casimir force in such systems have been restricted to ∞d−1 ×
L (film) geometry within the ε = 4 − d expansion above and
at Tc [19–21]. The most interesting region, however, is the
region below Tc where the scaling function of the Casimir force
displays a characteristic minimum as detected by MC simu-
lations [16,22]. A basic difficulty in treating an infinite film
system (for n = 1) below Tc is the existence of a film transition
at a separate critical temperature Tc,film < Tc just in the region
of the minimum of the Casimir force [23]. A quantitative theory
of the corresponding dimensional crossover between different

critical behavior of the d-dimensional bulk transition at Tc and
the d − 1 dimensional film transition at Tc,film constitutes an
as yet unsolved problem, except for the case of the Gaussian
model [8].

In this paper, we circumvent the problem of dimensional
crossover by studying a finite Ld−1

‖ × L block geometry with
finite aspect ratio ρ = L/L‖ [24]. This geometry includes slab
(0 < ρ < 1), cubic (ρ = 1), and rodlike (ρ > 1) geometries
(Fig. 1). The practical relevance of the slab geometry is based
on the facts (i) that all experiments and all MC simulations
have necessarily been performed at finite ρ rather than at
ρ = 0, (ii) that the shape of the finite-size scaling function
of the Casimir force depends on the aspect ratio ρ only weakly
in the regime ρ � 1 [16,22], and (iii) that the singularity of
the free energy and the Casimir force at Tc, film for ρ = 0 is
only very weak, such that recent MC data [16] could not detect
this singularity. (By contrast, the logarithmic divergence of the
specific heat for ρ = 0 near Tc, film should be well detectable.)
This justifies the description of the main features of the film
system above and below Tc, to a good approximation, by a
finite slab geometry with small but finite aspect ratio. As
an interesting by-product of our theory, the dependence on
the aspect ratio for larger ρ is obtained, which permits us
to describe the geometric crossover from slab (ρ � 1) over
cubic (ρ = 1) to rodlike (ρ � 1) geometries. The geometric
crossover from block to cylindrical (ρ = ∞) geometries has
been studied earlier near first-order transitions by Privman and
Fisher [25]. In this context, we note that systems with ρ � 1
are of experimental interest in the area of finite-size effects
near the superfluid transition of 4He [26,27]. Furthermore,
finite-size theories for block geometries are directly testable
by MC simulations.

The finite-block system is conceptually simpler than the
infinite film system because of a considerable technical
advantage: For finite 0 < ρ < ∞, the system has a discrete
mode spectrum with only one single lowest mode, in contrast
to the more complicated situation of a lowest-mode continuum
in film (ρ = 0) or cylinder (ρ = ∞) geometry. This opens up
the opportunity of building upon the advances that have been
achieved in the description of finite-size effects in systems that
are finite in all directions [7,28–31]. It is not clear a priori,
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FIG. 1. (Color online) Three-dimensional L2
‖ × L block geome-

tries with aspect ratio ρ = L/L‖: (a) slab (ρ < 1), (b) rod (ρ > 1).
Arrows: critical Casimir force (2.15). Our theory (in Secs. III–V)
predicts that, for isotropic systems with periodic BC and short-range
interactions, FCasimir,s at bulk Tc is negative (attractive) for a slab,
positive (repulsive) for a rod, and zero for a cube (ρ = 1).

however, in what range of ρ such a theory is reliable since,
ultimately, for sufficiently small ρ � 1 or sufficiently large
ρ � 1, the concept of separating a single lowest mode must
break down. Therefore, as a crucial part of our theory, it is
necessary to provide quantitative evidence for the expected
range of applicability of our theory at finite ρ. This is
one of the reasons why we also consider (in Sec. III) the
large-n limit, the exact results of which turn out to be helpful
in estimating the range of validity of our approximate results
for n = 1.

As we shall present three different perturbation approaches
with different ranges of applicability for the case n = 1, we
give here a brief overview of our strategy. The basic physical
quantity is the singular part of the excess free energy density
f ex

s . On the basis of previous work [7,32], it is expected that,
for our isotropic system with a finite volume Ld−1

‖ × L, there
exist three different regimes (a), (b), and (c) for the finite-size
critical behavior of the excess free energy f ex

s . These different
regimes correspond to the three regions in Fig. 2 that are
separated by the dashed lines:

(a) The regime well above Tc that includes an exponential
size dependence f ex

s ∼ exp(−L/ξe+) or f ex
s ∼ exp(−L‖/ξe+)

for large L/ξe+ � 1 and L‖/ξe+ � 1, with ξe+ being the
exponential (“true”) bulk correlation length [7,33,34] above
Tc; in this regime, f ex

s is expected to tend to zero in the
high-temperature limit at finite L and L‖ or in the limit of
large L and L‖ at fixed temperature T > Tc.

(b) The central finite-size regime near Tc that includes the
power-law behavior f ex

s ∼ L−d or f ex
s ∼ L−d

‖ for large L

at fixed L/ξ±, 0 � L/ξ± � O(1) and for large L‖ at fixed
L‖/ξ±, 0 � L‖/ξ± � O(1) above, at, and below Tc, where
ξ± is the second-moment bulk correlation length.

(c) The regime well below Tc that includes an exponential
size dependence ∼exp(−L/ξe−) or ∼exp(−L‖/ξe−) for large
L/ξe− � 1 and L‖/ξe− � 1 with ξe− being the exponential
(“true”) bulk correlation length [7,33,34] below Tc; in this
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FIG. 2. Schematic plot of the asymptotic part of the L−1/ν − t

plane, with t ≡ (T − Tc)/Tc, for the ϕ4 model with n = 1 and with
isotropic interactions on a simple-cubic lattice with lattice spacing
ã in a Ld−1

‖ × L block geometry with periodic boundary conditions
and finite aspect ratio ρ = L/L‖. In the central finite-size region
(above the dashed lines), the lowest mode must be separated, whereas,
outside this region (below the dashed lines), ordinary perturbation
theory is applicable. Above the shaded region, universal finite-size
scaling is valid for isotropic systems. In the large-L regime at t �= 0
(shaded region), the exponential form of the size dependence violates
both finite-size scaling and universality because of a non-negligible
dependence on the lattice spacing ã. An analogous plot applies to the
L

−1/ν

‖ -t plane.

regime, f ex
s is expected to have an exponential decay toward

a finite value −V −1 ln 2 in the low-temperature limit at finite
volume V [32] and to tend to zero in the limit of large volume
at fixed temperature T < Tc.

For a description of the cases (a) and (c), ordinary
perturbation theory with respect to the four-point coupling
u0 of the ϕ4 theory is sufficient. This ordinary perturbation
approach is applicable to the regions below the dashed lines
in Fig. 2. This approach will be presented in Sec. VI. For the
case (b), a separation of the lowest mode and a perturbation
treatment of the higher modes is necessary [7,28–31]. This
approach is applicable to the region between the dashed lines
in Fig. 2, which we refer to as the central finite-size regime. In
Secs. IV and V, we treat the case (b) in 2 < d < 4 dimensions
on the basis of the ϕ4 lattice model in the minimal renor-
malization scheme at fixed dimension d [35]. We consider a
simple-cubic lattice with isotropic short-range interactions. We
shall demonstrate that our different perturbation approaches
complement each other and that the corresponding results
match reasonably well at intermediate values of the scaling
variables. As will be shown in Secs. V and VI, these results
agree well with Monte Carlo data for the three-dimensional
Ising model by Hasenbusch for ρ = 1 [36] and by Vasilyev
et al. for ρ = 1/6 [16] above, at, and below Tc.

We shall see that in all regimes (a)–(c), universal finite-
size scaling [37] of isotropic systems is valid, except for the
regions that are indicated by the shaded areas in Fig. 2, where
the exponential form of the size dependence violates both
finite-size scaling and universality because of a non-negligible
dependence on the lattice spacing ã. The boundaries of the
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shaded areas are not sharply defined; they are approximately
determined by L 	 24ξ 3

±/ã2. This issue will be discussed in
Sec. VI D.

II. MODEL AND BASIC DEFINITIONS

We start from the O(n) symmetric ϕ4 lattice Hamiltonian
divided by kBT :

H = ãd

[
N∑

i=1

(
r0

2
ϕ2

i + u0
(
ϕ2

i

)2
)

+
N∑

i,j=1

Ki,j

2
(ϕi − ϕj )2

]
,

(2.1)

r0(T ) = r0c + a0t, t = (T − Tc)/Tc, (2.2)

with a0 > 0, u0 > 0 where Tc is the bulk critical temperature.
The variables ϕi ≡ ϕ(xi) are n-component vectors that rep-
resent the internal degrees of freedom of N particles on N

lattice points xi of a d-dimensional simple-cubic lattice with
lattice constant ã and with periodic boundary conditions. The
components ϕ

(μ)
i , μ = 1,2, . . . ,n of ϕi , vary in the continuous

range −∞ � ϕ
(μ)
i � ∞. We consider a finite rectangular

Ld−1
‖ × L block geometry of volume V = Ld−1

‖ L with the
aspect ratio

ρ = L

L‖
. (2.3)

This block geometry includes the shape of a cube (ρ = 1),
of a finite slab (0 < ρ < 1), and of a finite rod (1 < ρ < ∞)
(Fig. 1).

The free energy per component and per unit volume divided
by kBT is

f (t,L,L‖) = −(nV )−1 ln Z(t,L,L‖), (2.4)

where

Z(t,L,L‖) =
[

N∏
i=1

∫
dnϕi

ãn(2−d)/2

]
exp (−H ) (2.5)

is the dimensionless partition function. The bulk free energy
density per component divided by kBT is obtained by

fb(t) = lim
L→∞

lim
L‖→∞

f (t,L,L‖). (2.6)

The film free energy density per component divided by kBT

is obtained by taking the limit L‖ → ∞ at fixed finite L (i.e.,
ρ → 0):

ffilm(t,L) = lim
L‖→∞

f (t,L,L‖), (2.7)

corresponding to an ∞d−1 × L geometry. Our model also
includes the limit L → ∞ at fixed finite L‖ (i.e., ρ → ∞)
corresponding to an Ld−1

‖ × ∞ geometry, which we shall refer
to as cylinder geometry

fcyl(t,L‖) = lim
L→∞

f (t,L,L‖). (2.8)

The excess free energy density per component divided by
kBT is

f ex(t,L,L‖) = f (t,L,L‖) − fb(t). (2.9)

For the finite Ld−1
‖ × L system, we define the Casimir force

per unit area and per component in the dth (vertical) direction
(Fig. 1) as

FCasimir(t,L,L‖) = −∂[Lf ex(t,L,L‖)]

∂L
, (2.10)

where the derivative is taken at fixed L‖. There exist, of
course, also Casimir forces in the d − 1 horizontal directions.
Our approach is well suited to calculate such forces. This will
not be performed in this paper.

An important simplification of our model Hamiltonian (2.1)
is the assumption of a rigid lattice with a rigid rectangular
shape representing an idealized model system with a vanishing
compressibility. The same assumption is made in lattice
models on which previous Monte Carlo simulations of the
Casimir force are based (see [2,12,16]). As a consequence, the
number N of particles and the length L are directly related
by N = Ld−1

‖ L/ãd . Thus, the derivative with respect to L (at
fixed L‖, fixed ã, and at fixed couplings Kij and u0) in (2.10)
is equivalent to a derivative with respect to the number of
horizontal layers of the lattice, i.e., number of particles. Such
a definition of the Casimir force is appropriate when the
ordering degrees of freedom (particles in fluid films [2,12,16]
or Cooper pairs in superconducting films [3]) can move in
and out of the film system without significantly changing the
mean interparticle distance in the system. The definition (2.10)
is, however, not appropriate for systems with a fixed number
of ordering degrees of freedom. It appears that this is the
reason why it was claimed in [12] that the Casimir force “is
not a measurable quantity for magnets.” For similar claims,
see [38]. There exist, however, long-ranged critical fluctuations
of elastic degrees of freedom coupled to the order parameter in
condensed matter systems with a finite compressibility (such as
magnetic materials [13], alloys [15], and solids with structural
phase transitions [14]), which give rise to L-dependent critical
Casimir forces that are not contained in a description based
on rigid-lattice models of the type (2.1). A description of
such thermodynamic Casimir forces is provided by coupling
the variables ϕi in (2.1) to the elastic degrees of freedom
[13,15,39], in which case the free energy density f (t,L,L‖,N )
depends on both the length L and the number N of particles
as independent thermodynamic variables. Such a model
is relevant for the calculation of an L-dependent elastic
response to the critical Casimir force (e.g., an L-dependent
contribution to magnetostriction). In the case of a compressible
system, the number N of particles of which is fixed, the
L-dependent thermodynamic Casimir force is given by

FCasimir(t,L,L‖,N ) = −∂[Lf ex(t,L,L‖,N )]

∂L
, (2.11)

where now the derivative is taken at fixed t, L‖, and N .
In such systems, anisotropy effects on the critical Casimir
force are expected to play an important role. Equation (2.11)
complements our arguments presented in [11]. As we consider
the thermodynamic Casimir effect as a finite-size effect,
our definition (2.11) does not include the bulk part of the
total thermodynamic force −∂[Lf (t,L,L‖,N )]/∂L, which
may give rise to measurable elastic bulk effects (such as a
bulk contribution, e.g., to magnetostriction). Here, we shall
not further discuss this extension to systems with a finite
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compressibility, which is beyond the scope of this paper, the
focus of which is on isotropic incompressible systems.

For small |t |, the bulk free energy density (2.6) can be
uniquely decomposed into singular and nonsingular parts

fb(t) = fb,s(t) + fb,ns(t). (2.12)

For large L/ã, L‖/ã, and small |t |, a corresponding assumption
is made [4] for

f (t,L,L‖) = fs(t,L,L‖) + fns(t,L,L‖) (2.13)

and for the excess free energy

f ex(t,L,L‖) = f ex
s (t,L,L‖) + f ex

ns (t,L,L‖), (2.14)

where fns(t,L,L‖) and f ex
ns (t,L,L‖) are regular functions

of t and where fns(t,L,L‖) remains regular in the bulk
limit fns(t,L,L‖) → fb,ns(t), whereas fs(t,L,L‖) → fb,s(t)
becomes singular in this limit. It has been assumed [37] that,
for periodic BC, fns(t,L,L‖) is independent of L and L‖,
i.e., that it is identical with the regular bulk part fb,ns(t) of
fb(t). We do not know of a general proof of this property;
it appears to be valid for the ϕ4 theory in the presence
of short-range interactions Ki,j but not in the presence of
long-range correlations [7]. The critical behavior of FCasimir

can be calculated from its singular part

FCasimir,s(t,L,L‖) = −∂
[
Lf ex

s (t,L,L‖)
]

∂L
. (2.15)

For the ϕ4 lattice model with the interaction given in (2.19)
below, it is expected that f ex

ns (t,L,L‖) = 0, thus, FCasimir =
FCasimir,s , which is consistent with our results in Secs. III–VI
[see also the remark after Eq. (4.36) of [7]].

Our main goal is to study the case n = 1 at fixed finite
aspect ratio 0 < ρ < ∞, including extrapolations to the film
and cylinder geometries. For comparison and as a guide for
our extrapolations, we shall also consider the exactly solvable
limit n → ∞.

For periodic boundary conditions, the Fourier representa-
tions are

ϕ(xj ) = V −1
∑

k

eik·xj ϕ̂(k) (2.16)

and

Ki,j = K(xi − xj ) = N−1
∑

k

eik·(xi−xj )K̂(k) , (2.17)

where the summations
∑

k run over N discrete vec-
tors k ≡ (k1,k2, . . . ,kd ) with Cartesian components kα =
2πmα/L‖, α = 1,2, . . . , d − 1, and kd = 2πmd/L,mβ =
0,±1,±2, . . . , in the range −π/ã � kβ < π/ã, β =
1, . . . ,d. In terms of the Fourier components, the Hamiltonian
reads as

H = V −1
∑

k

1

2
[r0 + δK̂(k)]ϕ̂(k)ϕ̂(−k)

+ u0V
−3

∑
kpq

[ϕ̂(k)ϕ̂(p)][ϕ̂(q)ϕ̂(−k − p − q)], (2.18)

where δK̂(k) = 2[K̂(0) − K̂(k)]. We assume a simple ferro-
magnetic nearest-neighbor interaction

δK̂(k) = 2

ã2

d∑
α=1

[1 − cos(ãkα)] , (2.19)

which has the isotropic long-wavelength form

δK̂(k) = k2 + O(k4). (2.20)

Thus, it is appropriate to define a single second-moment bulk
correlation length ξ± above (+) and below (−) Tc [see, e.g.,
Eq. (3.4) of [7]]. As a reference length that is finite for both
n = 1 and ∞, we shall use the asymptotic amplitude ξ0+ of
the second-moment bulk correlation length above Tc,

ξ+ = ξ0+t−ν . (2.21)

For small |t |, the asymptotic bulk power law is fb,s(t) =
A±|t |dν . Due to two-scale factor universality for isotropic
systems [7], this can be written as

fb,s(t) =
⎧⎨⎩Q1

(
ξ−1

0+ tν
)d

for T > Tc,

(A−/A+)Q1
(
ξ−1

0+ |t |ν)d
for T < Tc,

(2.22)

with a universal constant Q1 and the universal ratio of the
specific-heat amplitudes A−/A+.

The finite-size scaling form of the singular part of the
free energy density is, for isotropic systems in the asymptotic
critical region |t | � 1, L/ã � 1, L‖/ã � 1 [7,37],

fs(t,L,L‖) = L−dF (x̃,ρ), (2.23)

where F (x̃,ρ) is a dimensionless scaling function with the
scaling variable

x̃ = t(L/ξ0+)1/ν . (2.24)

The bulk part F±
b (x̃) of F (x̃,ρ) is obtained from (2.22)

and (2.23) in the limit of large |x̃| as Ldfs(t,L,L‖) → F±
b (x̃)

with

F±
b (x̃) =

{
Q1x̃

dν for T > Tc,

(A−/A+)Q1 | x̃ |dν for T < Tc.
(2.25)

This implies the scaling form

f ex
s (t,L,L‖) = L−dF ex(x̃,ρ), (2.26)

Fex(x̃,ρ) = F (x̃,ρ) − F±
b (x̃). (2.27)

Together with (2.15), this leads to the scaling form of the
critical Casimir force for systems with isotropic interactions:

FCasimir,s(t,L,L‖) = L−dX(x̃,ρ) (2.28)

with the scaling function

X(x̃,ρ) = (d − 1)Fex(x̃,ρ) − x̃

ν

∂F ex(x̃,ρ)

∂x̃
− ρ

∂F ex(x̃,ρ)

∂ρ
.

(2.29)

These scaling functions have finite limits for ρ → 0 at fixed
L and at fixed x̃ corresponding to film geometry

ffilm,s(t,L) = L−dFfilm(x̃), (2.30)
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Ffilm(x̃) = lim
ρ→0

F (x̃,ρ), (2.31)

Fex
film(x̃) = lim

ρ→0
Fex(x̃,ρ), (2.32)

Xfilm(x̃) = lim
ρ→0

X(x̃,ρ) = (d − 1)Fex
film(x̃) − x̃

ν

∂F ex
film(x̃)

∂x̃
.

(2.33)

Note that ν denotes the bulk critical exponent and x̃ is the
scaling variable with respect to bulk criticality, not with respect
to film criticality.

In a rod-shaped geometry with ρ � 1, a representation of
the scaling form in terms of the length L‖ and of the scaling
variable

x̃‖ = t(L‖/ξ0+)1/ν, (2.34)

rather than in terms of x̃, is more appropriate. Because of

x̃ = x̃‖ρ1/ν, (2.35)

we obtain from (2.15), (2.23), (2.24), (2.26), and (2.27)

fs(t,L,L‖) = L−d
‖ �(x̃‖,ρ), (2.36)

f ex
s (t,L,L‖) = L−d

‖ �ex(x̃‖,ρ), (2.37)

FCasimir,s(t,L,L‖) = L−d
‖ 
(x̃‖,ρ), (2.38)

with the scaling functions

�(x̃‖,ρ) = ρ−dF (x̃‖ρ1/ν,ρ), (2.39)

�ex(x̃‖,ρ) = ρ−dF ex(x̃‖ρ1/ν,ρ), (2.40)


(x̃‖,ρ) = ρ−dX(x̃‖ρ1/ν,ρ)

= −�ex(x̃‖,ρ) + (1/ρ)
∂�ex(x̃‖,ρ)

∂(1/ρ)
. (2.41)

It turns out that they have finite limits for ρ → ∞ at fixed L‖
and fixed x̃‖ corresponding to cylinder geometry

fcyl,s(t,L‖) = L−d
‖ �cyl(x̃‖), (2.42)

�cyl(x̃‖) = lim
ρ→∞ �(x̃‖,ρ), (2.43)

�ex
cyl(x̃‖) = lim

ρ→∞ �ex(x̃‖,ρ), (2.44)


cyl(x̃‖) = lim
ρ→∞ 
(x̃‖,ρ) = −�ex

cyl(x̃‖). (2.45)

Quantitative results for the various scaling functions will be
presented in Sec. III for n = ∞ and in Secs. V and VI for
n = 1.

We recall that all finite-size scaling forms given in this
and in the subsequent sections are not valid in a small part
of the asymptotic region for large L (or large L‖) at fixed
t �= 0 in the L1/ν-t plane (or L

1/ν

‖ -t plane) above and below
Tc (corresponding to the shaded regions in Fig. 2) where
exponential nonscaling terms exist that depend explicitly on
the lattice constant ã. This issue will be discussed in Sec. VI.

III. LARGE-n LIMIT

A. Free energy density

By generalizing Eq. (6.30) of Ref. [7] to Ld−1
‖ × L

geometry, we obtain, for the free energy density per component

in the limit n → ∞ at fixed u0n,

f (t,L,L‖) = lim
n→∞[−(nV )−1 ln Z(t,L,L‖)]

= − ln(2π )

2ãd
− (r0 − χ−1)2

16u0n

+ 1

2V

∑
k

ln{[χ−1 + δK̂(k)]ã2}, (3.1)

where Z(t,L,L‖) is defined by (2.5) and χ (t,L,L‖)−1 is
determined implicitly by

χ−1 = r0 + 4u0n

V

∑
k

[χ−1 + δK̂(k)]−1. (3.2)

The condition χ−1 = 0 for bulk (L → ∞, L‖ → ∞) critical-
ity yields the critical value of r0 as

r0c = −4u0n

∫
k
δK̂(k)−1,

∫
k

≡
d∏

α=1

∫ π/ã

−π/ã

dkα

2π
. (3.3)

Equations (3.1) and (3.2) are valid for T � Tc (r0 � r0c)
and T < Tc (r0 < r0c). For T � Tc, the quantity χ (t,L,L‖)
represents the susceptibility per component.

B. Exact scaling functions

In the following, we present exact results for the finite-size
scaling functions F , �, Fex , �ex , X, and 
 in 2 < d < 4
dimensions. We rewrite (3.1) and (3.2) in terms of r0 − r0c =
a0t and assume large L/ã, large L‖/ã, small |r0 − r0c|ã2 � 1,
and |r0 − r0c|L2 � O(1), |r0 − r0c|L2

‖ � O(1). Evaluation of
the sums in (3.1) and (3.2) (see the Appendix) leads to the
scaling form of fs(t,L,L‖) [Eqs. (2.23) and (2.24)], where
ν = (d − 2)−1 and

ξ0+ =
(

4u0nAd

εa0

)1/(d−2)

(3.4)

with the geometric factor

Ad = �(3 − d/2)

2d−2πd/2(d − 2)
. (3.5)

For an arbitrary finite shape factor 0 < ρ < ∞, we find the
finite-size scaling function

F (x̃,ρ)= Ad

2ε

[
x̃P (x̃,ρ)2− 2

d
P (x̃,ρ)d

]
+ 1

2
G0[P (x̃,ρ)2,ρ],

(3.6)

Gj (P 2,ρ) = (4π2)−j

∫ ∞

0
dz zj−1 exp

(
−P 2z

4π2

)
×{(π/z)d/2 − [ρK(ρ2z)]d−1K(z)}, (3.7)

where P (x̃,ρ) is determined implicitly by

P d−2 = x̃ − ε

Ad

G1(P 2,ρ) (3.8)

with

K(z) =
∞∑

m=−∞
exp(−zm2). (3.9)

The earlier result of Eqs. (6.32)–(6.34) of [7] for cubic
geometry is obtained from Eqs. (3.6)–(3.8) by setting ρ = 1.
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In the film limit ρ → 0 at finite L, we obtain ρK(ρ2z) →
(π/z)1/2,

Ffilm(x̃) = Ad

2ε

[
x̃P (x̃)2 − 2

d
P (x̃)d

]
+ 1

2
G0,film[P (x̃)2],

(3.10)

Gj,film(P 2) = (4π2)−j

∫ ∞

0
dz zj−1 exp

(
−P 2z

4π2

)(
π

z

)(d−1)/2

×{(π/z)1/2 − K(z)}, (3.11)

where P (x̃) is determined implicitly by

P d−2 = x̃ − ε

Ad

G1,film(P 2). (3.12)

For n → ∞, a finite film-critical temperature 0 < Tc,film(L) <

Tc exists only in d > 3 dimensions, whereas Tc,film(L) = 0 in
d � 3 dimensions. Equations (3.10)–(3.12) are valid in the
asymptotic region near bulk Tc.

In the cylinder limit ρ → ∞ at finite L‖, we obtain
K(ρ2z) → 1, P (x̃,ρ)/ρ → Pcyl(x̃‖),

�cyl(x̃‖) = Ad

2ε

[
x̃‖Pcyl(x̃‖)2 − 2

d
Pcyl(x̃‖)d

]
+ 1

2
G0,cyl[Pcyl(x̃‖)2], (3.13)

Gj,cyl
(
P 2

cyl

) = (4π2)−j

∫ ∞

0
dz zj−1 exp

(
− zP 2

cyl

4π2

)
(π/z)1/2

×{(π/z)(d−1)/2 − [K(z)]d−1}, (3.14)

where Pcyl(x̃‖) is determined implicitly by

P d−2
cyl = x̃‖ − ε

Ad

G1,cyl
(
P 2

cyl

)
. (3.15)

In this cylinder limit, the system has an infinite extension
only in the dth direction, i.e., it is essentially one dimensional,
thus, no finite critical temperature exists in the cylinder case at
finite L‖. Equations (3.13)–(3.15) are valid in the asymptotic
region near bulk Tc.

The bulk part F±
b (x̃) of F (x̃,ρ) in the large-n limit is given

by (2.25) with Q1 = (d − 2)Ad/[2d(4 − d)] and A−/A+ =
0. Correspondingly, the bulk part of �(x̃‖,ρ) is �±

b (x̃‖) =
F±

b (x̃‖). From (2.27) and (2.40), we then obtain the scaling
functions Fex and �ex of the excess free energy density.

The scaling functions X and 
 of the Casimir force are
obtained from Fex and �ex according to (2.29), (2.33), (2.41),
and (2.45). All scaling functions are shown in Figs. 3 and 4
for several values of ρ in three dimensions, illustrating the
crossover from film geometry (ρ = 0, dotted lines in Fig. 3)
over cubic geometry (double-dotted-dashed lines) to cylinder
geometry (1/ρ = 0, dotted lines in Fig. 4). We see that,
for O(−10) < x̃ � ∞ and O(−10) < x̃‖ � ∞, the scaling
functions for slab (ρ < 1) and rod (1/ρ < 1) geometries,
respectively, provide a reasonable approximation for the
scaling functions (i) for film geometry if the shape factor
ρ is sufficiently small, and (ii) for cylinder geometry if the
inverse shape factor 1/ρ is sufficiently small. This is not
true, however, in the low-temperature limit x̃ → −∞ and
x̃‖ → −∞, respectively (see the following section).

-6 -4 -2 0 2 4 6

t (L / ξ
0+

 )
1/ν

-1

-0.8

-0.6

-0.4

-0.2

0

F
 ex

ρ = 0, film
ρ = 1/4
ρ = 1/2
ρ = 3/4
ρ = 1, cube

(a)

-4 -2 0 2 4 6

t (L / ξ
0+

 )
1/ν

-0.4

-0.3

-0.2

-0.1

0

0.1

X
ρ = 0, film
ρ = 1/4
ρ = 1/2
ρ = 3/4
ρ = 1, cube

(b)

FIG. 3. (Color online) Scaling functions (a) F ex(x̃,ρ) [Eqs. (2.27)
and (3.6)–(3.8)] and (b) X(x̃,ρ) [Eq. (2.29)] as a function of
x̃ = t(L/ξ0+)1/ν in the large-n limit in three dimensions for film
geometry (ρ = 0, dotted lines), for slab geometry (solid lines: ρ =
1/4, dashed lines: ρ = 1/2, dotted-dashed lines: ρ = 3/4), and for
cubic geometry (ρ = 1, double-dotted-dashed lines). For x̃ → −∞,
the curves in (a) with ρ > 0 diverge logarithmically toward −∞,
whereas the ρ = 0 curve in (a) has a finite low-temperature limit
−0.191. All curves in (b) have finite limits for x̃ → −∞ as given
by (3.21) and (3.23).

C. Monotonicity properties at fixed ρ

For fixed ρ, Fex(x̃,ρ) and �ex(x̃‖,ρ) are monotonically
increasing functions of x̃ and x̃‖, respectively [see Figs. 3(a)
and 4(a)]. They vanish exponentially fast for x̃ → ∞ and x̃‖ →
∞ and have logarithmic divergencies toward −∞ for x̃ →
−∞ and x̃‖ → −∞, respectively, for finite 0 < ρ < ∞.

To derive the latter property, consider the quantity P as
determined by (3.8). It is finite and positive for −∞ < x̃ < ∞
and vanishes for x̃ → −∞. More specifically, the function G1

has the divergent small-P 2 behavior G1(P 2,ρ) ≈ −ρd−1P −2

[see (A8) in the Appendix]. According to (3.8), this implies
that P 2 vanishes as P 2 ≈ εA−1

d ρd−1(−x̃)−1 for x̃ → −∞.
Thus, the behavior of F (x̃,ρ) [Eq. (3.6)] for large negative x̃

is given by

F (x̃,ρ) = Fex(x̃,ρ) ≈ − 1
2ρd−1 + 1

2G0[P (x̃,ρ)2,ρ] (3.16)
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1/ρ = 0, cylinder
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1/ρ = 1/2
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(a)

t(L /ξ0+)1/ν
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-0.1
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0.1
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0.3
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Ξ
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1/ρ = 1/4
1/ρ = 1/2
1/ρ = 1, cube

(b)

t(L /ξ0+)1/ν

FIG. 4. (Color online) Scaling functions (a) �ex(x̃‖,ρ)
[Eq. (2.40)] and (b) 
(x̃‖,ρ) [Eq. (2.41)] as a function of x̃‖ =
t(L‖/ξ0+)1/ν in the large-n limit in three dimensions for cylinder
geometry (1/ρ = 0, dotted lines), for rod geometry (solid lines:
1/ρ = 1/4, dashed lines: 1/ρ = 1/2), and for cubic geometry (1/ρ =
1, double-dotted-dashed lines). For x̃‖ → −∞, the curves in (a) with
1/ρ > 0 diverge logarithmically toward −∞, whereas the 1/ρ = 0
curve in (a) has a finite low-temperature limit −0.719. All curves in
(b) have finite limits for x̃‖ → −∞ as given by (3.22) and (3.24).

for −x̃ � 1. The function G0 has a divergent small-P 2

behavior as given by (A4) in the Appendix. The resulting
logarithmic divergency is

Fex(x̃,ρ) ≈ −1

2
ρd−1 ln

(
4π2Ad |x̃|

ερd−1

)
− 1

2
ρd−1 + 1

2
C0(ρ)

(3.17)

with C0(ρ) given by (A6). For finite 0 < ρ < ∞, Eqs. (2.35)
and (2.40) imply a corresponding logarithmic divergency of
�ex(x̃‖,ρ) for x̃‖ → −∞.

By contrast, we shall find a nonmonotonic dependence of
the scaling functions Fex and �ex on x̃ and x̃‖ for the n = 1
universality class for finite 0 < ρ < ∞ in the central finite-size
scaling regime described in Sec. V below.

For the film system in the large-n limit, we confine ourselves
to the case d = 3. We find from (3.11) that G1,film(P 2) ≈

(4π )−1 ln P 2 for small P 2 and that P 2 vanishes as P 2 ∝ ex̃

for x̃ → −∞. This implies that Fex
film(x̃) has a finite value in

the low-temperature limit [40] [compare Fig. 3(a)]

lim
x̃→−∞

Fex
film(x̃) = 1

2G0,film(0) = −0.191 for d = 3. (3.18)

In the cylinder system in the large-n limit, we find
from (3.14) thatG1,cyl(P 2

cyl) ≈ −c1P
−1
cyl for small Pcyl with c1 =

(4π )−1/2
∫ ∞

0 dy y−1/2e−y > 0 and Pcyl ≈ c1εA
−1
d (−x̃‖)−1 for

x̃‖ → −∞. This implies that, for 2 < d < 4, �ex
cyl(x̃‖) has a

finite value in the low-temperature limit

lim
x̃‖→−∞

�ex
cyl(x̃‖) = 1

2 G0,cyl(0) (3.19)

with 1
2 G0,cyl(0) = −0.719 for d = 3 [compare Fig. 4(a)].

In contrast to Fex and �ex , the scaling functions X and 


turn out to be nonmonotonic functions of their scaling variables
x̃ and x̃‖, respectively, in an intermediate range of ρ where
ρ ∼ O(1) [see Figs. 3(b) and 4(b)]. In this range, X exhibits
a change of sign near x̃ = 0: The Casimir force changes from
a repulsive force below Tc to an attractive force above Tc.
Especially for ρ = 1, d = 3, this change of sign occurs exactly
at Tc where X(0,1) = 0, 
(0,1) = 0. In the range ρ � 1/2,
X < 0 is a monotonically increasing function of x̃. In the range
ρ � 3/2, 
 > 0 is a monotonically decreasing function of x̃‖.

Above Tc, X and 
 have an exponential decay toward zero
as functions of x̃ � 1 and x̃‖ � 1, respectively, as follows
from the exponential decay of Fex and �ex . Below Tc, the
scaling functions X and 
 have finite values in the low-
temperature limits x̃ → −∞ and x̃‖ → −∞, respectively, for
all −∞ � ρ � ∞, unlike the divergent behavior of Fex and
�ex for finite ρ. To derive the low-temperature limit of X, we
use Eqs. (2.27) and (3.6) to rewrite (2.29) as

X(x̃,ρ) = F±
b (x̃) + Ad

ε

[
1

2
x̃P 2 − d − 1

d
P d

]
+ 1

2

[
(d − 1)G0(P 2,ρ) − ρ

∂G0(P 2,ρ)

∂ρ

]
(3.20)

with P (x̃,ρ)2 determined by (3.8). For P 2 → 0, the divergent
parts of the last two terms cancel each other, which leads to a
finite limit

lim
x̃→−∞

X(x̃,ρ) = − 1

2
ρd−1 + 1

2
lim
P→0

[
(d − 1)G0(P 2,ρ)

− ρ
∂G0(P 2,ρ)

∂ρ

]
(3.21)

with a nontrivial ρ dependence. Similarly, we obtain a finite
limit

lim
x̃‖→−∞


(x̃‖,ρ) = ρ−d lim
x̃→−∞

X(x̃,ρ). (3.22)

This is in contrast to the exponential decay of X and 
 toward
zero for x̃ → −∞ and x̃‖ → −∞, respectively, for the n = 1
universality class that we shall find in Sec. VI below.

For film and cylinder geometries in the large-n limit, the
low-temperature limits are

lim
x̃→−∞

Xfilm(x̃) = 2Fex
film(−∞) = G0,film(0) = −0.383 (3.23)
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FIG. 5. (Color online) Critical amplitudes (a) F (0,ρ) [Eq. (2.27)]
and (b) X(0,ρ) [Eq. (5.10)] at Tc in three dimensions as a function
of the aspect ratio ρ in the large-n limit [thin lines, from (3.6)]
and for n = 1 [thick lines, from (5.1)]. For n = ∞, Ffilm(0) ≡
F (0,0) = −0.153 and Xfilm(0) ≡ X(0,0) = 2Ffilm(0) = −0.306. At
ρ = 1, X(0,1) vanishes for both n = ∞ and 1. Monte Carlo data of
the d = 3 Ising model for ρ = 1 by Mon [41] [full circle in (a)] and
for ρ = 0 by Vasilyev et al. [16] [triangle in (b)]. See also Fig. 7.

for d = 3 [see Fig. 3(b)], in agreement with the earlier result
for the spherical model [22,40], and

lim
x̃‖→−∞


cyl(x̃‖) = −�cyl(−∞) = − 1
2 G0,cyl(0) (3.24)

for 2 < d < 4, with − 1
2 G0,cyl(0) = 0.719 for d = 3 [see

Fig. 4(b)].

D. Monotonicity properties at fixed temperature

From Figs. 3 and 4, we also infer monotonicity properties
at fixed x̃ and x̃‖, respectively, i.e., at fixed temperature. For
fixed x̃, Fex(x̃,ρ) is monotonically decreasing with increasing
ρ, whereas X(x̃,ρ) is monotonically increasing with increasing
ρ. For fixed x̃‖, both �ex(x̃‖,ρ) and 
ex(x̃‖,ρ) are monoton-
ically decreasing with increasing 1/ρ. This monotonicity is
demonstrated by the thin lines in Figs. 5 and 6 at bulk Tc

(x̃ = 0, x̃‖ = 0). These lines also exhibit a monotonic change
of the curvature toward zero for ρ → 0 and for 1/ρ → 0,
respectively. For comparison, corresponding curves are also
shown for the n = 1 universality class (thick lines in Figs. 5

0 0.5 1 1.5 2
1/ρ

-1.5

-1

-0.5

0

Φ
(0

,ρ
)

n=infinity
n=1
MC Ising model

(a)

0 0.5 1 1.5 2
1/ρ

-2

-1.5

-1

-0.5

0

0.5

Ξ(
0,

ρ)

n=infinity
n=1

(b)

FIG. 6. (Color online) Critical amplitudes (a) �(0,ρ) [Eq. (2.39)]
and (b) 
(0,ρ) [Eq. (5.11)] at Tc in three dimensions as a function of
the inverse aspect ratio 1/ρ in the large-n limit [thin lines, from (3.6)]
and for n = 1 [thick lines, from (5.1)]. For n = ∞, �cyl(0) ≡
�(0,∞) = −0.329 = −
cyl(0) ≡ −
(0,∞). At 1/ρ = 1, 
(0,1)
vanishes for both n = ∞ and 1. Monte Carlo data of the d = 3 Ising
model for ρ = 1 by Mon [41] [full circle in (a)]. See also Fig. 8.

and 6) that will be derived in the subsequent sections. On the
basis of these results, we are led to our hypothesis that the
monotonicity properties mentioned above are valid not only
for n = ∞ but are general features of the free energy and the
Casimir force (for periodic BC) that are valid for all n in the
whole range 1 � n � ∞.

IV. PERTURBATION THEORY FOR n = 1
IN THE CENTRAL FINITE-SIZE REGIME

In this and the subsequent sections, we confine ourselves to
the case of a one-component order parameter.

A. Perturbation approach for the free energy density

The basic ingredients of our perturbation approach for
Ld−1

‖ × L geometry are similar to those developed previously
for cubic geometry [7]. The starting point is a decomposition
of the variables ϕj = � + σj into the lowest (homogeneous)

021108-8



CRITICAL FREE ENERGY AND CASIMIR FORCES IN . . . PHYSICAL REVIEW E 84, 021108 (2011)

mode amplitude � and higher-mode contributions σj ,

� = V −1ϕ̂(0) = N−1
∑

j

ϕj , (4.1)

σj = 1

V

∑
k �=0

eik·xj ϕ̂(k). (4.2)

Correspondingly, the Hamiltonian H and the partition function
Z are decomposed as

H = H0 + H̃ (�,σ ), (4.3)

H0(r0 ,u0 ,V ,�2) = V

(
1

2
r0�

2 + u0�
4

)
, (4.4)

H̃ (�,σ ) = ãd

{
N∑

j=1

[(
r0

2
+ 6u0�

2

)
σ 2

j + 4u0�σ 3
j + u0σ

4
j

]

+
N∑

i,j=1

Ki,j

2
(σi − σj )2

}
, (4.5)

Z = V 1/2

ã

∫ ∞

−∞
d� exp{−[H0 + ◦

�(�2)]}, (4.6)

◦
�(�2) = − ln

[ ∏
k′ �=0

1

ãV 1/2

∫
dσ̂ (k)

]
exp[−H̃ (�,σ )],

(4.7)

where σ̂ (k) ≡ ϕ̂(k) for k �= 0. We shall calculate the partition
function and the free energy by first determining �◦(�2) by
means of perturbation theory at given � and subsequently
performing the integration over �. Since exp[−�◦(�2)] is pro-
portional to the order-parameter distribution function, which
is a physical quantity in its own right, we shall maintain the
exponential form of exp[−�◦(�2)] without further expansion.

The decompositions (4.3)–(4.7) and the perturbative treat-
ment of the higher modes are reasonable as long as there
exists a single lowest mode that is well separated from the
higher modes. This is, of course, not the case in the film limit
ρ → 0 and in the cylinder limit ρ → ∞, where the system has
a lowest-mode continuum and where a revised perturbation
approach would be necessary. In Sec. V below, a quantitative
estimate will be given as to in which range of 0 < ρ < ∞ our
perturbation approach is expected to be applicable.

Since the details of the perturbation approach for f (t,L,L‖)
are parallel to those presented in [7] for cubic geometry, we
directly turn to the result. Our perturbation expression for the
bare free energy density reads as

f = −N − 1

2V
ln(2π ) + 1

2
S0(r0L,L,ρ)

− 1

V
ln

∫ ∞

−∞
ds exp

(
−1

2
yeff

0 s2 − s4

)
− 1

2V
ln

[
V 1/2weff

0

ã2

]
− 6u0M

2
0 S1(r0L,L,ρ)

−36u2
0M

4
0 S2(r0L,L,ρ) (4.8)

with

yeff
0 = V 1/2u

−1/2
0

{
r0[1 + 18u0S2(r0L,L,ρ)]

+ 12u0S1(r0L,L,ρ) + 144u2
0M

2
0 S2(r0L,L,ρ)

}
, (4.9)

weff
0 = u

−1/2
0 [1 + 18u0S2(r0L,L,ρ)] . (4.10)

Here, Si(r0L,L,ρ) denote the sums over the higher modes

S0(r0L,L,ρ) = 1

V

∑
k �=0

ln{[r0L + δK̂(k)]ã2}, (4.11)

Sm(r0L,L,ρ) = 1

V

∑
k �=0

{[r0L + δK̂(k)]}−m (4.12)

for m = 1,2. The temperature dependence enters through the
parameter

r0L(r0,u0,V ) = r0 + 12u0M
2
0 (r0,u0,V ) (4.13)

as well as through the lowest-mode average

M2
0 (r0,u0,V ) =

∫ ∞
∞ d��2 exp[−H0(r0,u0,V )]∫ ∞

∞ d� exp[−H0(r0,u0,V )]
. (4.14)

The positivity of r0L > 0 for all r0 permits us to apply the
theory to the region below Tc. For finite V , M2

0 and r0L

interpolate smoothly between the mean-field bulk limits above
and below Tc:

lim
V →∞

M2
0 ≡ M2

mf =
{

0 for r0 � 0,

−r0/(4u0) for r0 � 0,
(4.15)

and

lim
V →∞

r0L ≡ rmf =
{

r0 for r0 � 0,

−2r0 for r0 � 0,
(4.16)

respectively. In the bulk limit, Eq. (4.8) correctly contains the
bare bulk free energy density in one-loop order [i.e., up to
O(1)]

f +
b = − ln(2π )

2ãd
+ 1

2

∫
k

ln{[r0 + δK̂(k)]ã2}, (4.17)

f −
b = 1

2
r0M

2
mf + u0M

4
mf − ln(2π )

2ãd

+ 1

2

∫
k

ln{[−2r0 + δK̂(k)]ã2} (4.18)

above and below Tc, respectively. [For the symbol
∫

k, see
Eq. (3.3).] In the derivation of (4.8), �◦(�2) has been expanded
around M2

0 in powers of �2 − M2
0 up to O[(�2 − M2

0 )2].
Furthermore, an expansion with respect to u0 at fixed r0L has
been made and has been truncated such that terms of O(u3/2

0 )
are neglected. For a discussion of the order of the neglected
terms, see [7,31,42].

B. Dependence on the aspect ratio ρ

Equations (4.8)–(4.10) are identical in structure with
Eqs. (4.26)–(4.28) of [7], where a cubic geometry was
considered. The new point of interest here is the dependence
of the bare free energy density f (t,L‖,L) on the aspect
ratio ρ = L/L‖. The ρ dependence enters (i) through the
volume

V = Ld−1
‖ L = Ldρ1−d , (4.19)
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(ii) through the lowest-mode average

M2
0 (r0,u0,V ) = (Ldρ1−du0)−1/2 ϑ2(y0), (4.20)

y0 = r0(Ldρ1−d/u0)1/2, (4.21)

ϑ2(y0) =
∫ ∞

0 ds s2 exp
( − 1

2y0s
2 − s4

)∫ ∞
0 ds exp

( − 1
2y0s2 − s4

) , (4.22)

and (iii) through the higher-mode sums Si(r0L,L,ρ)
[Eqs. (4.11) and (4.12)]. In the regime of large L/ã, large L‖/ã,
small 0 < (r0L)1/2ã � 1, and fixed 0 < L(r0L)1/2 � O(1),
0 < L‖(r0L)1/2 � O(1), these sums are evaluated for finite
0 < ρ < ∞ in 2 < d < 4 dimensions as (see Appendix B
of [7] and our Appendix)

S0(r0L,L,ρ) =
∫

k
ln{[δK̂(k)]ã2} + r0L

∫
k
[δK̂(k)]−1

− 2Ad (r0L)d/2

dε
+ 1

Ld
ln

(
L2

ã24π2

)
+ 1 − ρd−1

Ld
ln(r0Lã2) + 1

Ld
J0(r0LL2,ρ),

(4.23)

S1(r0L,L,ρ) =
∫

k
[δK̂(k)]−1 − Ad

ε
(r0L)(d−2)/2

+ 1 − ρd−1

Ld
(r0L)−1 + (L)2−d

(4π2)
I1(r0LL2,ρ),

(4.24)

S2(r0L,L,ρ) = Ad

2ε
(d − 2)(r0L)−ε/2 + 1 − ρd−1

Ld
(r0L)−2

+ (L)4−d

(4π2)2
I2(r0LL2,ρ) (4.25)

with

J0(x2,ρ) =
∫ ∞

0
dy y−1(exp [−x2y/(4π2)]{(π/y)d/2

− [ρK(ρ2y)]d−1K(y) + 1} − e−y), (4.26)

Im(x2,ρ) =
∫ ∞

0
dy ym−1 exp[−x2y/(4π2)]

×{[ρK(ρ2y)]d−1 K(y) − (π/y)d/2 − 1} (4.27)

for m = 1,2. [For K(y), see Eq. (3.9).]

C. Bare perturbation result

It is appropriate to rewrite the free energy density f

[Eq. (4.8)] in terms of r0 − r0c, where

r0c = −12u0

∫
k
[δK̂(k)]−1 (4.28)

is the critical value of r0 up to O(u0). The resulting function
is denoted as f̂ (r0 − r0c,u0,L,ρ,Ki,j ,ã). As we are interested
only in the singular part, we subtract the nonsingular bulk part

up to linear order in r0 − r0c:

f (1)
ns (r0 − r0c,Ki,j ,ã) = − ln(2π )

2ãd
+ 1

2

∫
k

ln{[δK̂(k)]ã2}

+ r0 − r0c

2

∫
k
[δK̂(k)]−1. (4.29)

The remaining function

δf (r0 − r0c,u0,L,ρ,Ki,j ,ã)

= f̂ (r0 − r0c,u0,L,ρ,Ki,j ,ã) − f (1)
ns (r0 − r0c,Ki,j ,ã)

(4.30)

has a finite limit for ã → 0 at fixed r0 − r0c in 2 < d < 4
dimensions,

lim
ã→0

δf (r0 − r0c,u0,L,ρ,Ki,j ,ã) = δf (r0 − r0c,u0,L,ρ),

(4.31)

where we have assumed the interaction (2.19). (For the
justification of taking the limit ã → 0, see the remarks after
Eq. (4.36) of [7].) The function (4.31) still contains a non-
singular bulk part f (2)

ns (r0 − r0c,u0) proportional to (r0 − r0c)2.
It is convenient to subtract this nonsingular bulk part later
within the renormalized theory in the asymptotic critical region
as described in Sec. IV E. Our perturbation result for the
function δf (r0 − r0c,u0,L,ρ), as derived from (4.8)–(4.14)
and (4.19)–(4.31), reads as

δf (r0 − r0c,u0,L,ρ)

= − Ad

r
ε/2
0L

[
r2

0L

4d
+ (r0 − r0c)2

4ε
−18u2

0M
4
0

]
+ 1

Ld

{
− ρd−1 ln

∫ ∞

−∞
dz exp

(
−1

2
yeff

0 (ρ)z2 − z4

)
− 1

2
ln

[
2πweff

0 (ρ)

Lε/2ρ(d−1)/2

]
+ 1

2
J0(r0LL2,ρ)

− 3u0M
2
0 L2

2π2
I1(r0LL2,ρ) − 9u2

0M
4
0 L4

4π4
I2(r0LL2,ρ)

}
+ 1 − ρd−1

Ld

{
1

2
ln

[
weff

0 (ρ)r0LL2

Lε/2ρ(d−1)/22π

]
− 6u0M

2
0

r0L
− 36u2

0M
4
0

r2
0L

}
, (4.32)

yeff
0 (ρ) = Ld/2ρ(1−d)/2

u
1/2
0

{
(r0 − r0c)

[
1 + 18u0

(
Ad (d − 2)

2ε r
ε/2
0L

+ 1 − ρd−1

Ld r2
0L

+ Lε

16π4
I2(r0LL2,ρ)

)]

+ 12u0

[
− Ad

ε r
(2−d)/2
0L

+ 1 − ρd−1

Ld r0L

+ L2−d

4π2
I1(r0LL2,ρ)

]
+ 144u2

0M
2
0

[
Ad (d − 2)

2ε r
ε/2
0L

+ 1 − ρd−1

Ld r2
0L

+ Lε

16π4
I2(r0LL2,ρ)

]}
, (4.33)
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weff
0 (ρ) = u

−1/2
0

{
1 + 18u0

[
Ad (d − 2)

2ε
r

−ε/2
0L

+ 1 − ρd−1

Ld
r−2

0L + Lε

16π4
I2(r0LL2,ρ)

]}
, (4.34)

where now r0L and M2
0 are abbreviations for

r0L(r0 − r0c,u0,L,ρ) = r0 − r0c + 12u0M
2
0 (4.35)

and

M2
0 (r0 − r0c,u0,L,ρ) = (Ldρ1−du0)−1/2 ϑ2(ŷ0), (4.36)

with

ŷ0 = (r0 − r0c)(Ldρ1−d/u0)1/2 . (4.37)

Our Eqs. (4.32)–(4.37) are applicable to some finite range of
0 < ρ < ∞ and contain Eqs. (4.37)–(4.42) of [7] as a special
case for ρ = 1. They are not applicable to the film (ρ → 0)
and cylinder (ρ → ∞) limits below bulk Tc.

D. Minimal renormalization at fixed dimension

As is well known, the bare perturbation form of δf requires
additive and multiplicative renormalizations. As the ultraviolet
behavior of δf does not depend on the aspect ratio ρ, the
renormalizations are the same as those described in [7] in terms
of the minimal renormalization at fixed dimension 2 < d < 4
[35]. The adequacy of this method in combination with the
geometric factor Ad [Eq. (3.5)] has been demonstrated in [7]
for the case of cubic geometry. Since the aspect ratio ρ is
not renormalized, we apply the same renormalizations to the
present bare expression for δf [Eq. (4.32)]. The details are
parallel to those in [7], which justifies us to turn directly to the
renormalized form of δf . It is defined as

fR(r,u,L,ρ,μ) = δf
(
Zrr,μ

εZuZ
−2
ϕ A−1

d u,L,ρ,
)

− 1
8μ−εr2AdA(u,ε), (4.38)

where r and u are the renormalized counterparts of r0 − r0c and
u0. For the Z factors Zi(u,ε) and the additive renormalization
constant A(u,ε), we refer to [7]. The inverse reference length μ

is chosen as μ−1 = ξ0+, where ξ0+ is the asymptotic amplitude
of the second-moment bulk correlation length above Tc.

The critical behavior is expressed in terms of a flow
parameter l(t,L,ρ), which is determined implicitly by

rL(l) = μ2l2. (4.39)

The reason for this choice of the flow parameter is given
after (4.45) below. The dependence of l on t, L, and ρ

enters through the function rL(l), which is the renormalized
counterpart of r0L. It is given by

rL(l) ≡ r0L
[
r(l),lεμεA−1

d u(l),L,ρ
]

= r(l) + 12
[
(μl)εA−1

d u(l)L−dρ(d−1)
]1/2

ϑ2[y(l)]

(4.40)

with

y(l) = r(l)μ−2l−2(Lμl)d/2ρ(1−d)/2A
1/2
d u(l)−1/2, (4.41)

where ϑ2(y) is defined by (4.22). The effective renormalized
quantities r(l) and u(l) are defined as usual [35]. Both rL(l) and

y(l) depend on t, L, and ρ. The t dependence originates from
r(l), which depends on t through its initial value r(1) = r = at

with a = Zr (u,ε)−1a0.
The effective renormalized counterparts of yeff

0 (ρ) and of
weff

0 (ρ) are given by

yeff(l,ρ) = (lμL)d/2ρ(1−d)/2A
1/2
d u(l)−1/2

×
{

r(l)

μ2l2

[
1 + 18u(l)R2

(
rL(l)

μ2l2
,lμL,ρ

)]
+ 12u(l)R1

(
rL(l)

μ2l2
,lμL,ρ

)
+ 144(lμL)−d/2ρ(d−1)/2A

−1/2
d u(l)3/2ϑ2[y(l)]

×R2

(
rL(l)

μ2l2
,lμL,ρ

)}
(4.42)

and

weff(l,ρ) = u(l)−1/2

[
1 + 18u(l)R2

(
rL(l)

μ2l2
,lμL,ρ

)]
,

(4.43)

where

R1(q,p,ρ) = ε−1q[1 − q−ε/2] + A−1
d (1 − ρd−1)q−1p−d

+ pε−2(4π2Ad )−1I1(q p2,ρ), (4.44)

R2(q,p,ρ) = − ε−1[1 − q−ε/2] − 1
2q−ε/2 + A−1

d (1 − ρd−1)

× q−2p−d + pε(16π4Ad )−1I2(q p2,ρ) ,

(4.45)

with Im defined by (4.27). The dependence of the functions Ri

on the ratio rL(l)/(μ2l2) is the reason for the choice (4.39) of
the flow parameter. It ensures the standard choice in the bulk
limit both above and below Tc [35]:

lim
L→∞

lim
L‖→∞

μ2l2 =
{

μ2l2
+ = r(l+) for T > Tc,

μ2l2
− = −2r(l−) for T < Tc,

(4.46)

and implies μl ∝ L−1ρ(d−1)/d for large finite V at T = Tc.
After integration of the renormalization-group equation

[see Eqs. (5.6) and (5.7) of [7]], the renormalized free energy
density attains the structure

fR(r,u,L,ρ,μ)=fR[r(l),u(l),lμ,L,ρ] + Adr(l)2

2(lμ)ε

∫ l

1
B[u(l′)]

×
{

exp
∫ l′

l

(2ζr [u(l′′)] − ε)
dl′′

l′′

}
dl′

l′
,

(4.47)

where B(u) and ζr (u) are well-known field-theoretic functions
of bulk theory [7,35]. From (4.32) and (4.38), we derive the
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first term on the right-hand side of (4.47) as

fR[r(l),u(l),lμ,L,ρ
]

= −Ad (lμ)d/(4d) + 18u(l)L−dρd−1{ϑ2[y(l)]}2

+ 1

Ld

{
−ρd−1 ln

∫ ∞

−∞
dz exp

[
− 1

2
yeff(l,ρ)z2−z4

]
− 1

2
ln

[
2πA

1/2
d weff(l,ρ)

(lμL)ε/2ρ(d−1)/2

]
+ 1

2
J0(l2μ2L2,ρ)

− 3(lμL)ε/2ρ(d−1)/2u(l)1/2

2π2A
1/2
d

ϑ2[y(l)] I1(l2μ2L2,ρ)

− 9(lμL)ερd−1u(l)

4π4Ad

{ϑ2[y(l)]}2I2(l2μ2L2,ρ)

}
+ 1 − ρd−1

Ld

{
1

2
ln

[
A

1/2
d weff(l,ρ)l2μ2L2

(lμL)ε/2ρ(d−1)/22π

]
− 6u(l)1/2(lμL)−d/2ρ(d−1)/2A

−1/2
d ϑ2[y(l)]

− 36u(l)(lμL)−dρd−1A−1
d {ϑ2[y(l)]}2

}
. (4.48)

E. Finite-size scaling function of the free energy density

It is straightforward to show that the asymptotic form (2.23)
of the singular part fs of the free energy density is obtained
from fR [Eq. (4.47)] in the limit of small l � 1 or l → 0 as

fR → fs(t,L,L‖) = L−dF (x̃,ρ) (4.49)

with the scaling variable x̃ [Eq. (2.24)]. In this limit, we have
u(l) → u(0) ≡ u∗, r(l)/(μ2l2) → Q∗ t l−1/ν ,

y(l) → ỹ = x̃Q∗(μlL)−α/(2ν)ρ(1−d)/2A
1/2
d u∗−1/2

, (4.50)

and μlL → l̃ = l̃(x̃,ρ), where the function l̃(x̃,ρ) is deter-
mined implicitly by

ỹ + 12ϑ2(ỹ) = ρ(1−d)/2 l̃d/2A
1/2
d u∗−1/2

, (4.51)

ỹ = x̃ Q∗ l̃−α/(2ν)ρ(1−d)/2A
1/2
d u∗−1/2

. (4.52)

These two equations also determine ỹ = ỹ(x̃,ρ). In
Eqs. (4.50)–(4.52), we have used the hyperscaling relation 2 −
α = dν. The factor Q∗ = Q(1,u∗,d) is the fixed point value
of the amplitude function Q(1,u,d) of the bulk correlation
length above Tc [7,31,35,43]. Furthermore, we have, in the
small-l limit,

weff(l,ρ) → W (x̃,ρ) = u∗−1/2[1 + 18u∗R2(1,l̃,ρ)], (4.53)

yeff(l,ρ) → Y (x̃,ρ) = l̃d/2ρ(1−d)/2A
1/2
d u∗−1/2{

Q∗x̃ l̃−1/ν

× [1+18u∗R2(1,l̃,ρ)]+12u∗R1(1,l̃,ρ)

+ 144
[
u∗3

l̃−dρ(d−1)A−1
d

]1/2

×ϑ2(ỹ)R2(1,l̃,ρ)
}
. (4.54)

For l � 1, the last integral term in (4.47) contains both a con-
tribution ∝ t2l−α/ν to the singular finite-size part fs(t,L,L‖)
and a contribution ∝ t2 to the nonsingular bulk part f

(2)
ns,b of

δf mentioned after (4.31) [see also the comment on Eq. (6.8)
of [7]]. This nonsingular part will be neglected in the following.

Equations (4.47), (4.48), and (4.49)–(4.54) lead to the finite-
size scaling function

F (x̃,ρ) = −Ad

[
l̃d

4d
+ νQ∗2x̃2 l̃−α/ν

2α
B(u∗)

]

+ 18u∗ρd−1 [ϑ2(ỹ)]2 − 1

2
ln

(
2πA

1/2
d W (x̃,ρ)

l̃ε/2ρ(d−1)/2

)

− ρd−1 ln
∫ ∞

−∞
dz exp

[
− 1

2
Y (x̃,ρ)z2 − z4

]

+ 1

2
J0(l̃2,ρ) − 3l̃ε/2u∗1/2ρ(d−1)/2

2π2A
1/2
d

ϑ2(ỹ)I1(l̃2,ρ)

−9l̃εu∗ρd−1

4π4Ad

[ϑ2(ỹ)]2 I2(l̃2,ρ) + (1 − ρd−1)

×
{

1

2
ln

[
A

1/2
d W (x̃,ρ)l̃d/2

2πρ(d−1)/2

]
− 6u∗1/2

l̃−d/2ρ(d−1)/2

×A
−1/2
d ϑ2(ỹ) − 36u∗ l̃−dρd−1A−1

d [ϑ2(ỹ)]2

}
(4.55)

with Ad, J0, Im, and ϑ2 defined in (3.5), (4.26), (4.27),
and (4.22), respectively. Equation (4.55) is the central analytic
result of this paper for the case n= 1. It is valid for 2 < d < 4
in the central finite-size regime (between the dashed lines of
Fig. 2), i.e., in the range L � ã, L‖ � ã, and 0 � |x̃| � O(1)
above, at, and below Tc for finite ρ. For the special case
ρ = 1, Eq. (4.55) is identical with Eq. (6.10) of [7]. For
d = 3, Eq. (4.55) reduces to Eq. (9) presented in [24]. It
incorporates the correct bulk critical exponents α and ν and
the complete bulk function B(u∗) (not only in one-loop order).
The Borel resummed values of the fixed point value u∗ [44], of
B(u∗) [44], and of Q∗ [31,35,43] in three dimensions are given
after Eq. (5.5) below. There is only one adjustable parameter
that is contained in the nonuniversal bulk amplitude ξ0+ of
the scaling variable x̃. For finite L and L‖, fs(t,L,L‖) is an
analytic function of t near t = 0, i.e., F (x̃,ρ) is an analytic
function of x̃ near x̃ = 0 at finite ρ, in agreement with general
analyticity requirements.

The bulk part F±
b (x̃) of F (x̃,ρ) is obtained from (4.55) in

the large-|x̃| limit. It is represented by (2.25), with the universal
bulk amplitude ratios

Q1 = −AdQ
∗dν

[
1

4d
+ ν

2α
B(u∗)

]
, (4.56)

A−

A+ = 2dν 1/(64u∗) + 1/(4d) + 81u∗/64 + νB(u∗)/(8α)

1/(4d) + νB(u∗)/(2α)
(4.57)

given by Eqs. (6.19) and (6.20) of [7]. We then obtain
from (4.55) the scaling function Fex(x̃,ρ) [Eq. (2.27)] of
the excess free energy density, which determines the scaling
function X(x̃,ρ) of the Casimir force according to (2.29). By
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definition, the functions Fex(x̃,ρ) and X(x̃,ρ) have a weak
singularity at x̃ = 0 arising from the subtraction of the bulk
term F±

b (x̃).

V. QUANTITATIVE RESULTS IN THREE DIMENSIONS
IN THE CENTRAL FINITE-SIZE REGIME

A. Amplitudes at Tc and monotonicity hypothesis

Of particular interest is the finite-size amplitude at Tc:

F (0,ρ)

=
(

18− 36

d

)
u∗ρd−1 [ϑ2(0)]2

− 1

2
ln

(
2πA

1/2
d Wc(ρ)

l̃
ε/2
c ρ(d−1)/2

)
−ρd−1 ln

∫ ∞

−∞
dz

× exp

[
− 1

2
Yc(ρ)z2 − z4

]
+ 1

2
J0

(
l̃2
c ,ρ

) − l̃2
c

8π2
I1

(
l̃2
c ,ρ

)
− l̃4

c

64π4
I2

(
l̃2
c ,ρ

) + (1 − ρd−1)

×
{

1

2
ln

[
A

1/2
d Wc(ρ)l̃d/2

c

2πρ(d−1)/2

]
− 3

4

}
, (5.1)

where l̃
d/2
c = 12u∗1/2ρ(d−1)/2A

−1/2
d ϑ2(0) and

W (0,ρ) ≡ Wc(ρ) = u∗−1/2[1 + 18 u∗R2(1,l̃c,ρ)], (5.2)

Y (0,ρ) ≡ Yc(ρ) = 144u∗ϑ2(0){R1(1,l̃c,ρ) + R2(1,l̃c,ρ)}
(5.3)

with ϑ2(0) = �(3/4)/�(1/4) and

R1(1,l̃c,ρ) = l̃2−d
c

4π2Ad

I1
(
l̃2
c ,ρ

) + A−1
d (1 − ρd−1)l̃−d

c , (5.4)

R2(1,l̃c,ρ) = −1

2
+ l̃εc

16π4Ad

I2
(
l̃2
c ,ρ

) + A−1
d (1 − ρd−1)l̃−d

c .

(5.5)

For the application to three dimensions, we shall employ
the following numerical values [7,31,45]: A3 = (4π )−1, ν =
0.6335, u∗ = 0.0412, Q∗ = 0.945, B(u∗) = 0.50, and α =
2 − 3ν = 0.0995. At Tc in three dimensions, the ρ dependence
of the flow parameter is given by

l̃c = [12(4πu∗)1/2�(3/4)/�(1/4)]2/3ρ2/3 = 2.042 ρ2/3.

(5.6)

The ρ dependence of the integrals J0(l̃c
2
,ρ) [Eq. (4.26)] and

Im(l̃2
c ,ρ) [Eq. (4.27)] needs to be computed numerically. The

resulting amplitudes F (0,ρ), X(0,ρ), �(0,ρ), and 
(0,ρ)
as determined by (5.1), (5.10), (2.39), and (5.11) are shown
by the thick lines in Figs. 5 and 6, respectively, in a finite
range of ρ and 1/ρ. At ρ = 1, perfect agreement with the
MC data by Mon [41] [full circle in Figs. 5(a) and 6(a)] is
found.

Figures 5 and 6 demonstrate the weakness of the n

dependence at Tc. On the basis of the monotonicity of the
curves for the case n = ∞ (thin curves in Figs. 5 and 6), we
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FIG. 7. (Color online) Critical amplitudes (a) F (0,ρ) [Eq. (2.27)]
and (b) X(0,ρ) [Eq. (5.10)] at Tc in three dimensions as a function of
the aspect ratio ρ for n = 1 [thick lines, from (5.1)] and in the large-n
limit [thin lines, from (3.6)]. The maximum −0.1636 of the n = 1
line in (a) is at ρmax = 0.2470. The dashed lines are the extrapolations
of the n = 1 lines from ρ = ρmax to ρ = 0 corresponding to film
geometry. The dotted lines represent (5.1) in the regime ρ < ρmax,
where our perturbation theory is not applicable. The MC estimate for
the d = 3 Ising model from [16] (triangles), ε expansion results for
n = 1 from [19] (squares), and from [20] (diamonds). See also Fig. 5.

expect monotonicity also for the n = 1 curves. As shown in
the magnified plots of Figs. 7(a) and 8(a), F (0,ρ) and �(0,ρ)
indeed have the expected monotonic behavior, but only in the
restricted range ρ � ρmax = 0.2470 and 1/ρ � (1/ρ)max =
0.3223, respectively. As expected on general grounds, the
lowest-mode separation approach should fail for sufficiently
small ρ < ρmax or 1/ρ < (1/ρ)max, respectively, near the film
and the cylinder limit (dotted lines in Figs. 7 and 8), where
the higher modes are no longer well separated from the single
lowest mode. Thus, our hypothesis of monotonicity provides
the following quantitative estimate for the range of the aspect
ratio ρ within which our lowest-mode separation approach for
the free energy is expected to be reliable:

1/4 � ρ � 3. (5.7)

Furthermore, we expect a negligible dependence on ρ and
1/ρ in the range ρ < ρmax or 1/ρ < (1/ρ)max, respectively,
corresponding to the extrapolations (dashed lines) in Figs. 7(a)
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FIG. 8. (Color online) Critical amplitudes (a) �(0,ρ) [Eq. (2.39)]
and (b) 
(0,ρ) [Eq. (5.11)] at Tc in three dimensions as a function
of the inverse aspect ratio 1/ρ for n = 1 [thick lines, from (5.1)] and
in the large-n limit [thin lines, from (3.6)]. The maximum −0.3658
of the n = 1 line in (a) is at (1/ρ)max = 0.3223. The dashed lines
are the extrapolations of the n = 1 lines from (1/ρ)max to 1/ρ = 0
corresponding to cylinder geometry. The dotted lines represent (5.1)
in the regime of small 1/ρ < (1/ρ)max, where our perturbation theory
is not applicable. See also Fig. 6.

and 8(a). This leads to our prediction of the n = 1 am-
plitudes of the scaling functions of the excess free energy
density at bulk Tc for the film and for the cylinder in three
dimensions:

Ffilm(0) ≈ F (0,ρ = 1/4) = −0.164, (5.8)

�cyl(0) ≈ �(0,ρ = 3) = −0.366. (5.9)

The corresponding results for the Casimir amplitudes X(0,ρ)
and 
(0,ρ) are shown in Figs. 7(b) and 8(b); they follow from
those of F (0,ρ) and �(0,ρ) by means of the exact relations
[compare (2.29) and (2.41)]

X(0,ρ) = (d − 1)F (0,ρ) − ρ
∂F (0,ρ)

∂ρ
, (5.10)


(0,ρ) = −�(0,ρ) + (1/ρ)
∂�(0,ρ)

∂(1/ρ)
. (5.11)

From (5.8) and (5.9), we obtain our prediction of the n = 1
amplitudes of the Casimir force scaling functions at bulk Tc

for the film and for the cylinder in three dimensions [dashed
lines in Figs. 7(b) and 8(b)]:

Xfilm(0) ≡ X(0,0) = 2Ffilm(0) = −0.328, (5.12)


cyl(0) ≡ 
(0,∞) = −�cyl(0) = 0.366. (5.13)

Our results for Ffilm(0) and Xfilm(0) are in good agreement
with the MC estimates [16] �P = −0.152 and 2�P = −0.304
[triangles in Fig. 7] for the three-dimensional Ising model in
film geometry at bulk Tc. The previous ε expansion results
up to O(ε) [19] [squares in Fig. 7], and up to O(ε3/2) [20]
[diamonds in Fig. 7], are in less good agreement with the MC
estimates.

It would be interesting to test our predictions for �cyl(0)
[Eq. (5.9)] and 
cyl(0) [Eq. (5.13)] by MC simulations for the
three-dimensional Ising model in cylinder geometry.

B. Finite-size scaling functions

Now we turn to a discussion of the temperature dependence.
In Figs. 9 and 10, we show the scaling functions Fex(x̃,ρ),
X(x̃,ρ), �ex(x̃‖,ρ), and 
(x̃‖,ρ) for n = 1 in three dimen-
sions for slab, cube, and rod geometries, respectively, with
finite aspect ratios in the range 1/4 � ρ � 5/2, as derived
from (4.55), (2.27), (2.29), (2.40), and (2.41). It is expected
that these curves are applicable to the central finite-size regime
|x̃| � O(1) and |x̃‖| � O(1) but not to |x̃| � 1 and |x̃‖| � 1.
(For a more precise estimate, see below.) Figures 9 and 10
should be compared with the corresponding Figs. 3 and 4 for
the case n = ∞.

We see that there are significant differences between
the cases n = 1 and ∞. Figures 9(a) and 10(a) exhibit a
nonmonotonicity of Fex(x̃,ρ) and �ex(x̃‖,ρ) for n = 1 with
minima slightly below Tc for all ρ. Such minima should also
persist in the n = 1 film (ρ = 0) system and in the n = 1
cylinder (1/ρ = 0) system, the scaling functions of which
should be close to our curves for ρ = 1/4 and 1/ρ = 2/5,
respectively. There is no good agreement at Tc between our
ρ = 1/4 curve in Fig. 9(a) and the ε expansion results (thin
lines) of [19,21] for ρ = 0. The latter exhibit an unphysical
singularity at x̃ = 0 (i.e., at bulk Tc) that arises from the ε

expansion results [19,21] for the term F (x̃,ρ) in (2.27), which
should be an analytic function of x̃ near x̃ = 0 since the
film transition occurs at a distinct temperature Tc,film below
bulk Tc. Our curves contain a different type of singularity at
x̃ = 0 that arises from subtracting the singular bulk part F±

b (x̃)
in (2.27); this singularity is very weak and not visible in Figs. 9
and 10.

In Fig. 9(b), our results show an unexpected structure of
the Casimir force scaling function X near bulk Tc where local
maxima occur with increasing ρ > 1/4. The small shoulder for
ρ = 1/4 was already noticed previously [24]. This structure
with local maxima does not exist for n = ∞. Such maxima
also persist in the regime of ρ > 1 as shown in Fig. 10(b). As
a special feature of the case ρ = 1, X and 
 vanish at bulk Tc

in three dimensions, as shown by double-dotted-dashed curves
in Figs. 9(b) and 10(b) (see also Figs. 5 and 6). In addition, the
Casimir force for n = 1 in a cube changes sign at x̃ = −0.884
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FIG. 9. (Color online) Scaling function (a) F ex(x̃,ρ) [Eqs. (2.27)
and (4.55)] and (b) X(x̃,ρ) [Eqs. (2.29), (2.27), and (4.55)] as a
function of x̃ = t(L/ξ0+)1/ν for n = 1 in three dimensions for slab
geometry with finite aspect ratio ρ = 1/4 (solid lines), ρ = 1/3
(dotted lines), ρ = 1/2 (dashed lines), ρ = 2/3 (dotted-dashed line),
ρ = 1 (double-dotted-dashed line). Thin lines in (a): ε expansion
results for ρ = 0 from [19,21].

and is negative for x̃ < −0.884, contrary to the case n = ∞
below Tc [Figs. 3(b) and 4(b) for ρ = 1]. Thus, our theory
predicts that, in a cube, there is only a small positive region
between x̃ = −0.884 and x̃ = 0.

On purely theoretical grounds, it is difficult to provide a
precise quantitative estimate for the range of validity of our
perturbation approach with regard to the dependence on the
scaling variable x̃. Valuable information, however, has been
made available to us by Hasenbusch [36], who performed
MC simulations for the free energy density of the three-
dimensional Ising model in a cubic geometry. These data are
shown in Fig. 11, together with our theoretical curve derived
from (2.27) and (4.55). We see that there is good agreement
in the range −0.05 � x̃ � 3, but significant deviations exist
well below Tc; small but systematic deviations exist also well
above Tc. In particular, our perturbation result for Fex has
an algebraic approach to a finite limit Fex(∞,ρ) for x̃ → ∞,
whereas there should be an exponential decay toward zero
(see Sec. VI). From this comparison, it is obvious that the
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FIG. 10. (Color online) (a) Scaling function (a) �ex(x̃‖,ρ)
[Eqs. (2.40), (2.27), and (4.55)] and (b) 
(x̃‖,ρ) [Eq. (2.41)] as
a function of x̃‖ = t(L‖/ξ0+)1/ν for n = 1 in three dimensions for
rod geometry with finite aspect ratio 1/ρ = 1 (double-dotted-dashed
lines), 1/ρ = 2/3 (dotted lines), 1/ρ = 1/2 (dashed lines), and
1/ρ = 2/5 (solid lines).

lowest-mode separation approach needs to be complemented
by a perturbation approach that is valid outside the central
finite-size regime. Such an approach will be presented in the
subsequent section.

Additional valuable information comes from a comparison
of our Casimir force scaling function with earlier MC data
for periodic BC in the small-ρ regime [16]. We recall that
the lower limit of applicability of our calculation is ρ = 1/4
and that the Casimir forces should depend only weakly
on ρ for ρ < 1/4, thus, it is reasonable to compare our
result for ρ = 1/4 with MC data for ρ = 1/6 [16]. This
comparison is shown in Fig. 12. Also shown are the previous
ε expansion results for ρ = 0 from [19,21], which exhibit
the same kind of singularity at x̃ = 0 as in Fig. 9(a). We see
good agreement of the MC data with our fixed d perturbation
theory in the whole range −2 � x̃ � 20. There are systematic
deviations only for x̃ < −2, which are less pronounced
than those for Fex in the same region. In the subsequent
section, we shall explain this different degree of agreement
between our theory and the MC data shown in Figs. 11
and 12.
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FIG. 11. (Color online) Scaling function F ex(x̃,1) [Eqs. (2.27)
and (4.55)] for n = 1 as a function of x̃ = t(L/ξ0+)1/ν in three
dimensions for cubic geometry (solid line) and MC data for the d = 3
Ising model by Hasenbusch [36]. See also Fig. 13(c).

VI. PERTURBATION THEORY OUTSIDE
THE CENTRAL FINITE-SIZE REGIME

Outside the central finite-size regime, there is no need
for separating the lowest mode, thus, ordinary perturbation
theory with respect to u0 should be appropriate. By ”outside
the central finite-size regime” we mean the regions below the
dashed lines in Fig. 2. Within these regions, it is necessary to
further distinguish between scaling and nonscaling regions (the
nonscaling regions correspond to the shaded regions in Fig. 2;
see also Fig. 1 of [7]). The central parts of both the scaling and
the nonscaling regions still belong to the asymptotic critical
region |t | � 1 and L � ã, L‖ � ã.

Here, we perform the corresponding analysis at the one-
loop level. In Secs. VI A–VI C, we shall consider the scaling
region outside the central finite-size regime. The total scaling
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FIG. 12. (Color online) Scaling function X(x̃,ρ) [Eqs (2.29),
(2.27), and (4.55)] for n = 1 as a function of x̃ = t(L/ξ0+)1/ν in
three dimensions for slab geometry with ρ = 1/4 (solid line) and MC
data for the d = 3 Ising model with ρ = 1/6 by Vasilyev et al. [16].
Thin lines: ε expansion results for ρ = 0 from [19,21]. See also
Fig. 14(a).

region can be roughly characterized by L/ã � 1, L‖/ã �
1, ξ±/ã � 1, and L/ξ± � 24(ξ±/ã)2,L‖/ξ± � 24(ξ±/ã)2,
where ξ± is the second-moment bulk correlation length above
and below Tc, respectively. (Note that this characterization
also includes the central finite-size regime, which is part of
the total scaling region.) The latter restrictions follow from the
conditions (6.18) for the nonscaling regions that will be studied
in Sec. VI D below. In order to distinguish the perturbation
results of this section from those of Secs. IV and V, we use the
notation f +

1-loop, f −
1-loop, etc.

A. Perturbation theory well above Tc

Ordinary perturbation theory for the excess free energy
density (2.9) for n = 1 above Tc yields in one-loop order

f
ex,+
1-loop = 1

2V

∑
k

ln{[r0 − r0c + δK̂(k)]ã2}

− 1

2

∫
k

ln{[r0 − r0c + δK̂(k)]ã2}. (6.1)

Here, we have already replaced r0 by r0 − r0c, which is justified
since r0c ∼ O(u0) [see (4.28)]. Because of the k = 0 term, the
sum exists only for r0 − r0c > 0. The evaluation of the excess
free energy density is outlined in the Appendix.

In the scaling region in 2 < d < 4 dimensions, the large-
k dependence of δK̂(k) does not matter and the leading
contribution is obtained by taking the continuum limit ã →
0 at fixed r0 − r0c > 0. For a renormalization-group (RG)
treatment in the scaling region, see (10.5)–(10.13) of [7].
Neglecting nonasymptotic corrections to scaling, we obtain
the scaling function

F
ex,+
1-loop(x̃,ρ) = 1

2 G0(x̃2ν,ρ) + O(u∗) , (6.2)

where G0 is given by (3.7) and x̃ν = L/ξ+, ξ+ = ξ0+t−ν [for
ξ0+ see (5.16) of [7]]. For large x̃, Fex,+

1-loop decays exponentially
to zero according to the asymptotic behavior

Fex,+
asymp(x̃,ρ) = −

(
x̃ν

2π

) d−1
2

exp(−x̃ν)

− ρd (d − 1)

(
x̃ν

‖
2π

) d−1
2

exp(−x̃ν
‖ ), (6.3)

apart from corrections of O(e−2x̃ν

,e−2x̃ν
‖ ), with x̃ν

‖ = x̃ν/ρ.
Equation (6.3) follows from (A16) in the Appendix for ξ+/ã �
1. We see that the scaling variable x̃‖ appears in a natural way
in the second term of (6.3). For ρ = 1, (6.2) and (6.3) agree
with Eqs. (10.10)–(10.12) of [7].

The corresponding scaling functions �
ex,+
1-loop, X+

1-loop, 
+
1-loop

and �ex,+
asymp, X+

asymp, 
+
asymp follow from (6.2), (6.3), (2.29),

(2.40), and (2.41), respectively.

B. Perturbation theory well below Tc

Perturbation theory for bulk quantities below Tc within the
ϕ4 model for n = 1 at vanishing external field h may be
formulated by first starting with the perturbation expression
at finite external field h > 0 (or h < 0) and at finite volume
V = Ld−1

‖ L, then performing the thermodynamic limit V →
∞ at finite h > 0 (or h < 0), and subsequently performing
the zero-field limit h → 0+ (or h → 0−). Applying this
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procedure to the free energy density f (t,L,L‖,h) implies that
only the contributions of a single bulk phase with a positive
(or negative) spontaneous bulk magnetization are taken into
account in the calculation of

fb(t) = lim
h→0+

lim
V →∞

f (t,L,L‖,h) = lim
h→0−

lim
V →∞

f (t,L,L‖,h).

(6.4)

In MC simulations of finite Ising models at vanishing external
field, however, all configurations of both phases with positive
and negative magnetization do contribute. In this case, the
order-parameter distribution function has two finite peaks
with equal heights in the positive and negative ranges of the
magnetization [17,25,48,49]. For T → 0, these two peaks are
well separated. In order to account for this fact in an analytic
treatment of the ϕ4 model well below Tc, it is appropriate
to formulate perturbation theory such that an expansion is
made around the two separate peaks of the order-parameter
distribution function that exist at h = 0.

In the following, we perform this approach at the one-loop
level in order to calculate f

ex,−
1-loop(t,L,L‖,h = 0) well below Tc.

First, we decompose the lattice variable ϕi of the Hamiltonian
H [Eq. (2.1)] as ϕi = M>,mf + δϕi with the positive mean-
field order parameter M>,mf = [−r0/(4u0)]1/2 > 0. Keeping
only the Gaussian terms of H up to O[(δϕi)2] corresponding to
a one-loop approximation leads to the dimensionless partition
function [compare (B1) of [7]]

Z> = exp

[
V

r2
0

16u0

] ∏
k

(
2π

[−2r0 + δK̂(k)]ã2

)1/2

. (6.5)

It can be rewritten as

Z> = exp(−Vf −
b ) Zex

> , (6.6)

where f −
b is the bare bulk free energy density (4.18) in one-

loop order below Tc and

Zex
> = exp{V f̃ ex} (6.7)

is the finite-size part of Z> with the contribution

f̃ ex = 1

2V

∑
k

ln{[−2r0 + δK̂(k)]ã2}

− 1

2

∫
k

ln{[−2r0 + δK̂(k)]ã2} (6.8)

to the excess free energy density below Tc. The partition func-
tion Z>, however, is incomplete with regard to the finite-size
contributions as it does not take into account the fluctuations
around the negative mean-field order parameter M<,mf =
−[−r0/(4u0)]1/2 < 0. A decomposition of ϕi as ϕi =
M<,mf + δϕi and an expansion of H up to O[(δϕi)2] leads to
the one-loop partition function Z<, which is of course the same
as Z>. Thus, the total finite-size part Zex

> + Zex
< of the partition

function in one-loop order is then given by 2 exp{V f̃ ex}. The
corresponding total excess free energy density is

f
ex,−
1-loop = − ln 2

V
+ 1

2V

∑
k

ln{[−2(r0 − r0c) + δK̂(k)]ã2}

− 1

2

∫
k

ln{[−2(r0 − r0c) + δK̂(k)]ã2}. (6.9)

Here, we have again replaced −2r0 by −2(r0 − r0c) in the spirit
of perturbation theory up to O(1). The result (6.9) is identical
in form with the (corrected [32]) result derived previously
for cubic geometry [7]. The nonexponential finite-size term
−V −1 ln 2 is known from previous work on finite-size effects
in Ising models in a block geometry of volume V [25]. Thus,
this term is not specific for the n = 1 ϕ4 theory, but rather gen-
eral for systems with a twofold degeneracy of the ground state.
According to the definition of the Casimir force (2.10), the
constant term −(ln 2)/V in (6.9) does not contribute to FCasimir.

The derivation presented above is, of course, not exact but
is valid only well below Tc where the two peaks of the order-
parameter distribution function at h = 0 are well separated and
where their wings do not overlap significantly.

The evaluation of (6.9) as well as the RG treatment are par-
allel to that for f

ex,+
1-loop above Tc. By neglecting nonasymptotic

corrections to scaling, we obtain the scaling function in the
scaling region well below Tc:

F
ex,−
1-loop(x̃,ρ) = −ρd−1 ln 2 + 1

2 G0(|2x̃|2ν,ρ) (6.10)

with L/ξ− = |2x̃|ν , where

ξ− = ξ0−|t |−ν, ξ0−/ξ0+ = 2−ν + O(u∗) (6.11)

is the bulk second-moment correlation length below Tc and
where G0 is given by (3.7). In contrast to the vanishing of
F

ex,+
1-loop for x̃ → ∞, Fex,−

1-loop approaches a finite value −ρd−1 ln 2
for x̃ → −∞, as noted already in [32]. According to (6.10)
and (6.3), this approach has an exponential form described by
the asymptotic behavior

Fex,−
asymp(x̃,ρ) = −ρd−1 ln 2 −

( |2x̃|ν
2π

) d−1
2

exp(−|2x̃|ν)

− ρd (d − 1)

( |2x̃‖|ν
2π

) d−1
2

exp(−|2x̃‖|ν),

(6.12)

apart from corrections of O(e−2|2x̃|ν , e−2|2x̃‖|ν ).
The corresponding scaling functions �

ex,−
1-loop, X−

1-loop,

−

1-loop and �ex,−
asymp, X−

asymp, 
−
asymp follow from (6.10),

(6.12), (2.29), (2.40), and (2.41), respectively.
As noted above, the constant term −ρd−1 ln 2 does not

contribute to X. This explains why the perturbation result for
X of Sec. V (as shown in Fig. 12) is in better agreement with
the MC data below Tc than the corresponding result for Fex

shown in Fig. 11. Thus, in contrast to Fex,− which has a finite
low-temperature limit −ρd−1 ln 2, our theory predicts that the
Casimir force scaling function has an exponential decay toward
zero for x̃ → −∞. From (6.12) and (2.29), we obtain

X−
asymp(x̃,ρ) = −

(
d − 1

2
+ |2x̃|ν

)( |2x̃|ν
2π

) d−1
2

exp(−|2x̃|ν)

+ ρd (d − 1)

( |2x̃‖|ν
2π

) d−1
2

exp(−|2x̃‖|ν).

(6.13)
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FIG. 13. (Color online) Scaling functions F ex(x̃,ρ) (a)–(c) and �ex(x̃‖,ρ) (d) as a function of x̃ = t(L/ξ0+)1/ν and x̃‖ = t(L‖/ξ0+)1/ν ,
respectively, for n = 1 in three dimensions for several values of the aspect ratio ρ. Thick lines: improved perturbation theory according to (4.55)
and (2.40). Thin lines: one-loop perturbation theory according to (6.2) and (6.10). The thin lines diverge for t → 0. The asymptotic value
of the thin lines is −ρ2 ln 2 for x̃ → −∞ in (a)–(c) and −(1/2) ln 2 for x̃‖ → −∞ in (d). MC data in (c) for the d = 3 Ising model by
Hasenbusch [36].

It is suggestive to expect that the formulas (6.3), (6.12),
and (6.13) are applicable even to (d = 2)-dimensional systems.
It would be interesting to check this point for the example of the
two-dimensional Ising model with periodic BC in rectangular
geometry.

C. Predictions for the whole scaling region

On the basis of the three perturbation results (4.55), (6.2),
and (6.10), we are now in the position to present quantitative
predictions for the various scaling functions over the whole
range of the scaling variables −15 � x̃ � 20 and −15 �
x̃‖ � 20. These scaling functions are shown in Figs. 13
and 14 for various values of the aspect ratio ρ in three
dimensions.

The thin lines are based on one-loop perturbation the-
ory (6.2) and (6.10) and are applicable only away from Tc

outside the central finite-size regime. For T → Tc, one-loop
perturbation theory breaks down, which implies that the thin
lines diverge for t → 0. The thick lines are based on our

lowest-mode separation approach presented in Secs. IV and V,
which is applicable to the central finite-size regime including
T = Tc. This improved perturbation approach provides a
bridge through T = Tc between the simple finite-size critical
behavior represented by the thin lines well away from
Tc. The lowest-mode separation approach is not applicable,
however, to the regions |x̃| � 1 and |x̃‖| � 1. Our Figs. 13
and 14 demonstrate that one-loop perturbation theory and
improved perturbation theory complement each other and
match reasonably well at intermediate values of the scaling
variables. No perfect matching can be expected because of
missing O(u∗) terms in the one-loop results. Comparison with
the MC data in Figs. 13 and 14 shows that the improvement
achieved by the one-loop results is clearly visible in the
range x̃ > 4 and x̃ < −1 [in Fig. 13(c)] and in the range
x̃ < −2 [in Fig. 14(a)]. On the whole, we consider the good
agreement of our theory with the MC data over the entire
scaling regime −15 � x̃ � 20 as a major success of our
strategy employing three different perturbation approaches.
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FIG. 14. (Color online) Scaling functions X(x̃,ρ) (a)–(c) and 
(x̃‖,ρ) (d) as a function of x̃ = t(L/ξ0+)1/ν and x̃‖ = t(L‖/ξ0+)1/ν ,
respectively, for n = 1 in three dimensions for several values of the aspect ratio ρ. Thick lines: improved perturbation theory according
to (4.55), (2.29), and (2.41). Thin lines: one-loop perturbation theory according to (6.2) and (6.10). The thin lines diverge for t → 0. MC data
in (a) for the d = 3 Ising model with ρ = 1/6 by Vasilyev et al. [16].

Comparison with MC data for other values of ρ would be
interesting.

D. Exponential nonscaling region

So far, we have eliminated the dependence on the lattice
spacing ã by taking the continuum limit. In earlier work, it was
pointed out for confined systems in an Ld geometry [7,46] and
in film geometry [8] that the finite lattice constant ã becomes
non-negligible in the limit of large L/ã at fixed T �= Tc in the
regime where the finite-size scaling function has an exponen-
tial form. The same arguments apply to the present system in
a finite-block geometry. As shown in the Appendix, the excess
free energy density in one-loop order attains the following form
in the limit of large L/ã, large L‖/ã, large L/ξ±, and large
L‖/ξ±:

f ex,+
asymp = A+(ξ+,L,L‖,ã), (6.14)

f ex,−
asymp = − ln 2

V
+ A−(ξ−,L,L‖,ã), (6.15)

with the nonuniversal function

A±(ξ±,L,L‖,ã) = − 1

Ld

[
1 +

(
ã

2ξ±

)2 ] d−1
4

(
L

2πξ±

) d−1
2

× exp

{
− L

ξe±

}
− d − 1

Ld
‖

[
1+

(
ã

2ξ±

)2 ] d−1
4

×
(

L‖
2πξ±

) d−1
2

exp

{
− L‖

ξe±

}
, (6.16)

where

ξe± = ã

2

[
arcsinh

(
ã

2ξ±

)]−1

(6.17)

are the exponential (“true”) bulk correlation lengths [7,33,34]
above (+) and below (−) Tc, respectively. This result applies
to the regions well below the dashed lines in Fig. 2, including
the shaded regions. Note that no condition is imposed on the
value of 0 < ã/ξ± < ∞ other than that L/ξ± and L‖/ξ± are
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large. For L = L‖, (6.16) reduces to the previous result for
cubic geometry [7,50]. As a nontrivial relation between bulk
properties and finite-size effects [33], the lengths ξe± describe
the exponential part of the bulk order-parameter correlation
function [34] in the large-distance limit in the direction of one
of the cubic axes at arbitrary fixed T �= Tc above and below Tc

(for n = 1), respectively. This relation is exact in the large-n
limit above Tc [33].

It has been shown [7,46] that, because of the exponential
structure of the function A±, the ã dependence of ξe± can not
be neglected even for small ã/ξ± � 1 if

L � 24ξ 3
±/ã2, L‖ � 24ξ 3

±/ã2 (6.18)

are sufficiently large. The conditions (6.18) follow from the
second term in the expansion of the function (6.17) for small
ã/ξ±:

ξe± = ξ±

[
1 − 1

24

(
ã

ξ±

)2

+ · · ·
]

(6.19)

appearing in the exponential parts of the function
A±(ξ±,L,L‖,ã) (see also [33,46]). The second term in (6.19) is
not negligible even for small ã/ξ± � 1 if the conditions (6.18)
are satisfied. This implies that finite-size scaling and universal-
ity are violated in the large-|x̃| and large-|x̃‖| tail of Ldf ex

s at
any ã/ξ± > 0 even arbitrarily close to Tc because, ultimately,
for |x̃| → ∞ and |x̃‖| → ∞ (i.e., for large L and L‖ at fixed
|t | > 0), the tail of Ldf ex

s becomes explicitly dependent on
ã. As shown in Sec. X of [7], the tail depends even on the
bare four-point coupling u0 through ξ±; strictly speaking,
it is even necessary to keep the complete nonasymptotic
(u0-dependent) form of ξ± at finite ã. Thus, no ã-independent
finite-scaling form with a single scaling argument ∝ tL1/ν can
be defined in this exponential large-|x̃| and large-|x̃‖| regions.
Higher-loop contributions can not remedy this violation. The
same reservations apply, of course, to the critical Casimir force
and its scaling form.

Note added in proof. The predictions of this paper and of
Refs. [7,32] are in good agreement with recent Monte Carlo
data for the three-dimensional Ising model by Hucht et al. [51].
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APPENDIX: GAUSSIAN FREE ENERGY

We consider the Gaussian model, i.e., the Hamiltonian (2.1)
for u0 = 0, and calculate the excess free energy density in
a rectangularLd−1

‖ × L geometry. This calculation will lead
to the evaluation of the sums in (3.1) and (3.2) as well as
to the derivation of (4.23)–(4.27), (6.2), (6.3), (6.10), (6.12),
and (6.16). Since the calculation is largely parallel to that of [7],
we skip some of the details of the derivation.

The Gaussian excess free energy density per component
divided by kBT is f ex

Gauss = 1
2�(r0,L‖,L,Ki,j ,ã),

�(r0,L‖,L,Ki,j ,ã) = V −1
∑

k

ln{[r0 + δK̂(k)]ã2}

−
∫

k
ln{[r0 + δK̂(k)]ã2}, (A1)

where the sum
∑

k and the integral
∫

k have finite cutoffs ±π/ã

for each kα . Using the Poisson identity [33,47], we obtain the
exact representation

�(r0,L‖,L,Ki,j ,ã)

= −
∫ ∞

0
dy y−1e−r0ã

2y
∑
m,n

′ ∫
q

∫
p

× exp{−δK̂(q,p)ã2y + iq · mL‖ + ipnL} (A2)

with q · m = ∑d−1
α=1 qαmα , where

∑′
m,n means summation

over all integers m = (m1,m2, . . . ,md−1) and n without the
single term with m = 0, n = 0. In the following, we evaluate
� for L � ã and L‖ � ã in two regimes.

1. Central finite-size regime

We assume large L/ã, large L‖/ã, small 0 < r
1/2
0 ã � 1,

and fixed 0 < Lr
1/2
0 � O(1), 0 < L‖r

1/2
0 � O(1), which we

refer to as the central finite-size regime. In this regime,
the large-(q,p) dependence of δK̂(q,p) does not matter.
Therefore, we may replace δK̂(q,p) by its long-wavelength
form (2.20) and let the integration limits of

∫
q and of

∫
p

go to
∞. This leads to the scaling form of the Gaussian excess free
energy

f ex
Gauss = 1

2�(r0,L‖,L) = 1
2L−dG0(r0L

2,ρ), (A3)

where Gj (r0L
2,ρ) is defined in (3.7). Interpreting (A3)

as a one-loop contribution of the ϕ4 model and applying
the renormalization procedure parallel to that described in
Sec. X A of [7], we arrive at the one-loop scaling function
presented in (6.2).

The function G0(r0L
2,ρ) diverges for r0L

2 → 0, which
comes from the large-z behavior of K(z) ≈ 1 in the last term
[ρK(ρ2z)]d−1K(z) ≈ ρd−1 of the integrand of (3.7). We find

G0(r0L
2,ρ) ≈ ρd−1 ln

(
r0L

2

4π2

)
+ C0(ρ) (A4)

for r0L
2 � 1. In order to determine the constant C0(ρ), we

add and subtract the divergent term ρd−1 ln[(r0L
2/(4π2)] by

rewriting G0(r0L
2,ρ) in the form

G0(r0L
2,ρ) = ρd−1 ln

(
r0L

2

4π2

)
+

∫ ∞

0

dz

z

[
exp

(
− r0L

2z

4π2

){ (
π

z

)d/2

− [ρK(ρ2z)]d−1K(z) + ρd−1

}
− ρd−1e−z

]
.

(A5)
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The integral in (A5) has a finite limit for r0L
2 → 0, which

yields the constant

C0(ρ) =
∫ ∞

0

dz

z

[(
π

z

)d/2

− [ρK(ρ2z)]d−1K(z)

+ ρd−1(1 − e−z)

]
. (A6)

Equation (A4) implies that the function

G1(r0L
2,ρ) = −∂G0(r0L

2,ρ)

∂(r0L2)
(A7)

has the divergent behavior

G1(r0L
2,ρ) ≈ −ρd−1

r0L2
(A8)

for r0L
2 � 1. The asymptotic behavior (A4) and (A8) is

needed in the discussion of the low-temperature limit in
Sec. III C.

The function G0(r0L
2,ρ) decays exponentially for large

r0L
2 � 1. From (A16), we obtain, for r0ã

2 � 1 and
r0L

2 � 1,

G0(r0L
2,ρ) ≈ −2

(
r0L

2

4π2

)(d−1)/4

exp
(−Lr

1/2
0

)
−2(d−1)ρd

(
r0L

2

4π2ρ2

)(d−1)/4

exp
(−Lr

1/2
0 /ρ

)
.

(A9)

For ρ = 1, Eq. (A9) agrees with Eq. (10.12) of [7].
The result (A3) is sufficient to derive the higher-mode sums

Si(r0L,L,ρ), (4.11), and (4.12) in the central finite-size regime.
We obtain

1

V

∑
k �=0

ln{[r0 + δK̂(k)]ã2}

=
∫

k
ln{[r0 + δK̂(k)]ã2} + 1

Ld
ln

(
L2

ã24π2

)
+ 1 − ρd−1

Ld
ln(r0ã

2) + 1

Ld
J0(r0L

2,ρ) (A10)

with J0(x2,ρ) defined by (4.26). By means of differentiation
with respect to r0, we obtain, from (A10) for m = 1,2,

V −1
∑
k �=0

[r0 + δK̂(k)]−m

=
∫

k
[r0 + δK̂(k)]−m + 1 − ρd−1

Ld
(r0)−m

+ L2m−d

(4π2)m
Im(r0L

2,ρ) (A11)

with Im(r0L
2,ρ) defined by (4.27). For the bulk integrals,

see [7].

2. Exponential regime above Tc

Now we assume Lr
1/2
0 � 1 and L‖r

1/2
0 � 1 at finite ρ =

L/L‖ for fixed r
1/2
0 ã > 0, which we refer to as the exponential

regime since �(r0,L‖,L,Ki,j ,ã) will attain an exponential

L and L‖ dependence in this regime. In this regime, the
complete k dependence of the microscopic interaction δK̂(k)
does matter. We use the nearest-neighbor interaction (2.19) in
the form

δK̂(q,p) = 2

ã2

d−1∑
α=1

[1 − cos(ãqα)] + 2

ã2
[1 − cos(ãp)] .

(A12)

By generalizing the derivation of [7] to block geometry, we
obtain, for large L/ã and L‖/ã but arbitrary r̃0 ≡ r0ã

2 > 0
(compatible with Lr

1/2
0 � 1 and L‖r

1/2
0 � 1),

�(r0,L‖,L,Ki,j ,ã)

= − 2

ãd (2πL/ã)d/2

∫ ∞

0
dz

exp[�(z,r̃0)L/ã]

z(d+1)/2q1/2

− 2(d − 1)

ãd (2πL‖/ã)d/2

∫ ∞

0
dz

exp[�(z,r̃0)L‖/ã]

z(d+1)/2q1/2
, (A13)

where q = (1 + z2)1/2 with

�(z,r̃0) = −(1 + r̃0/2)z + q + ln

(
z

1 + q

)
. (A14)

The maximum of the function �(z,r̃0) in the exponential parts
of the integrand of (A13) is at z = z̄, where

z̄ =
[
r̃0

(
1 + r̃0

4

)]−1/2

. (A15)

By expanding �(z,r̃0) around z = z̄ up to O[(z − z̄)2] and
performing the integration over z, we finally obtain the
Gaussian excess free energy density, for large L/ã and large
L‖/ã at arbitrary fixed r0 > 0,

f ex
Gauss,asymp = − 1

Ld

(
L/ã

2πz̄

)(d−1)/2

e−L/ξG
e

− (d − 1)

Ld
‖

(
L‖/ã
2πz̄

)(d−1)/2

e−L‖/ξG
e (A16)

with the exponential (“true”) bulk correlation length of the
Gaussian model

ξG
e = ã

2

[
arcsinh

(
r

1/2
0 ã

2

)]−1

. (A17)

We recall that r
−1/2
0 = ξG

+ is the second-moment bulk corre-
lation length of the Gaussian model above Tc. For L = L‖
(cube), (A16) yields the previous result of Eq. (B24) of [7].
No universal finite-size scaling function of the Gaussian
model can be defined in the region L � 24(ξG

+ )3/ã2 and L‖ �
24(ξG

+ )3/ã2 because of the explicit ã dependence of (A16)
and (A17).

Within a RG treatment of the ϕ4 lattice model, the Gaussian
results (A3) and (A16) can be considered as the bare one-loop
contributions to the excess free energy density. By means of
such a RG treatment at finite lattice constant ã parallel to
Sec. 2 and Appendix of [46], these results acquire the correct
critical exponents of the n = 1 universality class, including
corrections to scaling. This leads to the one-loop results at
finite ã in Sec. VI D.
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[9] D. Dantchev and D. Grüneberg, Phys. Rev. E 79, 041103

(2009).
[10] A violation of two-scale factor universality due to anisotropy

was also noted by X. S. Chen and H. Y. Zhang, Int. J. Mod.
Phys. B 21, 4212 (2007) in the context of the correlation length
and by W. Selke, Eur. Phys. J. B 51, 223 (2006), in the context
of the Binder cumulant. For a discusssion of anisotropy effects
see also H. W. Diehl and H. Chamati, Phys. Rev. B 79, 104301
(2009). For a response to this discussion, see [8].

[11] It has been proposed by Williams [3] that measurable effects
caused by the critical Casimir force may exist in anisotropic
superconducting films. In a comment on [3] by D. Dantchev,
M. Krech, and S. Dietrich, Phys. Rev. Lett. 95, 259701 (2005),
the measurability of the critical Casimir force in superconductors
proposed in [3] has not been questioned. This is in contrast to
the opinion expressed in [12] that “the critical Casimir force is
only active in fluid systems.” We disagree with this claim. An
appropriately defined critical Casimir force may well be active
in nonfluid systems not only because of the proposal presented
in [3], but also for the following reason. Consider, for example,
magnetic systems near the Curie (or Néel) point [13], solids near
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