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We consider correlated Lévy walks on a class of two- and three-dimensional deterministic self-similar
structures, with correlation between steps induced by the geometrical distribution of regions, featuring different
diffusion properties. We introduce a geometric parameter α, playing a role analogous to the exponent
characterizing the step-length distribution in random systems. By a single-long-jump approximation, we
analytically determine the long-time asymptotic behavior of the moments of the probability distribution as a
function of α and of the dynamic exponent z associated with the scaling length of the process. We show that
our scaling analysis also applies to experimentally relevant quantities such as escape-time and transmission
probabilities. Extensive numerical simulations corroborate our results which, in general, are different from those
pertaining to uncorrelated Lévy-walk models.
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I. INTRODUCTION

Lévy-like motions represent an important family of random
motions generated by a stochastic process with stationary
and independent increments. Brownian motion constitutes a
particular case of this family, but its mathematical tractability
and its remarkable statistical properties have led it to become
the principal model of random motion. However, different
types of Lévy motions have been extensively investigated, both
theoretically and experimentally, as they have been found to be
ubiquitous in nature: in biology [1–4], chaotic dynamics [5,6],
economics [7], and search strategies [8,9], the Lévy motions
that have been observed are characterized by increments of
arbitrary length l, with a step-length distribution featuring an
algebraic tail ∼l−(1+α). Such a distribution is said to be heavy
tailed and has a diverging variance for α < 2.

An interesting experimental situation where Lévy motion
can be detected is diffusion in heterogeneous and porous
materials, composed of two or more types of regions with
different diffusion properties. In that case, particle motion
consists of a sequence of scattering events occurring in the
hard-scattering part of the material, followed by long jumps
performed at almost constant velocity in the nonscattering
regions. If the material is very heterogeneous on all scales,
the step length ends up being heavy-tail Lévy distributed.
This description applies to the transmission of light through
clouds [10], tracer transport in heterogeneous aquifers [11],
and molecular diffusion at low pressure in porous media—
which is dominated by collision with pore walls, with ballistic
motion inside the large pores [12]—as well as in fractured
and heterogeneous porous media [13]. In addition, recent
experiments on new disordered optical materials, the Lévy
glasses, have paved the way to the engineering of Lévy-
distributed step lengths [14]. This phenomenology is often
modeled in terms of annealed Lévy walks, where step lengths
are uncorrelated [15,16].

However, a key signature of these processes is that the
steps are in principle not independent, as they are correlated
by their mutual positions in the sample. A walker that has
just traversed a large hole has a high probability of being

backscattered at the following step and thus to perform a
jump of roughly the same length. The step-length distribution
represents therefore a quenched disorder, a standard definition
in statistical mechanics of disordered systems [17]. Now,
while the case of Lévy walks with uncorrelated jumps is well
understood [15,16,18,19], the correlation effects, which are
expected to exert a deep influence on the diffusion properties,
are still to be characterized, and the upper critical dimension
above which a description in terms of uncorrelated Lévy walks
proves sufficient is still under debate [20–23].

A first step in this direction has been taken, and to this
end, quenched Lévy processes have been studied on one-
dimensional systems [24,25]. There, the effects of geometry-
induced step-length correlation on the asymptotic behavior of
the mean-square displacement has been investigated in detail.
More recently, again for one-dimensional systems, different
aspects regarding the scaling properties of random-walk
distributions, the relations between the dynamical exponents,
and the possible average procedures have been discussed in a
common framework. This gave evidence of the strong effects
of correlations also on quantities averaged over all the starting
sites [26–28]. Obviously, one-dimensional models represent
simplified systems and may not compare quantitatively to real
experiments conducted so far on three-dimensional systems.
On the other hand, they have proven amenable to an exact
analytic solution for the dynamics. It is now important to
keep track of what properties observed in one-dimensional
systems can be extended to higher dimensions. The key point
is to understand the effects of step-length correlations and of
averages over starting points, and what is needed is a proper
model for the heterogeneous geometrical pattern where the
correlated Lévy motion takes place.

In this paper we model the transport process as a random
walk on scale-invariant structures—namely, generalized two-
and three-dimensional Sierpinski carpets—whose solid and
empty regions represent portions of material characterized
by different transmission properties. To reproduce a realis-
tic propagation, our process consists of a simple diffusive
random walk on the solid regions of the structure, and of a
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ballistic motion across its empty regions. Therefore, while
the distribution of allowed jump lengths is scale invariant,
any point in the two- or three-dimensional region of space
occupied by the structure is accessible to the walker. This is
at variance with the well-known and studied case of standard
diffusion on self-similar structures, where the empty regions
are not accessible [29], and the motion takes place on a truly
fractal space. From a more rigorous point of view the ballistic
propagation of the walker across the “empty” regions of a
fractal structure can be equivalently obtained by imposing a
scale-invariant pattern of persistence on the sites of a regular
Euclidean lattice [30].

It should be remarked that the available experimental
realizations are characterized by a strong amount of disorder
[10–14], which might call into question our modeling of
the pattern of inhomogeneity in terms of deterministic, self-
similar structures. However, the regular distribution of the
inhomogeneities allows us to take into account several crucial
points in a more controlled way. We are able to estimate the
effects of the tail in the step-length distribution in terms of the
geometrical parameters characterizing the Lévy quasicrystals,
and we can tune it arbitrarily to study its effects; we can
correctly control the effects of the averages over the starting
sites, which are known to have a deep influence on the
asymptotic properties of the mean-square displacement in
one-dimensional structures; most importantly, we are able to
take a first step toward comprehending correlated Lévy walks
in higher dimensions.

One of our main results is that, for this type of “topological”
correlations, quenched Lévy walks lead to a set of exponents
for the asymptotic behaviors of the mean-square displace-
ments and transmission which differ from the uncorrelated
case [20–22].

In detail, in this paper, we tackle the problem by verifying
the scaling hypothesis for the probability distribution Pj (r,t),
namely, the probability for the Lévy walker to be at a distance
r from its starting site j at time t [31] and by evaluating
the dynamical exponent z associated with the growth of the
scaling length �(t) ∼ t1/z of the process. This is a function of
a tunable geometrical parameter, α, describing the self-similar
pattern of empty regions in the Lévy quasicrystals, and
playing a role analogous to the exponent characterizing the
step-length distribution in random systems. Then, by making
the reasonable and well-verified single-long-jump hypothesis
[27], we estimate the tails of P (r,t), i.e., the average of Pj (r,t)
over all possible starting sites. We derive an analytic expression
for the asymptotic behaviors of the moments 〈rp(t)〉 of P (r,t),
evidencing the presence of strongly anomalous diffusion [32],
i.e., 〈rp(t)〉 �= C�(t)p. In the attempt of making a direct contact
with experiments, we also derive the scaling properties of exit
times, as well as of the time-resolved transmission probability
and transmission profiles through a slab of thickness L.
Extensive numerical simulations are in very good agreement
with the predicted behaviors.

The paper is organized as follows. In the following section,
we describe our Lévy quasicrystals based on generalized
Sierpinski carpets (SCs). In Sec. III we introduce the relevant
physical quantities that we will study in this paper. In
Sec. IV we discuss the scaling hypothesis and the single-
long-jump approximation which allows us to evaluate the

momenta of the distribution P (r,t) evidencing the presence
of strongly anomalous diffusion [32]. In the last part of the
paper, we present extensive numerical simulations proving
the reliability of our scaling hypothesis and single-long-jump
approach. In particular, we evaluate the dynamical exponent
z as a function of the dimensionality, of the dynamics
and of α, a simple parameter describing the topology of
the structure. For a slab of thickness L we evaluate exit
times, time-resolved transmissions, and transmission pro-
files; such results could be useful for a comparison with
experiment [14]. Section VI contains our conclusions and
perspectives.

II. STRUCTURES

To realize a Lévy walk on a quenched structure we consider
a regular lattice in which empty regions have been created by
removing a subset of sites. We then consider a random walker
that can jump across empty regions. This is actually a Lévy
process provided that the linear size of such regions—and
hence the length of the ballistic jumps—is Lévy distributed.
Specifically, it is a Lévy walk if all jumps are performed at
constant velocity and hence completed in a time proportional
to their length. The Cantor lattices considered in Ref. [27]
are deterministic one-dimensional structures exhibiting the
desired properties. The natural two-dimensional generalization
of such structures is provided by the so-called Sierpinski
carpets discussed in Ref. [33].

The self-similar character of a SC can be illustrated by
observing that several identical objects can be assembled
to give a larger SC. One way to describe this constructive
procedure is the following: arrange n2

u SCs of generation g

in a square array, and subsequently remove some, so that
only nr < n2

u of them remain. The resulting object is a SC
of generation g + 1. If the same procedure is repeated using
SCs of generation g + 1 as building blocks, a structure of
generation g + 2 is obtained. Figure 1 illustrates this algorithm
in the case of the standard two-dimensional SC, where nu = 3
and nr = 8, and the structure of generation g = 0 is a simple
lattice site. At each generation a 3 × 3 array of carpets is laid
out, and the central structure is removed, leaving a square
empty region. Note that the linear size of the largest empty
region in the structure grows by a factor nu as the generation
is increased. A different structure, corresponding to nu = 4
and nr = 12, can be obtained by laying out a 4 × 4 array of
building blocks, and subsequently removing the four innermost
structures. In general a SC of generation g features n

g−k−1
r

empty regions of linear nk
u, with k = 0,1, . . . ,g − 1. If g is

sufficiently large, the linear size of the empty regions spans
several orders of magnitude. For instance, the third-generation
structure in Fig. 1 features one empty region of linear size 9,
eight empty regions of linear size 3, and 64 empty regions of
linear size 1.

One of the parameters characterizing a SC is its fractal
dimension, i.e., the average number of sites per unit surface,
which is has a simple expression in terms of the constructive
parameters

df = ln nr

ln nu

. (1)
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FIG. 1. Third generation of a SC with nu = 3 and nr = 8. Light
squares represent actual sites of the structure. Dark squares belong to
empty regions. The “exploded view” in the lower left corner highlights
the fact that this structure is made of nr = 8 SCs of generation g = 2,
and so on.

A more relevant characterization for our purposes can be given
in terms of the probability for the length of the jumps that
can be taken at a random site of the structure. For each of
the possible jump lengths nk

u this probability is given by the
density of sites on the boundary of empty regions of linear size
nk

u. It is easy to prove that the moments of such probability

Rp = lim
g→∞

g−1∑
k=0

(
nk

u

)p n
g−k−1
r nk

u

n
g
r

(2)

converge only if p < α, where

α = ln nr

ln nu

− 1. (3)

This parameter has exactly the same role as the exponent α

characterizing the distribution of the step lengths s of a Lévy
walk in d dimensions, whose pth moment

sp ∝
∫ ∞

s0

ds sd−1 1

sα+d
sp (4)

converges only if p < α.
For the Sierpinski carpets discussed in Ref. [33] the

threshold in Eq. (3) is connected to the fractal dimension of
the structure, df = α + 1 < 2. Since α < 1 the size of the
average empty region, i.e., the first moment of the distribution,
is infinite.

The two-dimensional counterparts of the Cantor-Smith-
Volterra sets discussed, e.g., in Ref. [27] are hierarchical
structures similar to Sierpinski carpets for which α > 1 and
df = 2. We refer to these structures as fat carpets (FCs).

As we discuss above, a SC of generation g can be seen as a
nu × nu square tiling whose elements have the same size as an
SC of generation g − 1. Some of these elements are actual SCs,
while others are left empty. The tiling in a FC is slightly more
complex, in that it requires three kinds of tiles, as illustrated
in Fig. 2. This comes about because, in order to attain α > 1,
the largest empty tiles at a given generation must grow less
than the entire structure as the generation is increased. More
specifically, a FC of generation g + 1 contains nr = ν2

r FCs of

FIG. 2. Third generation of a FC with nr = 9 and nu = 2. The
exploded view in the lower left corner illustrates the tiling pattern
underlying the structure. Three different types of tiles are necessary
to build the structure: nr = ν2

r = 9 FCs of generation g = 2, whose
side comprises 19 sites, (νr − 1)2 = 4 empty square tiles of side
ν2 = 4, and 2(νr − 1)νr = 12 rectangular padding tiles, highlighted
in a lighter shading.

generation g, whose side is L
(g)
C , (νr − 1)2 empty square tiles

of side L
(g)
E , and 2νr (νr − 1) rectangular L

(g)
C by L

(g)
E tiles. If

L
(1)
C = 0 and L

(g)
E = n

g
u, with nu < νr , we get

L
(g)
C = νg + (ν − 1)

νg − hg

ν − h
∼ νg 2ν − h − 1

ν − h
, (5)

so that the fraction of sites contained in the rectangular
padding tiles decreases as n

g
uν

−g
r . Thus, for sufficiently large

generations, the contribution of the padding tiles becomes
negligible and the total number of sites in the structure is
proportional n

g
r . This means that the threshold for finite

moments in the probability for the length of the jump at a
random site of the FC is once again given by the quantity
in Eq. (3). Since νr = √

nr > nu, α > 1 and the average size
of the empty regions is finite. All of the above discussion
can be easily generalized to arbitrary dimension d. In fact,
in Sec. IV, the single-long-jump picture is illustrated for a
generic dimension d. As to the simulations, we mainly focus on
two-dimensional structures, but we also present some results
for three-dimensional spongelike structures.

Let us now get back to the diffusion dynamics of the random
walk. This is based on the standard dynamics on a regular
square lattice: one direction is randomly chosen out of the
four possible ones pointing to the adjacent sites. If a site is
found in that direction at a distance of a single lattice spacing,
then the jump is taken, and the time is increased by one unit.
If the same jump would land inside an empty region, then the
random walk traverses the entire region and lands at a site
belonging to a boundary different from that containing the
starting site. Figure 3 illustrates the two possible schemes for
the choice of the arrival site we consider in this work. In the
simpler scheme (left panel) the walker lands at the site facing
its current position (head-on dynamics). In the second scheme
(right panel) the landing site is randomly chosen among those
belonging to any of the sides of the empty region except the
one currently hosting the random walk (fan-out dynamics). In
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FIG. 3. Possible jumps of a random walk initially at a site on
the boundary of an empty region (black circle). The random walk
can attempt a jump in one of four possible directions, with equal
probabilities. If the chosen direction points to one of the three
neighboring sites (black triangles), the jump is taken and the time
is increased by one unit. If the chosen direction points to the empty
region, the random traverses it. The two panels illustrate the two
possible schemes for the choice of the arrival site (black pentagram).
Left: the arrival site is the one facing the current position of the
walker (head-on dynamics). Right: the arrival site is chosen with
equiprobability in the boundaries of the empty region not containing
the current position of the random walk (fan-out dynamics). In any
case, the time is increased by the length of the jump, as measured in
units of the lattice spacing.

any case, since the random walk moves at constant velocity,
the time required for a jump equals its length.

Note that the jump probabilities of these two dynamics
are different at any distance scale. Therefore we expect
that parameters usually exhibiting universal character might
be different for the two cases. In fact, our simulations
evidence that the dynamical exponent governing the growth of
the characteristic length of the process seems to depend
on the dynamics, on the dimensionality of the system, and on
the geometric parameter α. Conversely, a very robust feature
we observe is that anomalous diffusion takes place strictly
for α < 1 for every case considered here. This is at variance
with the case of uncorrelated Lévy walks, where α < 1 and
1 < α < 2 correspond to purely ballistic propagation and
superdiffusion, respectively.

III. PHYSICAL QUANTITIES

The diffusion process on the structures under concern can
be characterized by several quantities. One of the most natural
is the probability Pj (r,t) that at time t the random walk is at a
distance r from the lattice site j it started from. The average
of this probability over all the lattice sites,

P (r,t) = 1

N

∑
j

Pj (r,t), (6)

where N is the number of lattice sites, is a meaningful quantity
as well, in view of the spatial inhomogeneity of the SCs and
FCs [34]. As we will discuss shortly, it highlights the anomalies
in the behavior of the diffusive process. These probability
distributions are completely defined by their moments,

〈
r

p

j (t)
〉 =

∫
dr rp Pj (r,t), 〈rp(t)〉 =

∫
dr rp P (r,t). (7)

A further quantity worth analyzing is the escape-time
probability, namely, the probability E(L,t) that a walker

starting at a random site of a structure of linear size L escapes
from it at time t .

An even more direct contact with the experiment is
provided by the conditional first-passage time Tjk(L,t), i.e.,
the probability that a particle injected at a site j belonging
to one boundary of the structure hits a site k belonging to
the opposite boundary at time t before going back to the
boundary containing j , which is therefore absorbing. This
means that there is a (large) probability that the injected
particles are backscattered by the structure. As to the direction
parallel to the entrance and exit boundaries, we consider two
possible schemes. In the first, the random walk is simply
reflected by the boundaries of the structure. In the second
the environment seen by the random walk is periodic, i.e., it
consists of an infinite stack of identical structures of some fixed
generation.

The conditional first-passage time gives access to experi-
mentally relevant quantities. For instance, it is clearly related,
through integration over time, to the transmission profiles
shown in Ref. [14], i.e., the average number of processes
transmitted through the sample at a transverse distance r from
the injection point. Specifically, on a two-dimensional (2D)
system of linear size L, these are obtained as

Tp(r,L) = 1

L

∑
j

∫ ∞

0
dt Tj j+r (L,t). (8)

Likewise, averaging over entrance sites and summing over exit
sites gives the time-resolved transmission probability,

T (L,t) = 1

L

∑
jk

Tjk(L,t). (9)

Finally, integrating this quantity over time gives the total
transmitted intensity, i.e., the fraction of processes transmitted
through the sample

I(L) =
∫ ∞

0
dt T (L,t). (10)

IV. SCALING ANALYSIS AND SINGLE-LONG-JUMP
ANSATZ

Several of the quantities discussed in the previous Section
depend on time and on a spatial variable. The latter can be the
walk distance r in the case of the local and average probabilities
Pj (r,t) and P (r,t), or the system size L in the case of the escape
probability. A generic function of space and time is expected
to exhibit the following scaling structure:

f (r,t) = tγ f̃

(
r

�(t)

)
, (11)

where the asymptotic behavior of the characteristic length is

�(t) ∼ t
1
z . (12)

Notice that the prefactor in the right-hand side of Eq. (11)
depends only on time. An alternative equivalent form of this
equation is also possible, featuring a prefactor depending on
the spatial variable alone, rγ z, and a scaling function simply
related to f̃ .
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The exponent γ in the prefactor can be determined from
known features of the quantity under concern. For instance, the
expected dependence of the return probability on the spectral
dimension ds of the structure, P (0,t) ∼ t−ds/2 [35,36], entails
that γ = ds/2 for the local probability Pj (r,t). Furthermore,
the time independence of the norm of Pj (r,t) yields z = 2d/ds,
where d is the dimensionality of the system.

As to the function f̃ (x), one expects it to decay very
rapidly unless, at time t , the random walk was able to take
jumps much longer than �(t). The rapid decay is typical of
local quantities, whereas average quantities usually exhibit
an anomalous behavior. We illustrate the origin of the slow
decay by focusing on Pj (r,t) and its average P (r,t), defined
in Eq. (6). A slow decay of f̃ (x) is expected when the random
walk is able to take arbitrarily large jumps at arbitrarily small
times. This is precisely the case of P (r,t), since the sum in
Eq. (6) includes starting sites in the vicinity of empty regions
of arbitrary size.

The situation is somewhat different for the local probability
Pj (r,t). It is indeed true that the starting site can be close to
an empty region of very large linear size, say L̄, so that a
jump of length L̄ can occur at relatively early times. However,
this merely affects the transient part of the dynamics. After a
suitably long time �(t) 
 L̄, the regular behavior is recovered,
since empty regions much wider than �(t) are far removed from
the position of the random walk. For a similar reason we expect
the long-time asymptotic behavior of Pj (r,t) to be independent
of j . Indeed for �(t) much larger than the distance between
sites i and j we expect that Pj (r,t) � Pi(r,t).

The fast or slow decay of f̃ (x) is mirrored by the asymptotic
behavior of the moments defined in Eq. (7). The rapidly
decaying scaling function in the local probability indeed yields

〈rj (t)〉 ∼ p

√〈
r

p

j (t)
〉 ∼ �(t) (13)

independent of the starting point.
The expected more complex behavior of the average

moments 〈rp(t)〉 when slow decay is present can be studied
in the single-long-jump picture [26–28]. This corresponds to
assuming that the average probability can be split into two
contributions, a regular, rapidly decaying part P (r)(r,t) and an
anomalous tail P (a)(r,t). The latter is assumed to be generated
by a single jump, much larger than the characteristic length,
and it is expected to give rise to a significant contribution in
the region r 
 �(t) where the former is negligible.

To estimate the anomalous contribution, we have to deter-
mine the probability that the random walk takes a jump of
size �̄ 
 �(t) at time t . This is proportional to the density of
regions of linear size �̄ times the number of sites from which
a random walk can reach one of those regions in a time t .
Recalling that the average distance covered by the walker in a
time t is given by �(t), the sites accessible to a single region
of linear size �̄ are enclosed in a region whose volume is
proportional to �(t) �̄d−1. The density of sites corresponding
to a volume of linear size �(t) is �(t)df −d , where df is the
fractal dimension discussed in Sec. II. Observing that the
empty regions in the self-similar structures thereby discussed
have discrete linear sizes �̄ = nk

u and discrete densities n−k
r , we

estimate the anomalous contribution to the average probability
as

P (a)(r,t) = �(t)σ
∑

nk
u>�(t)

(
nd−1

u

nr

)k

δ
[
r − min

(
nk

u,t
)]

, (14)

where the delta function takes care of empty regions whose
linear size is larger than the longest possible distance (ballis-
tically) covered by the random walker in a time t , and

σ = df − d + 1 =
{
α if α < 1

1 if α � 1
. (15)

We can now analyze the generic moment of the average
probability. According to its definition, the regular part of such
probability results in a regular contribution, like in Eq. (13):
〈rp〉(r) ∼ �(t)p. The contribution from P (a) can be evaluated as

〈rp〉(a)= �(t)σ
∑

�(t)<nk
u<t

(
nk

u

)p

(
nd−1

u

nr

)k

+ �(t)σ tp
∑
nk

u>t

(
nd−1

u

nr

)k

.

(16)

Performing the summations and joining the regular and
anomalous contributions. we obtain

〈rp〉 = C1 t
p

z + C2 t
p−α+σ

z + C3 tp−α+ σ
z , (17)

where the Cj ’s are time-independent coefficients and we made
use of Eq. (12). Equation (17) shows that the asymptotic
behavior of the generic moment of the average probability
is actually more complex than that given in Eq. (13), i.e.,
the system exhibits strongly anomalous diffusion [32]. More
specifically, on thin carpets (α < 1),

〈rp〉 ∼
{

t
p

z if p < α

tp−α z−1
z if p � α

, (18)

whereas on fat carpets (α � 1)

〈rp〉 ∼
{

t
p

2 if p < 2α − 1

tp−α+ 1
2 if p � 2α − 1

, (19)

Let us now turn to the scaling properties of the escape-
time probability. The scaling hypothesis states that E(L,t) can
depend on the system size L only through the ratio L/�(t), i.e.,

E(L,t) = Lηf̃ (L/�(t)). (20)

Imposing the normalization

1 =
∫

E(L,t)dt =
∫

Lηf̃ (L/�(t))dt, (21)

we get η = −z, where we once again made use of Eq. (12).
Similar considerations apply to the transmission-related

quantities introduced in Sec. III. The time-resolved transmis-
sion probability, Eq. (9), is expected to obey a scaling law of
the same form as Eq. (20),

T (t,L) = Lηf̃ (L/�(t)), (22)

although with a different scaling function and exponent. The
latter is fixed by recalling that the Einstein relation connecting
the growth of the characteristic length and the total transmitted
intensity as a function of the linear size of the system [26,31]
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FIG. 4. (Color online) Scaling of the local probability for the
(thin) SC with nr = 8 and nu = 3, corresponding to α ≈ 0.8928
(head-on dynamics). The inset provides a check of Eq. (13) for some
values of p (listed for the lines from top to bottom). A fit of the data
according to Eq. (12) gives z−1 ≈ 0.553.

gives I(L) ∼ L1−z. On the other hand, plugging Eqs. (12) and
(22) into Eq. (10) gives

I(L) =
∫

T (t,L)dt = Lη

∫
f̃ (L/�(t))dt ∼ Lη+z, (23)

which yields η = 1 − 2z.
The transmission profile Tp(r,L) defined in Eq. (8), does

not depend on time, which was integrated over, but on two
distances, r and L. The relevant scaling function is expected
to depend only on the ratio of these distances,

Tp(r,L) = Lηf̃ (r/L). (24)

Of course f̃ and η are different from those appearing in
Eqs. (20) and (22). Since the integration of Tp(r,L) over all
possible distances r gives once again the total transmitted
intensity defined in Eq. (10), the above-mentioned Einstein
relation fixes the exponent to η = −z.

V. SIMULATIONS AND RESULTS

In the present section, we provide numerical evidence
corroborating the scaling hypothesis and the single-long-
jump picture illustrated in the previous section. An effective
encoding of the topology of the structure in a matrix of size
g × L, where g and L are the generation of the carpet and the
length of its side, respectively, allowed us to address L’s up to a
few million sites. In fact, after a straightforward generalization,
the matrix relevant to a given carpet can be used to describe
its d-dimensional counterpart with no additional memory
demand. We will present some results for three-dimensional
structures as well.

We start by focusing on the local probability density Pj (r,t).
After checking that, as expected, the asymptotic behavior
of this quantity does not depend on the starting site j , we
collected extensive data on PO(r,t), where O denotes one
of the vertices of the structure under examination. Figure 4
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FIG. 5. (Color online) Dynamic exponent governing the asymp-
totic behavior of the characteristic length in Eq. (12) for several
quasicrystals and jump schemes. Head-on dynamics on 2D structures
(circles); fan-out dynamics on 2D structures (triangles); head-on
dynamics on 3D structures (squares). The solid line is the analytically
known result for the 1D case, z = α + 1, [26], shown for comparison.
The dashed line is an ansatz for the head-on dynamics on 2D
systems, z = z/(2 − α). The dash-dot line is the result for “ballistic”
motion. Note that we examined structures characterized by very
different geometries yet corresponding to very similar values of the
parameter α in Eq. (3). Specifically we considered α = ln 8/ln 3 −
1 ≈ ln 40/ln 7 − 1 in the 2D case and α = ln 3904/ln 20 − 2 ≈
ln 218/ln 7 − 2 in the 3Dl case.

demonstrates that PO(r,t) satisfies the scaling hypothesis in
Eq. (11), with a suitable choice of the exponent governing the
asymptotic growth of the characteristic length �(t), as dictated
by Eq. (12). The expected steep decay of the scaling function
f̃ (x) is also apparent from Fig. 4, while the inset in the same
figure demonstrates the correctness of our surmises in Eqs. (13)
and (12). For 1D systems, analytic arguments show that the
exponent appearing in Eq. (12) depends on the parameters nu

and nr determining on the topology of the structure through
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FIG. 6. (Color online) Scaling of the average probability for the
(thin) SC with nr = 8 and nu = 3, corresponding to α ≈ 0.8928
(head-on dynamics). The characteristic length �(t) is exactly the same
as that used in Fig. 4, �(t) ∼ t1−α/2.
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FIG. 7. Exponent governing the asymptotic behavior 〈rp〉 = t ζ (p)

of the moments of P (r,t), Eq. (7). Left: SC with α = ln 8/ln 3 − 1;
dotted line: ζ = z−1p; dashed line: ζ = p − z−1(z − 1)α; symbols:
data fits. Right: FC with α = ln 16/ln 3 − 1; dotted line: ζ = p/2;
dashed line: ζ = p − α + 1/2; symbols: data fits.

the parameter α defined in Eq. (3), as z = 1 + α [26]. Figure 5
shows the dependence of z on α as obtained from fits of
Eq. (13) for two- and three-dimensional structures. For the
former we employed both dynamics, whereas for the latter
only the head-on dynamics was considered. Notice that we
examined structures characterized by different values of nu

and nr , which combine to give very similar values of α,
and that the corresponding fitted values of z exhibit a very
satisfactory agreement. This is rather convincing evidence
that, as in the 1D case, the exponent z depends on α rather
than on nu and nr separately. Also, our data show that the
anomalous growth of �(t), i.e., z < 2, is present only for α < 1,
whereas for α � 1 the growth of the characteristic length is
consistent with z = 2. That is, α < 1 and α � 1 correspond to
superdiffusive and standard diffusive behaviors, respectively.
This applies independent of the system dimensionality and
chosen dynamics. Finally, we notice that for the head-on
dynamics on 2D structures, the dynamic exponent seems to be
a very simple function of the Lévy parameter, z = 2/(2 − α),
which might indicate that an analytic formulation is possible
as in the 1D case.

We now turn to the properties of the average probability in
Eq. (6). Figure 6 shows that the scaling relation in Eq. (11)
applies for sufficiently small values of r/�(t), where �(t) is
the characteristic length dictating the asymptotic behavior of
the local probabilities Pj (r,t). For large values of r/�(t) it
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FIG. 8. (Color online) Scaling of escape-time probability. Left:
α = ln 24/ln 7 − 1. Right: α = ln 12/ln 4 − 1. The numeric data
were obtained by adopting the head-on dynamics described in Fig. 3.
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FIG. 9. (Color online) Scaling of escape-time probability. Left:
α = ln 24/ln 7 − 1. Right: α = ln 16/ln 5 − 1. The numeric data
were obtained by adopting the fan-out dynamics described in Fig. 3.

is possible to recognize structures ultimately arising from
the complex superposition of the delta functions appearing
in Eq. (14). The long tails characterizing the distributions
P (r,t) give rise to the anomalous behavior in the average
moments described by Eqs (18) and (19). These results of the
single-long-jump hypothesis are indeed confirmed by Fig. 7,
showing the fitted values of the exponent ζ dictating the
asymptotic dependence of the moments on time, 〈rp〉 ∼ t ζ (p).
The linear dependence of ζ (p) on p and the change in slope
predicted by Eqs. (18) and (19) are clearly recognizable.

We conclude the present section by discussing further
results confirming the general validity of the scaling approach.
Figures 8 and 9 refer to the escape-time probability for the
head-on and fan-out dynamics, respectively. It is apparent that
E(L,t) obeys Eq. (20), where η = −z, and z depends on α

according to the behavior described in Fig. 5.
The same applies to transmission-related quantities, as it is

clear from Figs. 10 and 11, which prove the validity of scaling
Eqs. (22) and (24), respectively. We note that Fig. 11 shows
that at small r/L values the convergence of the transmission
profiles is attained only for sufficiently thick samples. At first
sight this could be related to the cusp-like shape observed in
the experiments [14]. However, when plotted in logarithmic
scale, the profiles turn out to be exponential for large r/L and
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FIG. 10. (Color online) Scaling of time-resolved transmission
probability. Left: α = ln 24/ln 7 − 1. Right: α = ln 16/ln 5 − 1. The
numeric data were obtained by adopting the fan-out dynamics
described in Fig. 3.
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FIG. 11. (Color online) Scaling of the transmission profiles for
the standard SC, α = ln 8/ln 3 − 1, according to Eq. (24). The inset
shows a comparison between the profile for L = 36 (black thin line)
and that for a homogeneous sample (gray thick line). The numeric
data were obtained by adopting the second dynamics described in
Fig. 3.

bell-shaped at the center. This is the same shape characterizing
the transmission profile for a homogeneous sample (see inset
of Fig. 11). The discrepancy between the experimental profiles
and our results is very likely to be ascribed to the fact that the
experimental samples are much more inhomogeneous than our
Lévy quasicrystals.

VI. CONCLUSIONS

In this paper we analyze Lévy walks whose step-length
distributions are characterized by correlations arising from the
structural properties of the Lévy quasicrystal through which
the process takes place. One of the main outcomes of our
work is that this correlation has a nontrivial influence over
all of the properties of Lévy walks we have addressed. The
difference between correlated and uncorrelated Lévy walks
is not a peculiarity of the one-dimensional case examined
in Refs. [26–28], but persists in two and three dimensions,
at least as long as the correlations arise from the self-
similar inhomogeneity pattern of the Lévy quasicrystals herein
considered. The scaling analysis we develop shows that the
dynamic exponent z governing the asymptotic behavior of
the characteristic length of the local probability Pj (r,t) has
a wider scope than the mean-square displacement usually
employed in the description of the process of (super)diffusion

through the sample. Our single-long-jump ansatz provides
a very satisfactory quantitative description of the strongly
anomalous asymptotic behavior of the process emerging after
averaging over all possible starting points. To make a more
direct contact with experiments we extend our scaling anal-
ysis to escape-time probabilities, time-resolved transmission
probabilities, and transmission profiles. Our scaling picture is
indeed confirmed by extensive numeric simulations covering
a significant range of sample sizes and heavy-tailed jump
distributions.

A further important message from our results is that
Lévy quasicrystals are an ideal test bed for reproducing the
superdiffusive features induced by structural properties of the
sample. In this respect the question naturally arises as to
what extent the above scenario is robust to the introduction
of disorder typical of the highly inhomogeneous structures
usually invoked for the realization of correlated Lévy walks
[10–14]. Specifically, the comparison of our transmission
profiles and those reported in Ref. [14] suggests that Lévy
quasicrystals are much more homogeneous than the Lévy
glass realized at the European Laboratory for Non-Linear
Spectroscopy. We are currently working at extending our
analysis to structures characterized by disorder and/or a higher
degree of inhomogeneity than Lévy quasicrystals [37].

While we deem these issues of interest, we think that
Lévy quasicrystals should not be regarded as a simple toy
model, but as an alternative, highly controllable route to
observing correlated Lévy walks in engineered materials. In
this perspective, the “cleanliness” of the samples suggested
by the bell-like shape of the transmission profile in Fig. 11
could even prove to be a desirable feature. Indeed, in the
absence of the strong inhomogeneity characterizing most of
the relevant physical systems, the superdiffusive character of
Lévy walks could emerge more cleanly from experimental
measurements. For instance a data collapse of measured
time-resolved transmission probabilities like in Fig. 10 would
provide a measurement of the dynamical exponent character-
izing the asymptotic behavior of the process. The comparison
of measurements on Lévy glass and Lévy quasicrystals would
then highlight the role of strong inhomogeneity in quenched
Lévy walks.
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