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Effects of adaptive coupling on stochastic resonance of small-world networks
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The phenomenon of stochastic resonance in networks with small-world connectivity is investigated when
the coupling strength is adaptive. The effects of the fixed and adaptive couplings on stochastic resonance of
the system are discussed. It is found that the resonance is a monotonically increasing function of the adaptive
coupling strength, while there is a peak when the coupling strength is fixed. The resonance for the adaptive
coupling can reach a much larger value than that for fixed coupling.
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I. INTRODUCTION

During the past two decades, much attention has been
devoted to the study of noise-induced constructive effects
in nonlinear dynamical systems. For stochastic resonance,
noise plays a constructive role in enhancing the detection and
the transmission of a weak signal [1–5]. The investigation
of stochastic resonance was extended to spatially extended
systems. For example, Lindner et al. demonstrated that linear
coupling, combined with noise and a weak periodic signal, can
enhance the synchronization and the global organization in a
chain of overdamped nonlinear oscillators, which is known
as array-enhanced stochastic resonance [6]. Zhou et al. found
array-enhanced coherence resonance [7] in an array of coupled
FitzHugh-Nagumo neurons.

Subsequently, the study of the dynamics of spatially
extended systems of regular coupled networks [8,9] was
extended to networks with complex topologies such as small-
world [10,11] and scale-free networks [12,13]. In particular,
the effects of coupling on stochastic resonance in complex
networks were explored. For example, the stochastic resonance
on the excitable Watts-Strogatz small-world network was
studied by means of the discrete Rulkov map. It was shown that
the small-world property was able to enhance the stochastic
resonance only for intermediate coupling [14]. Moreover,
the phenomenon of stochastic resonance was explored in
locally paced scale-free networks of bistable oscillations,
where an optimal coupling strength was needed for the best
noise-induced global response [15,16].

However, most of the previous studies were devoted to
the fixed coupling cases. In considering the spontaneity of
self-organizing complex systems, it is natural that the suitable
coupling strength can be adaptive [17–21]. In many realistic
systems such as neuronal networks and biological systems
[22,23], networks with an adaptively changed coupling may
be more reasonable. Meanwhile, the evolution of the network
connectivity has also been found in social [24,25], ecological
[26], and epidemic networks [27], where agents or specials
learn from the state of the networks and adapt their behaviors
accordingly. For example, in neural systems, the coupling
enhances for synchronized oscillators and weakens for non-
synchronized pairs, which is known as the Hebbian learning
rules [22] and is helpful in the understanding of the mechanism
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of learning and memory of the brain [28]. The synchronization
of coupled oscillator networks was investigated when the
adaptive coupling, also called time-varying coupling, was
included in the system [29]. Different from the Hebbian
learning rule of adaptive coupling, the adaptive scheme can
be designed in such a way that the coupling grows stronger
for the pair of oscillators that has a larger difference [29].
For example, to achieve consensus on some opinion, agents
try to approach those individuals who have opinions that are
different from their own and persuade them to follow their
common opinion, while they do not have to put much effort into
enhancing the interaction with others already sharing similar
opinions [30]. For adaptive coupling, the coupling strength
between two oscillators is increased with its changing rate
related to the difference between the dynamical behaviors of
the oscillators involved. It is found that the synchronization
is improved by the adaptive coupling, that is, the adaptive
coupling is more efficient for the onset of synchronization
in networks as compared with the case of fixed coupling.
However, the impact of the adaptive coupling on stochastic
resonance needs to be studied further.

In this paper the phenomenon of stochastic resonance in
networks with small-world connectivity is investigated when
the coupling strength is adaptive [29]. Since the dynamical
behavior is highly sensitive to the coupling factor in the context
of periodically forced coupled oscillators, it is pertinent to
compare the effects of the fixed and the adaptive couplings
on the stochastic resonance. In Sec. II the dynamical model
of the coupled bistable system with small-world connectivity
is presented. The effects of the small-world feature and noise
on the average adaptive coupling are discussed. In Sec. III
the effects of the small-world topology and the controlling
parameter of the adaptive coupling on the resonant response
are investigated. In Sec. IV a comparison between the fixed and
the adaptive couplings on stochastic resonance is presented.
The synchronization of the complex network is analyzed by
comparing the two coupling cases.

II. DYNAMICAL MODEL

An ensemble of N coupled bistable elements with small-
world topologies can be written as

ẋi(t) = xi(t) − x3
i (t) +

√
2σξi(t) + A sin(�t)

+ 1

ki

N∑
j=1

cij (t)[xj (t) − xi(t)], (1)
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FIG. 1. Examples of considered network topologies. (a) Regular
ring characterized by p = 0 with periodic boundary conditions.
(b) The Newman-Watts small-world topology is constructed by
randomly adding links between two originally separate elements.

where σ is the intensity of the Gaussian thermal noise
ξi(t) with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′), A is the
amplitude of the external periodic signal, and � = 2π/T is
the frequency of the signal. The variable xi(t) (i = 1, . . . ,N)
is the position of the ith element at time t and N is
the number of elements in the network. The network with
Newman-Watts small-world topologies [11] is constructed by
randomly adding connectivity on an originally regular network
in which each element is connected only with its nearest
neighbors. The probability that a new link is added between
two originally separate elements is p. The total number of
possible shortcuts is N(N−1)

2 . If there are ne shortcuts added,
the probability is p = 2ne

N(N−1) . Therefore, p is a normalized
shortcut number added in the network. When p = 0, the
network is a nearest-neighbor coupled network. While a
globally coupled network is constructed, p = 1. For 0 < p <

1, the constructed network shows small-world features. The
degree ki of element i is the number of its neighbors. Typical
examples of network topologies are shown in Fig. 1. For
clarity, only 25 vertices are displayed in each panel. The
regular ring is plotted in Fig. 1(a). Each vertex is connected to
its k = 2 nearest neighbors. The Newman-Watts small-world
topology is shown in Fig. 1(b) when links are randomly
added between two originally separate elements. In Fig. 1(b),
ne = 6 shortcuts are added. The probability is p = 2ne

N(N−1)
= 0.02.

When adaptive coupling [29] is applied, the coupling
strength between nodes i and j can be defined as

ċij (t) = ċj i(t) = λ[xj (t) − xi(t)]
2, (2)

where the overdot denotes differentiation with respect to time t .
The adaptive coupling cij at time t increases at a changing rate
related to the difference of the behavior between elements i

and j . The coupling strength increases proportionally to the
synchronization difference in order to suppress the difference.
This is understandable in social and economical networks,
where agents learn from the state of the elements and adapt
their behaviors accordingly for common opinions or interests
[18,30]. The non-negative parameter λ controls the growth
speed of the coupling strength. If the noise σ between the
elements is varied, the difference between elements i and j

changes correspondingly. If the normalized shortcut number p

is varied, the behavior between the two elements also changes
accordingly, that is, the adaptive coupling is a combined
function of σ , λ, and p.

FIG. 2. Average coupling c̄ as a function of the normalized
shortcut p and the noise strength σ for different values of the
controlling parameter λ. The parameters are N = 500, T = 103,
A = 0.2, and u0 = 0.454. (a) c̄ as a function of p with σ = 1. (b) c̄

as a function of σ with p = 1.

By averaging Eq. (2) over the whole population and time,
the average adaptive coupling c̄ can be written as

c̄ = lim
T →∞

1

N2T

T∑
t=1

N∑
i=1

N∑
j=1

cij (t). (3)

The average adaptive coupling strength c̄ is illustrated in Fig. 2
as a function of the normalized shortcut number p and the
noise strength σ for different values of λ. The average adaptive
coupling strength c̄ is plotted in Fig. 2(a) as a function of p

when λ is varied. It is found that the average coupling strength c̄

is a monotonically decreasing function of p. If more edges
are added, each element has more (but not necessarily nearest)
neighbors by increasing normalized shortcut number p. For the
system it is easy to reach synchronization with increasing p.
Therefore, the difference between elements i and j is reduced.
The average adaptive coupling depending on the evolution
of Eq. (2) is correspondingly reduced. The average adaptive
coupling strength c̄ is plotted in Fig. 2(b) as a function of σ

when λ is varied. It is seen that c̄ increases with increasing σ ,
that is, the increasing noise enhances the difference between
elements i and j . This leads to a monotonic increase of the
average adaptive coupling. From Fig. 2 it is clear that the
average coupling c̄ increases as the controlling parameter λ

increases. This is understandable from the evolution equation
[Eq. (2)] of the adaptive coupling.

III. EFFECTS OF ADAPTIVE COUPLING ON
STOCHASTIC RESONANCE

To investigate the response of the periodically driven sys-
tem, the spectral amplification factor η = 4A−2|〈ei�tX(t)〉|2
is calculated [31], where X(t) = 1

N

∑N
i=1 xi(t) is the average

position of the elements at time t . The spectral amplification
factor η can provide a precise amount of information in the
signal transported with a particular forcing period. It can
be used as a numerically effective measure for stochastic
resonance.

The spectral amplification factor η as a function of
the controlling parameter λ, the noise strength σ , and the
normalized shortcut number p is shown in Fig. 3. The spectral
amplification factor η is plotted in Fig. 3(a) as a function of σ
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FIG. 3. Three-dimensional plot of the spectral amplification
factor η as a function of the noise strength σ , the controlling
parameter λ, and the normalized shortcut number p. The parameters
are N = 500, T = 103, A = 0.2, and u0 = 0.454. (a) η as a function
of σ and λ with p = 1. (b) η as a function of σ and p with λ = 0.001.

and λ. For small λ, the spectral amplification factor decreases
monotonically as the noise strength increases. For large λ, there
exists an optimal value of the noise intensity for which the
resonance is maximum. This is the characteristic signature of
stochastic resonance. The maximum of the resonance increases
as the controlling parameter λ increases. This mechanism
can be explained as follows. The increase of the controlling
parameter λ means the increase of the average adaptive
coupling as shown in Fig. 2. There is an enhancement of the
connection between elements. When an element overcomes
the potential barrier with the help of external forcing, the
increasing coupling between elements can help the excited
element pull some of the coupled neighbors to respond to
external signals. This causes an enhancement of the resonance.
The spectral amplification factor η is plotted in Fig. 3(b)
as a function of σ and p. It is found that the resonance
is enhanced as the normalized shortcut number p between
elements increases. This is understandable since the increase
of p means more edges are added between two originally
separate elements. The increased connection between elements
may help mutual excitation and lead to an enhancement of the
stochastic resonance.

The spectral amplification factor η as a function of the
average adaptive coupling strength c̄ is plotted in Fig. 4 for
different values of the the noise strength σ and the normalized
shortcut number p. The average adaptive coupling strength

FIG. 4. Spectral amplification factor η as a function of the average
coupling strength c̄. The parameters are N = 500, T = 103, A = 0.2,
and u0 = 0.454. (a) η as a function of c̄ for different values of the
noise strength σ with p = 1. (b) η as a function of c̄ for different
values of the normalized shortcut number p with σ = 0.4.

FIG. 5. Spectral amplification factor η as a function of the particle
number N for different values of the normalized shortcut number p.
The parameters are T = 103, A = 0.2, u0 = 0.454, σ = 0.04, and
λ = 0.001.

c̄ obtained from Eq. (3) is varied by varying the controlling
parameter λ from λ = 10−5 to 10−2. The spectral amplification
factor η is plotted in Fig. 4(a) as a function of c̄ for different
values of noise strength σ . The value of η decreases as σ

increases while η increases as c̄ increases, that is, the larger
the noise disturbance is, the smaller the resonance becomes.
The spectral amplification factor η is plotted in Fig. 4(b) as a
function of c̄ for different values of the normalized shortcut
number p. The value of η increases as p and c̄ increase, that is,
the larger the normalized shortcut number p is, the larger the
resonance becomes. The resonance of the system increases and
finally saturates to a constant as the average adaptive coupling
increases.

To see the response of the system that is dependent on the
system size, the spectral amplification factor η as a function of
the particle numbers N is plotted in Fig. 5. It is clear that η is
almost a constant for sufficiently large numbers with N > 300
while for small numbers η increases very fast as N increases
from zero. The phenomenon of system-size resonance [32]
does not appear since the system-size resonance could only
appear in the case of subthreshold dynamics, where the driving
force alone is unable to provoke jumps between elements.
However, for large amplitudes of the forcing A = 0.2 in this
paper, the response grows monotonically with N and finally
saturates to finite values [33,34].

IV. FIXED AND VARYING COUPLINGS

For fixed coupling, the coupling between the two elements
i and j is cij . If the two elements are coupled to each other, the
coupling is cij = cji = C; otherwise cij = 0. The ensemble of
N coupled bistable elements with the fixed coupling strength
can be written as

ẋi(t) = xi(t) − x3
i (t) +

√
2σξi(t) + A sin(�t)

+ 1

N − 1

N∑
j=1

C[xj (t) − xi(t)]. (4)

For simplicity, the globally coupled case of p = 1 is
considered. The approximate theory [29] can be applied.
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FIG. 6. Spectral amplification factor η as a function of the fixed
coupling strength C (circles) and the average coupling strength c̄

(squares). The parameters are N = 500, T = 103, A = 0.2, p = 1,
and u0 = 0.454. The solid line shows the theoretical predictions of
Eq. (6) and the dotted line shows the theoretical predictions of Eqs. (7)
and (8). (a) σ = 0.04. (b) σ = 0.4.

By introducing the average position of the units, X(t) =
1
N

∑N
i=1 xi(t), and averaging Eq. (4) over the whole population

with periodic boundary condition, one has

Ẋ(t) = X(t) − 1

N

∑
i

x3
i (t) + A sin(�t). (5)

When xi = X + δi and 1
N

∑
i δ

2
i = M is introduced, Eq. (5)

can be written as

Ẋ(t) = [1 − 3M(t)]X(t) − X3(t) + A sin(�t), (6)

where the variation of the second moment M(t) can be calcu-
lated by numerically solving Eq. (6). The spectral amplification
factor η of the coupled bistable system is plotted in Fig. 6 as a
function of the fixed coupling strength C. Circles correspond to
numerical simulations from a direct integration of Eq. (4). The
lines are the corresponding theoretical predictions of Eq. (6).
It is found that the theoretical predictions of Eq. (6) are in good
agreement with the results from direct numerical simulations
of Eq. (4).

The spectral amplification factor η of the coupled bistable
system as a function of the fixed coupling strength C and
the average coupling strength c̄ is plotted in Fig. 6. The
average coupling strength c̄ is obtained by varying the
parameter λ from 10−5 to 10−2, as shown in the inset. Circles
correspond to the stochastic resonance for fixed coupling while
squares correspond to that for adaptive coupling. The spectral
amplification factor η is plotted in Fig. 6(a) as a function of
C and c̄ for small noise strength σ = 0.04. For small noise
strength the spectral amplification factor η for the adaptive
coupling case reaches a larger value compared to that for the
fixed coupling. The spectral amplification factor η increases as
the average coupling strength c̄ increases and almost saturates
as c̄ increases further. For fixed coupling there is a peak in
η with an optimal value of C. These phenomena can be
explained by the different mechanisms of the connections
between elements caused by the adaptive coupling and the
fixed coupling. In the case of adaptive coupling, when one
element (referred to as node O) is able to overcome the
potential barrier with the help of external forcing, its neighbor

increases its coupling with node O. The greater the difference
is between node O and its coupled neighbor, the stronger the
corresponding coupling is. It may dramatically change the
dynamical behavior of the neighbors coupled with node O.
Thus it may raise corresponding couplings at the next time
step and finally drive the neighbors to be synchronized with
node O. Meanwhile, if the difference between node O and
its neighbors is small, only small adaptive coupling is needed.
Since the connections in the complex network are correlated
with each other, the mechanism of adaptive coupling may
excite more elements when the average adaptive coupling
strength equals the fixed coupling strength. Therefore, the
resonance for the adaptive coupling is larger than that the
fixed coupling case. The increase of the time-varying coupling
can continuously excite more and more elements to respond
to the external signal and thus a continuous increase in η. For
fixed coupling, when node O overcomes the potential barrier
with the help of external forcing, the fixed coupling between
elements can help node O pull some of the coupled neighbors
and produce a collective, macroscopic movement. However,
the number of elements excited by the fixed coupling may
saturate to a finite value even if the fixed coupling is large
enough. The further increase of the fixed coupling can simply
reinforce the synchronization of the excited elements. The
typical effect of array-enhanced resonance disappears for a
sufficiently large value of the fixed coupling [6,7]. As a result,
the resonance is a nonmonotonic function of the fixed coupling
strength.

The spectral amplification factor η is plotted in Fig. 6(b) as a
function of C and c̄ for large noise strength σ = 0.4. For large
noise strength the spectral amplification factor η increases and
finally reaches a constant value, which is a bit smaller than that
for the small noise case [Fig. 6(a)] when the average adaptive
coupling c̄ increases. It seems that the adaptive coupling can
always adjust the connection between elements to efficiently
respond to the external signals, while for fixed coupling there
exists an optimal value of C for which η is maximum. The
maximum of η is much higher than that for the small noise
case [Fig. 6(a)]. This is understandable since the increase of
the noise disturbance enhances the number of elements that
are excited by the fixed coupling and leads to an increase in
the maximum of the spectral amplification factor. However,
even with the help of noise, the number of elements excited
by fixed coupling is still smaller than the number excited by
adaptive coupling. Therefore, the maximum of η for the fixed
coupling case is always smaller than the maximum of η for
adaptive coupling regardless of the values of the noise strength.
Notably, the optimal value of the fixed coupling strength for the
maximum of the resonance has been reported in Ref. [35]. In
that case, increasing the fixed coupling can excite only a finite
number of elements while increasing the adaptive coupling
can excite more and more elements to respond to the external
signal.

For varying couplings it is difficult to develop a general
analytical method for the model of Eq. (1) due to the
complexity of the small-world network. However, when the
system is globally coupled with ki = N − 1 and p = 1,
the approximate theory can be applied [32]. In the approx-
imation one can write xi = X + δi and assume that δi is
an independent Gaussian random variable with zero mean
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and variance M . By assuming that N−1 ∑
i δ

2
i = M and

cij (t) = c̄ + 	ij , Eq. (1) can be rewritten as

Ẋ(t) = X(t) − X3(t) − 3MX(t) +
√

2σ

N
ξ (t) + A sin(�t),

(7)

1

2
Ṁ = M − 3X2M − 3M2 − N

N − 1
c̄M

− 1

N (N − 1)
M ′ + σ, (8)

where ξ (t) is the Gaussian white noise with 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (t ′)〉 = δ(t − t ′). In the limit N → ∞, the noise term
ξ vanishes. The parameter M ′ = ∑N

i=1 δ2
i

∑N
j=1 	ij can be

determined by the combined numerical simulations of Eqs. (1),
(7), and (8), where 	ij is the deviation of cij (t) from the
average coupling strength c̄. The spectral amplification factor
η of the coupled bistable system is plotted in Fig. 6 as a function
of the average coupling strength c̄. Squares correspond to
numerical simulations from a direct integration of Eq. (1) and
dotted lines are the corresponding theoretical predictions of
Eqs. (7) and (8). Though there are noticeable discrepancies in
η, reasonably good agreement is obtained.

The contour plot of the spectral amplification factor η as a
function of the noise strength σ and the fixed coupling strength
C is plotted in Fig. 7. There exists an optimal value of σ ,
which is the characteristic signature of stochastic resonance.
There also exists an optimal coupling strength C, which is the
main result of array-enhanced stochastic resonance [6]. The
squares mark the optimal values of the coupling strength C for
different values of σ . It is found that the peak position of η is
shifted to a large value of the coupling strength C when σ is
increased. The mechanism can be understood as follows. When
the coupling C between elements is increased, an element may
be excited by its neighboring elements even though it may be
unable to respond to the external stimulus. As a whole, the
coherence of the motion in the coupled system is enhanced by
mutual excitation. However, if the coupling is too strong, the
excited elements may become synchronized and behave as a

FIG. 7. Contour plot of the spectral amplification factor η as a
function of the noise strength σ and the fixed coupling strength C.
Each square marks the optimal C for a given noise strength σ . The
parameters are N = 500, T = 103, A = 0.2, and u0 = 0.454.

single element. The typical effect of array-enhanced resonance
disappears [6,7]. For a noise disturbance that is too large, some
of the elements pulled by noise offer too much resistance to
follow the external force. A greater coupling strength is needed
for the favorable elements to overcome the resistant effects.
Therefore, the optimal value of η is shifted to a large value of
the coupling strength C when the noise strength σ is increased.

It is seen in Fig. 7 that the peak in the spectral amplification
factor η appears around the optimal values of the noise strength
σ and the coupling strength C. When the noise strength σ =
0.04, the peak in η appears around C = 0.23; when σ = 0.4,
the peak appears around C = 0.75. This is consistent with the
plot shown in Fig. 6.

To provide a better understanding of the results presented,
the synchronization of the complex network is investigated.
The synchronization behavior can be expressed by the mean
square deviation [35–37]

γ 2 = 1

N

〈
N∑

i=1

[xi(t) − 〈x〉]2

〉
t

, (9)

where 〈x〉 denotes the average over the elements of the array,
〈x〉 = 1

N

∑N
i=1 xi(t), and 〈· · ·〉t denotes the average over time.

A large value of γ represents large deviations between various
oscillators and a small value of γ denotes strong collective
motion and, consequently, better synchronization [35–37].

The mean square deviation γ is plotted in Fig. 8 as a
function of the fixed coupling strength C and the average
adaptive coupling strength c̄. The average adaptive coupling c̄

is obtained by varying the controlling parameter λ from 10−5

to 10−2. The weak noise of σ = 0.04 and the strong noise
σ = 0.4 are plotted in Figs. 8(a) and 8(b), respectively. It is
found that γ decreases when either C or c̄ increases, that is,
both the fixed coupling and the adaptive coupling can improve
the synchronization of the system. The synchronization of the
whole system for adaptive coupling is always better than that
for fixed coupling. This is because the increase of the adaptive
coupling can continuously excite more and more neighbors
to be synchronized with the excited node O, as illustrated
in Fig. 6. The larger the difference between node O and its
neighbors, the stronger the adaptive coupling is. In contrast, if
the difference between node O and its neighbor is small, only
a small value of the adaptive coupling is needed. Therefore,

FIG. 8. Variance γ plotted as a function of the fixed coupling
strength C (circles) and the average coupling strength c̄ (squares). The
parameters are N = 500, T = 103, A = 0.2, p = 1, and u0 = 0.454.
(a) σ = 0.04. (b) σ = 0.4.
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the elements can reach good synchronization with a small
amount of average adaptive coupling. As the connections
in the complex network are correlated with each other, the
synchronization of the whole system can be greatly enhanced
with an increase of the average adaptive coupling c̄; however,
for fixed coupling, increasing C can only reinforce the global
synchronization between the excited elements. Since there
always exists a small number of elements that cannot be
excited by the fixed coupling, as illustrated in Fig. 6, the
synchronization of the whole system is poor compared with
that of adaptive coupling.

V. DISCUSSION

The phenomenon of stochastic resonance in networks with
small-world connectivity is investigated when the coupling
strength is varied at a changing rate related to the difference
of the behavior between elements. It is found that the reso-
nance is a monotonically increasing function of the adaptive
coupling strength, while there is a peak for the fixed coupling
strength. The resonance for the adaptive coupling can reach a
much larger value. This may be explained by the different
mechanisms of connections between elements caused by

the adaptive coupling and the fixed coupling. The adaptive
coupling can excite more and more elements to respond
to external signals, while the elements excited by the fixed
coupling may reach a finite number. The further increase
of the fixed coupling strength can only reinforce the global
synchronization between the excited elements. Moreover,
the synchronization of the whole system for the adaptive
coupling is better than that for the fixed coupling, which
agrees with the previous results reported in Ref. [29]. Due to
the importance of the adaptive coupling in various networks,
such as neuronal networks [22], biological systems [23], social
networks [24,25,30], ecological networks [26], and epidemic
networks [27], it is expected that the present study can be
applied in realistic experiments and foster the understanding
of the processes in which adaptive coupling plays a major
role [38–40].
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