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Transcription factor search for a DNA promoter in a three-state model

Jürgen Reingruber and David Holcman
Department of Computational Biology, (IBENS) Ecole Normale Supérieure, 46 rue d’Ulm, 75005 Paris, France and

Laboratoire Jacques-Louis Lions, UMR 7598, Université Pierre et Marie Curie 187, 75252 Paris, 75005 France
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To ensure fast gene activation, transcription factors (TFs) use a mechanism known as facilitated diffusion to
find their DNA promoter site. Here we analyze such a process where a TF alternates between three- and one-
dimensional diffusion. In the latter (TF bound to the DNA), the TF further switches between a fast translocation
state dominated by interaction with the DNA backbone, and a slow examination state where interaction with
DNA base pairs (bp) is predominant. We derive a formula for the mean search time, and show that it is faster
and less sensitive to the binding-energy fluctuations as compared to the case with a single sliding state. We find
that for an optimal search, the time spent bound to the DNA is larger compared to the three-dimensional time, in
agreement with recent experimental data.
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Transcription factors (TFs) are messengers regulating gene
activation by binding the DNA at specific promoter sites. In-
terestingly, both theoretical and experimental evidences show
[1–5] that a TF finds rapidly its promoter site by facilitated
diffusion, where it alternates between three-dimensional (3D)
and one-dimensional (1D) diffusion (sliding) along the DNA
strand. Facilitated diffusion was introduced to resolve the
apparent paradox that the measured in vitro association rate
of the Lac-I repressor with its promoter site placed on λ-phage
DNA [6] was kR ∼ 1010 (M s)−1, which is ∼100 times larger
than the Smoluchowski rate for a pure 3D diffusion search.
However, the in vivo mean time τ for the Lac repressor to
find its promoter site in E. Coli is ∼350 s [5], from which
we estimate that the association rate within a bacteria with
volume |V | ∼ 1 μm3 is approximated by kE = NAv|V |/τ ∼
106 (M s)−1 (NAv is the Avogadro constant). The difference
kE � kR is due to a slow 1D motion [3,5], such that frequent
nonspecific bindings with the DNA slow down the search
and reduce the association rate. A theoretical analysis [7,8]
shows that the effective 1D diffusion constant for sliding
along the DNA decays exponentially with the variance σ

of the binding-energy distribution between a TF and the
underlying DNA, and a realistic search time can only be
achieved for smooth energy profiles with σ � 1.5kBT [7].
However, binding-energy estimations for the Cro and PurR
TFs on E. Coli DNA [7,9] show a much larger variance,
suggesting that a simple sliding process is not sufficient to
explain the search dynamics. In a more complex model [7,10],
supported by experimental observations [11], a TF switches
between two conformations when bound to the DNA: In one
state it is insensitive to the underlying DNA sequence and
diffuses quickly in a smooth energy landscape, while in a
second state it interacts with the DNA, reducing the motion.
The impact of such switching [12–15] has been investigated
in Ref. [12] based on equilibrium considerations.

Here we study the mean first-passage time (MFPT) for
a TF to bind to its promoter site when it freely diffuses
in 3D, but once bound to the DNA, it alternates between
two states (Fig. 1): In state 1, it specifically interacts with
individual bp, while in state 2 it is insensitive to the underlying

bp sequence and interacts nonspecifically with the DNA
backbone. Therefore, in state 1 motion occurs in a rough
energy landscape approximated by an effective diffusion with
a slow diffusion constant D1, while in state 2 diffusion is
faster (D2 � D1) and occurs in a smooth potential well
generated by the interaction with the DNA backbone. The
translocations in state 2 are comparable to “hoppings” along
the DNA. The switching dynamics is Poissonian with rates
k12 and k21 that depend on the energy profile [Fig. 1(b)]. In
general, the binding time k−1

12 depends on the DNA sequence
and therefore on the position along the DNA, however, in
first approximation, we use a constant value. In state 2, in
addition to switching to state 1, the TF can detach from the
DNA with rate k23 and switch to state 3, where it diffuses
in 3D before reattaching in state 2 after an average time
k−1

32 , investigated in Refs. [2,16–18]. Due to the packed and
coiled DNA conformation, we approximate the reattachment
locations as uncorrelated and randomly distributed along the
DNA [7,19–21]. We derive a unique expression for the MFPT
to find a promoter site Eq. (6), and we show that (1) this time is
not very sensitive to binding-energy fluctuations, contrary to
previous models with a single sliding state, and (2) an optimal
search process Eq. (7) proceeds such that a TF spends more
time bound to the DNA as compared to freely diffusing, in
agreement with recent experiments [5].

We start the analysis by considering diffusion along the
DNA in the 1D interval 0 � x � L (x is the DNA contour
length) with switching between states 1 and 2. The target
is located at x = 0 and can only be found in state 1. Our
analysis corresponds to the physical situation where the target
is located centrally on a DNA strand of length 2L (the effects
of changing the target position are discussed in Ref. [20]).
To derive an expression for the MFPT, we use the sojourn
times tnm(x) a particle spends in state n (n = 1,2,3) when
it started in state m = 1,2 at a DNA position x. Because
a TF attaches to the DNA at a random position x, when
starting the search in state 3, the sojourn times do not depend
on the initial position, and we have tn3 = τn3 = const. The
times τn3 are related to the spatially averaged sojourn times
τnm = L−1

∫ L

0 tnm(x)dx. Considering that a TF can only bind
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FIG. 1. (Color online) (a) Search scenario for three states.
(b) Energy profile and switching rates between states.

to the target in state 1, we have the relations τ13 = τ12,
τ23 = k12/k21τ13 + 1/k21, and τ33 = k23/k32τ23 + 1/k32. The
coupled system of equations describing t11(x) and t12(x) is [22]
(we suppress the x dependency)

D1t
′′
11 − k12(t11 − t12) = −1, (1)

D2t
′′
12 − k21(t12 − t11) − k23(t12 − τ12) = 0, (2)

with boundary conditions t11(0) = t ′11(L) = t ′12(0) = t ′12(L) =
0. The remaining sojourn times t2m(x) and t3m(x) are t2m(x) =
k12/k21t1m(x) + k−1

21 (1 − δm1) and t3m(x) = k23/k32t2m(x). By
integrating Eq. (1) we further obtain the intuitive relation τ11 =
τ12. Hence, starting as initially uniformly distributed in state
m, the MFPT τ (m) = τ1m + τ2m + τ3m can be expressed in
terms of τ11 only. In particular, starting in state 1, we have
τ (1) = τ11(1 + k12/k21 + k12k23/(k21k32)).

Using the variables x̂ = x/L, l12 = k12/(L2D1), l21 =
k21/(L2D2), and l23 = k23/(L2D2), and the functions v1(x̂) =
k12τ11(x) and v2(x̂) = k12τ12(x) (v1 is the mean number of
switchings between states 1 and 2), the solutions of Eq. (1) are
(see also Ref. [22])(

v1(x̂)
v2(x̂)

)
= l21

ξ2

(
cosh[

√
l12μ2(1 − x̂)]√

l12μ2 sinh(
√

l12μ2)
− 1

l12μ
2
2

)
�e2

− l21

ξ2

(
cosh[

√
l12μ1(1 − x̂)]√

l12μ1 sinh(
√

l12μ1)
− 1

l12μ
2
1

)
�e1 + v1,

(3)

where ξ2 =
√

1 + (l21 + l23)/l12
2 − 4l23/l12, ξ1 = −1 +

(l21 + l23)/l12, μ2
1 = 1 + (ξ1 − ξ2)/2, μ2

2 = 1 + (ξ1 + ξ2)/2,
and �e�

1 = [l12(ξ1 + ξ2)/(2l21),1], �e�
2 = [l12(ξ1 − ξ2)/(2l21),1].

The average v1 = ∫ 1
0 v1(x̂)dx̂ is

v1 = ξ2 − ξ1

2ξ2

(√
l12

coth(
√

l12μ2)

μ2
− 1

μ2
2

)
(4)

+ ξ1 + ξ2

2ξ2

(√
l12

coth(
√

l12μ1)

μ1
− 1

μ2
1

)
. (5)

The physical parameters considered so far are L, D2, D1,
k12, k21, k23, and k32. Because a TF moves in state 2 in a
smooth potential, we consider D2 to be comparable to the
3D diffusion constant. In contrast, in state 1, the TF interacts
strongly with individual bp and the effective diffusion constant
is much reduced and can be written as D1 = D2e

−χ , where
χ > 0 depends on the binding energy. In general, χ depends
on the DNA sequences and therefore on the DNA location,
however, we consider a constant average value. To facilitate
the discussion below, we shall characterize the rates k12, k21,
and k23 by the detaching probability q = k23/(k21 + k23) to
switch from state 2 to 3 (p = 1 − q is the probability to

switch from state 2 to 1) and the lengths ls1 = √
D1/k12 and

ls2 = √
D2/(k21 + k23), corresponding to the average sliding

distances in states 1 and 2 before switching. The spatially
averaged search time τ ≈ τ (1) is

τ = v1

(
l2
s1

D1
+ l2

s2

pD2
+ 1

k32

q

p

)
. (6)

Before detaching and switching to state 3, a TF stays bound to
the DNA for an average time τDNA = k−1

23 + k−1
12 p/q, and the

overall ratio of the mean time bound to the DNA to the mean
time spent in state 3 is

r = k32τDNA = k32l
2
s1

D2

(
p

q
eχ + 1

qκ

)
, (7)

with κ = l2
s1/l

2
s2 � 1. When switching between states 1 and 2

is fast and ls1 � l2, the apparent diffusion constant Da with
which a TF appears to slide along the DNA (not differentiating
the states) is

Da ≈ D2

1 + k21/k12
= D2

1 + peχκ
. (8)

We shall now study how the search process depends on ls1, ls2,
q, and χ , when L, D2, and k32 are given input parameters. In
particular, because diffusion in state 1 is slow, we will analyze
the case where the sliding distance in state 1 is much less
as compared to 2, κ � 1, and to avoid frequent detachments
from the DNA that increase the search time, we will further
consider a small probability q � 1. Under these conditions we
have the asymptotic ξ1 ≈ −1 − κ , ξ2 ≈ 1 + κ(1 − 2q), μ2

1 ≈
κq, μ2

2 ≈ 1 + κ , and v1 ≈ L/ls1(1 + √
κ/q), and using these

expressions in Eqs. (6) and (7) gives

τ ≈
√

L2

D2k32

(
1 +

√
κ

q

)(
eχ

α
+ 1

ακ
+ αq

)
, (9)

r ≈ eχ

α2q
+ 1

α2qκ
, (10)

where α =
√

D2/(l2
s1k32). For fixed values χ and ls1 char-

acterizing the specific TF-DNA interaction and leading to a
slow search, we are interested in the minimal time τ that
can be achieved by adapting nonspecific interaction through
the values of ls2 and q. Because ls1 is fixed, we will use κ

instead of ls2 for the minimization analysis. The time τ as a
function of (κ,q) has an global minimum for (κmin,qmin) =
[
√

2/(αeχ ),α−2κ−1
min], and we have

τmin =
√

L2

D2k32

(
1 +

√
2α

eχ

)2
eχ

α
, (11)

rmin = 1 +
√

2eχ/α. (12)

For eχ/α � 1, the asymptotic expansion is τmin ≈
2
√

L2/(D2k32)(1 + √
2eχ/α), showing that τmin initially in-

creases slowly as a function of χ . We now compare our
results with the ones for a single sliding state: When a TF
alternates only between states 1 and 3 with rates k13 and k31 (the
intermediate state 2 is absent), we find from Eq. (4) that ṽ1 =√

l13 =
√

L2/(D1k13), and for the search time we recover the
expression τ̃ =

√
L2/(D1k13)(k−1

13 + k−1
31 ) [5,7,16,23]. When
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k31 is fixed, the minimum τ̃min = 2
√

L2/(D1k31) is achieved
for k13 = k31, and r is always 1, which is not any longer the
case with two sliding states.

We now proceed with some numerical estimations using
parameters for E. coli bacteria: L = 2.4 × 106 bp, k32 =
(1.4 ms)−1 [5,16], and D2 = 2 μm2/s, comparable to 3D
diffusion [5]. In particular, we are interested in analyzing a
process where the TF becomes immobilized in state 1 due to
binding (similar to the scenario in Ref. [12]). To model this
scenario using the framework we developed here, the sliding
length ls1 of TF should be within a single bp, and we choose
ls1 = 0.5 bp based on the condition that the maximum averaged
displacement in state 1 satisfies 2

√
D1/k12 = 2ls1 = 1 bp.

After switching back and forth from state 2 to 1, the position
of the TF changes only slightly within the range of a single
bp, which we interpret as an intrinsic variability of a switching
process where a TF is virtually immobile in state 1. The mean
binding time k−1

12 in state 1 depends on the binding energy

E (in units of kBT ) separating state 1 from 2. Comparing
the Arrhenius formula k12 = ξe−
E , where ξ is an effective
prefactor, with k12 = D1/l2

s1 = D2e
−χ/ l2

s1, we identify χ =

E and ξ = D2/l2

s1. Hence, χ has to be identified here
with the binding energy, however, for large sliding distances
ls1, χ is related to the variance of the binding energy in
state 1 [7,8,16].

In Fig. 2(a), we plot τmin (in s) as a function of χ

for various ls1 = (0.5,1,3,5) bp. The plot shows that τmin

initially depends very weakly on χ until values χ ∼ ln α (for
ls1 = 0.5 bp we have ln α ∼ 6). In contrast, with a single
sliding state, the minimum τ̃min = 2

√
L2/(D2k32)eχ/2 (with

k31 = k32) increases exponentially. Furthermore, the unique
feature is that the time ratio rmin is not constant but increases
with χ [Fig. 2(b)]. As a consequence, the experimental findings
that a TF spends more time bound to the DNA as compared
to 3D diffusing [5] is now compatible with an optimal search
process. For example, for ls1 = 0.5 bp, the experimental results
τexp ∼ 350 s and rexp ∼ 5 [5] are compatible with the value
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FIG. 2. (Color online) Optimal search process. Parameter values
are L = 2.4 × 106 bp, k32 = (1.4 ms)−1, D2 = 2 μm2 s−1. The left-
most dashed curve in (a) corresponds to the minimum in a model with
a single sliding state. τmin is in s.
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FIG. 3. (Color online) Search process with ls1 = 0.5 bp.
(a) Search time τ (s) with q = 0.01. The lowest dashed line is τmin.
(b) τ with ls2 = 10 bp. (c) Apparent sliding diffusion constant Da

scaled by D2 for the situation in (a). The leftmost dashed line
corresponds to D1 = D2e

−χ for a model with a single sliding state.
(d) τ for χ = 7.5 showing the global minimum.

χ ∼ 8 [Figs. 2(a) and 2(b)]. With increasing χ , the sliding
distance ls2, min = ls1/

√
κmin and the probability qmin increase,

thereby reducing recurrence in state 1 [Figs. 2(c) and 2(d)].
Surprisingly, a larger detaching probability qmin does not
lead to a higher fraction of time spent in state 3, which is
counterintuitive [rmin increases—Fig. 2(b)].

To study the impact of binding in state 1 when the motion in
state 2 (interaction with DNA backbone) is independent of χ ,
we plot τ as a function of χ for ls1 = 0.5 bp and various ls2 and
q [Figs. 3(a) and 3(b)], and we find similar behavior as in Fig. 2.
For ls2 = 10 bp and q = 0.01, the total average displacement

before detaching is δ ≈
√

2D2k
−1
23 = ls2

√
2q−1 = 140 bp,

which is in the range of measurements [2,5]. Although δ is
independent of χ , the apparent sliding diffusion constant Da

decreases with χ due to the longer bindings [Fig. 3(c)], and for
χ ∼ 7, we have Da ∼ 0.4 μm2 s−1, a value that is also found
by experimental measurements [4,5]. With a single sliding
state, the 1D diffusion coefficient D1 = D2e

−χ decreases
much faster as function of χ as compared to Da [dashed
line in Fig. 3(c)]. We conclude that measurements of the
apparent sliding diffusion constant are compatible with much
stronger binding energies in a two-state model as compared to
a single-state model. Finally, in Fig. 3(d) we show the τ indeed
has a minimum as a function of q and ls2.

To conclude, we showed here that the TF search time with
switching between two DNA sliding states is considerably
faster and less sensitive to binding-energy fluctuations as
compared to a model with a single sliding state. Performing
fast translocations of the order of 10 bp in state 2 speeds up the
search by reducing a slow recurrent search in state 1. In our
model, switchings to the slow state 1 are a necessary feature
of the search process and occur randomly and frequently, in
contrast to models where they are induced at strong DNA
binding sites [7]. State 2 further offers the possibility that
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a TF moves along the DNA by simple translation without
the need to follow the double-helix rotation. Furthermore,
since DNA promoter sequences are usually �10 bp and even
present in several copies [24,25], small translocations in state
2 are unlikely to overshoot the target region. We show that
an optimal search in our switching model involves a larger
time spent bound to the DNA compared to diffusing in 3D,
in agreement with experimental findings [5]. Finally, we
find that the search time is very sensitive to changes in the
detaching probability q. Hence, changing the TF interaction
with the DNA backbone via modifying the electrical properties
of the TF or the DNA by phosphorylation, methylation, or
acetylation is an efficient way to modulate the search time, and
ultimately the cellular response. Future works should clarify

the impact of the binding energy fluctuations in state 1, and
should analyze in details the 3D dynamics, for example, by
considering DNA coiling [17]. Moreover, in eukaryotes, the
compact DNA structure [26] and possible nuclear transport
mechanism [27] might as well be critical. Nevertheless,
we expect that our results derived here remain a good
approximation as long as subsequent attaching positions to the
DNA are well separated as compared to the average distance
a TF slides along the DNA before detaching (∼100 bp),
and the time spent in 3D is approximately exponentially
distributed, both of which are widely used and accepted in
the literature.
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