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Continuity of the explosive percolation transition
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The explosive percolation problem on the complete graph is investigated via extensive numerical simulations.
We obtain the cluster-size distribution at the moment when the cluster size heterogeneity becomes maximum.
The distribution is found to be well described by the power-law form with the decay exponent τ = 2.06(2),
followed by a hump. We then use the finite-size scaling method to make all the distributions at various system
sizes up to N = 237 collapse perfectly onto a scaling curve characterized solely by the single exponent τ . We
also observe that the instant of that collapse converges to a well-defined percolation threshold from below as
N → ∞. Based on these observations, we show that the explosive percolation transition in the model should be
continuous, contrary to the widely spread belief of its discontinuity.

DOI: 10.1103/PhysRevE.84.020101 PACS number(s): 64.60.ah, 36.40.Ei, 64.60.aq

The term explosive percolation was proposed in Ref. [1]
to describe a sudden appearance of a macroscopic cluster
in a network growth model with the so-called product rule
considered on the complete graph. This growth rule, an
example of an Achlioptas process (AP), is then studied on the
two-dimensional lattice [2,3] and on the scale-free networks
[4–6] as well, yielding similar results. That suddenness
has been widely believed to indicate a discontinuity at the
percolation transition in the thermodynamic limit [7,8], and
the similar explosiveness has been observed with the other
growth rules proposed later [9–14]. These observations of the
explosiveness have drawn much interest due to the striking
difference from the well-known continuous transition in the
standard percolation models [15]. However, the discontinuity
has been questioned recently and the evidence against it has
accumulated [16–18]. Here, we provide a conclusive evidence
for the continuity from a different perspective.

Friedman and Landsberg [9] have suggested the argument
of the powder keg as a circumstantial description to explain the
apparent discontinuity of the explosive percolation transition.
Meanwhile, da Costa et al. [16] have reported that the explosive
percolation is actually continuous for a modified version of the
AP by analytically deriving the critical scaling relations based
on numerical observations of power-law critical distribution
of cluster size [17]. In this work, we try to unmask the
(dis-)continuity in a systematic and direct way by performing
a careful finite-size-scaling analysis at newly introduced
pseudo-transition points for finite systems and show that the
explosive percolation transition on the complete graph is
indeed continuous in the thermodynamic limit.

The model we study is the AP with the product rule on
the complete graph [1]. Start with N nodes with all links
unoccupied. At each step, choose two possible unoccupied
links randomly between nodes. Then, select the link merging
two clusters with a smaller product of the two cluster sizes.
Here, a cluster is defined as a set of nodes connected each
other via occupied links. This procedure is repeated until all
nodes are connected as a whole. The number of occupied
links L increases one by one at each step and the occupied link
density (or time), t = L/N , serves as the control parameter for

the model. The interested observable is the largest cluster size
G(t) which becomes macroscopic (linear in N ) at sufficiently
large t . The order parameter is defined as the relative size of the
largest cluster, g(t) = G(t)/N , which remains at zero below
the threshold tc and becomes finite for t > tc in the N = ∞
limit.

The main question is whether the gap, g(t)|t→t+c , vanishes
(continuous transition) or approaches a nonzero constant
(finite jump). It may be natural to use the information above the
transition point (t > tc) in order to prove the (non-)existence
of the gap or estimate the gap size. Thus, most of previous
studies have focused on this information [1–13,16] but could
not provide a definitive answer due to the extremely slow
convergence of the order parameter in system size. In this work,
we took the opposite approach. Using the accurate information
below tc, it is still possible to derive the upper bound for the
gap, which turns out to vanish as N → ∞. This guarantees
the vanishing gap at the transition.

Our strategy is as follows: (i) Set up lower and upper
pseudotransition points, tl(N ) and tu(N ), for finite size N

below and above the true asymptotic percolation transition
point tc, respectively. We expect that both pseudotransition
points converge to tc as N → ∞. (ii) Find the upper bound
for the size increase of a largest cluster �G between tl(N )
and tu(N ). (iii) Show that this upper bound is sublinear in
N , which implies no macroscopic jump of the largest cluster
size through the percolation transition. This completes our
argument showing the continuity at the explosive percolation
transition. All procedures are done via extensive numerical
simulations, typically up to N = 237 ≈ 1.37 × 1011, and the
average is done over 100 ∼ 5000 runs.

The most crucial step is to define the two pseudotransition
points at the microscopic step level. First, we introduce the
lower pseudotransition point tl(N ) as the instant when the
cluster size heterogeneity (the number of distinct cluster sizes)
becomes maximum. For small t , the cluster size heterogeneity
increases with t due to the randomness of clustering pro-
cesses. However, the emergence of a macroscopic percolating
cluster which continuously absorbs small clusters causes the
heterogeneity to decrease and eventually the whole system
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FIG. 1. (Color online) Convergence of tl (the lower branch) and
tu (the upper one) averaged for 100 ∼ 5000 different realizations
for each system size (N = 217,218, . . . ,237). Errors are smaller than
symbol sizes, if not shown explicitly. Lines are just guides to the
eyes. As N increases, tu (tl) decreases (increases), approaching to
the well-defined value in the thermodynamic limit displayed as the
horizontal line. For clarity, the upper branch is vertically enlarged in
the inset.

becomes one cluster. Due to the mechanism of suppressing
the emergence of large clusters, one may argue that the
heterogeneity increases slowly but steadily up to just before
the explosion when many different size clusters merge into
one big macroscopic cluster. Thus it is reasonable to consider
the maximum heterogeneity as a preceding symptom of the
percolating onset for finite systems. In Fig. 1, the average
values of tl(N ) are plotted against N (lower branch), which
converge to the asymptotic value of tc = 0.8884490(5) from
below, as expected.

Second, we expect that the growth rate of the largest
cluster also becomes maximum at the percolation tran-
sition. Microscopically, the upper pseudotransition point
tu(N ) is defined as one step after the moment when
the second-largest cluster size becomes maximum. Thus
G(t) can experience a largest increase exactly when t

exceeds tu, since the second-largest cluster merges into
the largest cluster. A typical growing process is displayed in
Fig. 2. Note that the second-largest cluster never recovers its
size after merging into the largest cluster. So there will be
no explosive increase of the largest cluster size for t > tu(N ).
Dominance of one percolating cluster is the characteristic of
the percolating phase. So it is reasonable to expect that tu(N )
is just above tc, which is consistent with numerical results (see
the inset in Fig. 1). The average values of tu(N ) converge to
the same asymptotic value of tc from above as N → ∞.

The sample-to-sample fluctuations decrease with N−0.5

(not shown here), which implies that both tu and tl are
self-averaging [19], so not only the critical point but also any
sample-averaged quantity are well defined in the asymptotic
limit [17]. We also find numerically

tu(N ) − tl(N ) ∼ N−δ, (1)

with δ = 0.39(3) [20].
Now we consider �g = g(tu) − g(tl) = �G/N , which

is the growth of the largest cluster density between two
pseudotransition points through the asymptotic transition
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FIG. 2. (Color online) Evolutions of the largest cluster size (the
upper curve) and the size of the second largest cluster (the lower
curve) versus the growth step t . As t crosses tu from below, the size
of the largest cluster exhibits a sudden biggest increase since the
maximum second-largest cluster merges into it at that moment. The
system size is N = 223.

point tc. In the thermodynamic limit, it will be the jump size
(if any) of the order parameter at the percolation transition. As
g(tl) must vanish as N → ∞, we only need the information
of g(tu) in principle to calculate �g|N→∞. Figure 3 shows the
cluster-size distribution n(s; tu) of cluster size s (normalized
by the total number of clusters C) at tu(N ) for various different
sizes N . The distribution fits extremely well with a power-law
form, n(s; tu) ∼ s−τ with the decay exponent τ = 2.06(2)
[5,10–12] in a huge range, which is then accompanied by
a little dip in the end. In Fig. 3, the largest cluster size G(tu)
depending on the dip structure near the upper cutoff shows a
slight trend of the sublinearity in N (moving left in the axis
of s/N as N increases), which may be one symptom for the
continuous transition. However, as discussed before, it cannot
be conclusive even with huge system sizes studied here.

If one assumes a conventional natural cutoff of the
power-law type distribution function, the upper cutoff which
should be proportional to the largest cluster size G(tu) will
scale as N1/(τ−1) � N0.94 with τ � 2.06. Sublinearity is
estimated only by 6%, which may call for a huge system
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FIG. 3. (Color online) Log-binned cluster-size distributions at tu
for each N , where the horizontal axis is the cluster size s divided by
N for convenience. The solid line above is a guiding line of which
the decay exponent is 2.06.
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FIG. 4. (Color online) Log-binned cluster-size distributions at tl
for each N . The decay exponent of the guiding solid line below
is 2.06.

size like N ∼ 1017 (beyond the present computing capability)
to reach a reasonable scaling regime [g(tu) � 0.1] and get
any sensible extrapolation to the thermodynamic limit. Most
of previous studies [1–13,16] basically depend on the data in
this supercritical regime (t > tc). Nevertheless, the scaling plot
with this natural cutoff shows a reasonable collapse including
the dip structure at the end but involving big statistical errors
(not shown here).

In efforts to find conclusive evidences, we scrutinize the
cluster-size distribution n(s; tl) at tl(N ), which shows again the
power-law decay with the same decay exponent τ = 2.06(2)
followed by a hump near the upper cutoff (see Fig. 4). It has
a much shorter (but still quite broad) power-law regime but
exhibits much better statistics even in the hump region (see
Fig 5).

In contrast to the cluster distribution at tu(N ), n(s; tl) shows
a fast exponential decay near the cutoff sf . This sharp cutoff
originates from the nature of the growth (product) rule which
discourages the merging of bigger clusters before explosion.
One may estimate sf (N ) at tl as follows. It is appropriate to
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FIG. 5. (Color online) Finite-size scaling of the cluster size
distribution n(s) at tl(N ): All data points plotted in the form of sτ n(s)
versus sN−1/τ at τ = 2.06 collapse into a single curve. (Inset) The
same plot but with τ = 2. This clearly shows that τ ≈ 2.06 (>2)
gives us the much better quality of the FSS collapse.

estimate the upper cutoff sf by assuming the O(1) number of
clusters left beyond the cutoff, i.e.,

∑
s�sf

n(s) ∼ 1/C, where
C is the total number of clusters in the system. Note that C

scales linearly with N [21]. Since n(s) decays exponentially
fast (or faster) near sf ,

∑
s�sf

n(s) ≈ (�sf )n(sf ) with a finite
characteristic scale �sf of the fast decaying part. Conse-
quently, one can find n(sf ) ∼ s−τ

f ∼ 1/C ∼ 1/N , which leads
to

sf (N ) ∼ N1/τ , (2)

at t = tl(N ). Note that this cutoff scales differently from the
natural cutoff. The huge difference in the largest cluster size
G(t) just below and above tc leads to its abrupt and explosive
increase through the percolation transition, which is the main
difference between the ordinary and explosive percolation.
However, the magnitude of the explosion may be still sublinear
in N as discussed before.

The validity of Eq. (2) can be checked numerically through
the finite-size-scaling (FSS) analysis for the entire distribution
function n(s; tl). Assuming a single characteristic cluster size
(proportional to sf ), one can write a FSS form for the
distribution n(s; tl) as

n(s; tl) = s−τ f (s/sf ) = s−τ f (sN−1/τ ), (3)

where f (x) is the scaling function that becomes an O(1)
constant for x � 1 and decays exponentially fast (or faster) for
x � 1. In Fig. 5, we plot sτ n(s; tl) averaged over 100 different
runs versus the scaling variable sN−1/τ for all 21 different
system sizes N = 217,218, . . . ,236,237, using τ = 2.06. As is
clearly seen, the collapse of the data points is perfect including
both the power-law decay part and also the hump structure near
the end. This remarkable collapse validates the single-variable
FSS form of Eq. (3) without any doubt. Therefore, we now
have the most precise and full information on the cluster size
distribution just below the transition for large N . Comparison
with the scaling collapse plot using τ = 2 (see the inset of
Fig. 5) leads to the definite conclusion that τ must be larger
than 2.

Now we are ready to derive the upper bound of �g =
g(tu) − g(tl). From t = tl to t = tu, we need �L = N (tu − tl)
steps (�L links added). One may imagine the ideal process to
maximize the growth of the largest cluster G(t), starting from
the well-known cluster distribution n(s; tl) at tl , by adding �L

links one by one. This ideal process can be easily implemented
by simply linking and merging the largest cluster with the next
largest cluster at each step and repeating it till all �L links are
exhausted. All clusters of size s > sδ will then merge into one
cluster, which becomes the largest cluster after �L steps. The
threshold value sδ is determined by balancing the total number
of merged clusters with the total number of links added;
C

∑
s>sδ

n(s; tl) = �L with C the total number of clusters
at t = tl .

During this ideal process, the largest cluster G(t) grows
by the amount of C

∑
s>sδ

sn(s; tl). One can easily estimate
sδ ∼ (C/�L)1/(1−τ ) ∼ Nδ/(τ−1), using the single-variable FSS
form of n(s; tl) of Eq. (3) with Eq. (1). Finally, we get the strict
upper bound for �g as

�g � s2−τ
δ ∼ N−δ(τ−2)/(τ−1) ≈ N−0.022. (4)
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This shows that the order parameter jump �g at the percolation
transition should vanish as the N → ∞ limit, if δ > 0 and
τ > 2, which are undoubtedly confirmed in our numerical
simulations. Therefore, we conclude that the explosive perco-
lation transition is indeed continuous.

In summary, we showed that the explosive percolation
transition on the complete graph is continuous by exploiting
the high-precision cluster-size information at the moment of
the maximum cluster heterogeneity, tl(N ), approaching the
asymptotic transition point tc from below. The cluster-size
distribution displays the power-law scaling with the decay
exponent τ = 2.06(2), followed by a hump with a sharp cutoff
sf ∼ N1/τ . It is explicitly shown that the existence of the
single-variable finite-size scaling at tl(N ) solely guarantees
the continuity of the transition if τ > 2. Therefore, the

scaling and the discontinuity cannot be compatible near the
explosive percolation transition as in usual critical phenomena.
The explosiveness originates from the huge difference in
the largest-cluster-size scaling in N below and above the
transition. However, it is not enough to invoke a discontinuity
at the transition [22].

Our approach can be applied to many other models,
including various different types of explosive percolation
models to clarify the (dis-)continuity. Applications to other
explosive percolation problems and also the low-dimensional
cases are currently under investigation.
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