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The discrete Fourier transform is approximated by summing over part of the terms with corresponding
weights. The approximation reduces significantly the requirement for computer memory storage and enhances
the numerical computation efficiency with several orders without losing accuracy. As an example, we apply
the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram
approximation where the Green’s function needs to be self-consistently solved. We present the results for
the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state
energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and
random-phase approximation.
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I. INTRODUCTION

For dealing with some physical problems, we need to
take the discrete Fourier transform. Especially, many physical
problems are defined on lattice models. In such cases, we
may face the problem of Fourier transforming a function
defined on the lattice to the corresponding reciprocal space.
For most of the problems, the function to be transformed
cannot be expressed analytically but given numerically. When
the function needs to be given at a large number of discrete
points within the region it is defined, the memory volume for
storing the function may be too big and may even exceed
the computer’s storage limit. Even if the problem is within
the computer’s capability, when the transform is involved
in an integral equation that may be solved by iterations,
the function needs to be determined again and again in the
iterations and the process is very time consuming. Therefore,
an approximation scheme for the discrete Fourier transform
that reduces the storage requirement and accelerates the
numerical computation process without losing accuracy is very
desirable.

The discrete Fourier transform as well as a continuous one
is useful in solving the integral equations with convolutions
involved. One of the examples in the quantum many-body
problems is to calculate the self-energy � of electrons [1,2],

�(k,iωn) = −T

V

∑
k′n′

veff(k − k′,iωn − iωn′)G(k′,iωn′ ), (1)

where k is the momentum of electron, ωn = πT (2n + 1)
with n an integer is the fermionic Matsubara frequency, T is
temperature, V is the volume of the system, veff is an effective
interaction between electrons, and G is the Green’s function
of electrons. In a sophisticated scheme, � and G need to be
determined self-consistently. After the Fourier transforms, in
real coordinate r and imaginary time τ space, Eq. (1) reads

�(r,τ ) = −veff(r,τ )G(r,τ ). (2)

Having �(r,τ ) simply calculated by Eq. (2), one then obtains
�(k,iωn) by the inverse Fourier transforms.

Earlier works dealt with Eq. (1) by direct summation over
the Matsumara frequencies. In order to reduce the memory
storage requirement and accelerate the computation process,

Pao and Bickers developed a renormalization-group compu-
tation method [3]. The method is based on the assumption
that the Green’s function depends approximately on T only
through the Matsubara frequency. The computation starts at
high temperature T0 to solve the equations of the Green’s
function at selected numbers {n} with cutoff N0 for the
Matsubara frequencies. Since the Green’s function decreases
with Matsubara frequency very fast at high temperature,
the selected numbers are not necessarily too many. Then at
lower temperature T1, the selected numbers correspond to
lower frequencies. The equations for the functions at these
lower frequencies are solved and the functions at some high
frequencies ωn > ωN0 are approximated as the ones calculated
at T0. For example, G(k,iωn)T1,n>N0 ≈ G(k,iω′

n)T0 with ωn =
πT1(2n + 1) = πT0(2n′ + 1), where n′ is the selected number.
The series summation in Eq. (1) is carried out using the
staircase rule. That is, summation of f (n) over the range
n1 � n � n2 − 1 with n1 and n2 any two nearest-neighbor
selected numbers is given by f (n1)(n2 − n1). By repeating this
sequence, the equations for determining the Green’s function
are so solved at lower temperatures.

The key problem in solving such integral equations by
the direct summation treatment is how to accurately take the
series summation with the selected numbers. For numerically
computing the series summation,

S =
∞∑

n=0

f (n), (3)

the present author has introduced an algorithm that sums
over selected numbers with corresponding weights. The basic
idea of this method is described as follows. Suppose f as a
function of continuously variable x is locally smooth. Between
the selected numbers n1 and n3 with n3 = n1 + 2h and h an
integer, f (n) can be expanded as

f (n) ≈ f (n1) + c1(n − n1) + c2(n − n1)2, (4)

where the coefficients c1 and c2 are determined by the function
values f (n2) with n2 = n1 + h (the midpoint between n1 and
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n3 also selected) and f (n3). They are given by

c1 = [−3f (n1) + 4f (n2) − f (n3)]/2h, (5)

c2 = [f (n1) − 2f (n2) + f (n3)]/2h2. (6)

Then, using the results,

n∑
j=1

k = n(n + 1)/2, (7)

n∑
j=1

k2 = n(n + 1)(2n + 1)/6, (8)

the summation of f (n) over the range n1 � n � n3 − 1 is
obtained approximately in terms of f (n1), f (n2), and f (n3)
the values of f all at the selected points; the coefficients
attached respectively to these values are the corresponding
weights depending only on h. By repeating this procedure to a
large cutoff number, the summation in Eq. (3) is then obtained.
The algorithm is proved to be very accurate.

Though the convolution with the discrete numbers can be
treated as a series summation, numerical computation with
the discrete Fourier transform is much easier. It is even faster
provided the transform is performed using a high efficiency
algorithm. In this work, we will develop an algorithm to the
discrete Fourier transform. The accuracy and efficiency of the
new algorithm will be justified with examples.

In the later part of this paper, we will apply the algorithm to
the physical problem studying three-dimensional interacting
electron gas (3DEG) under the renormalized-ring-diagram
approximation (RRDA) [4] and compare the ground-state
energy so obtained with existing results of the Monte Carlo
(MC) simulation [5] and the random-phase approximation
(RPA). RRDA satisfies the microscopic conservation laws
[1,2]. It has not so far been applied to 3DEG because of the
numerical difficulty in self-consistently solving the integral
equations determining the Green’s function.

II. APPROXIMATION FOR THE DISCRETE
FOURIER TRANSFORM

We here consider the discrete Fourier transform,

F (k) =
nb∑

j=na

f (j ) exp(−ikj ), (9)

where f (j ) is defined in the range na � j � nb with na and
nb being integer numbers and k is a real parameter in the range
(−π,π ). To find an approximation for it, we first analyze the
following summation in small range (n1,n3) with n3 − n1 =
2h and n1, n3, and h all integers,

F (n1,n3; k) =
n3−1∑
j=n1

f (j ) exp(−ikj ). (10)

For large k, since exp(−ikj ) is a rapid oscillating factor,
f (j ) exp(−ikj ) cannot be regarded as a smooth function of j

and the previous algorithm cannot be applied here. However,
for smooth function f (x) in the range n1 < x < n3, f (j ) can
be expanded as in Eq. (4). We can then obtain an approximated

result for F (n1,n3; k). We need the following summation:

S1(k) =
n3−1∑
j=n1

exp(−ikj )

= exp(−ikn1)
1 − exp(−i2kh)

1 − exp(−ik)
≡ exp(−ikn1)y(k), (11)

with y(k) = [1 − exp(−i2kh)]/[1 − exp(−ik)]. Then we have

S2(k) =
n3−1∑
j=n1

(j − n1) exp(−ikj )

= i exp(−ikn1)dy(k)/dk, (12)

S3(k) =
n3−1∑
j=n1

(j − n1)2 exp(−ikj )

= − exp(−ikn1)d2y(k)/dk2. (13)

Substituting Eqs. (4) and (11)–(13) into Eq. (10), we get

F (n1,n3; k) ≈ f (n1)S1(k) + c1S2(k) + c2S3(k). (14)

Using Eqs. (5) and (6), we obtain

F (n1,n3; k) ≈ w1(k)f (n1) exp(−ikn1)

+w2(k)f (n2) exp(−ikn2)

+w3(k)f (n3) exp(−ikn3), (15)

where the weight functions w1,2,3(k) are given by

w1(k) = y(k) − i
3

2h

dy(k)

dk
− 1

2h2

d2y(k)

dk2
,

w2(k) = exp(ikh)

(
i

2

h

dy(k)

dk
+ 1

h2

d2y(k)

dk2

)
,

w3(k) = exp(i2kh)

(
− i

2h

dy(k)

dk
− 1

2h2

d2y(k)

dk2

)
.

Note that these weights depend only on the parameters k and
h. Equation (15) means that the summation over the range
n1 � j � n3 − 1 can be approximately obtained by the three
values of the function at n1, n2, and n3.

Now, we select equally spaced numbers (n1,n2, . . . ,n2m+1)
with integer stride h and consider the summation

F (n1,n2m+1; k) =
n2m+1−1∑

j=n1

f (j ) exp(−ikj ). (16)

Using Eq. (15), it can be expressed as

F (n1,n2m+1; k) =
m∑

�=1

F (n2�−1,n2�+1; k)

≈ w2(k)
m∑

�=1

f (n2�)e−ikn2�

+ [w1(k) + w3(k)]
m∑

�=1

f (n2�−1)e−ikn2�−1

+w3(k)[f (n2m+1)e−ikn2m+1 − f (n1)e−ikn1 ]

≡ we(k)Fe(k) + wo(k)Fo(k) + wx(k)Fx(k),

(17)
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with

Fx(k) = f (n2m+1)e−ikn2m+1 − f (n1)e−ikn1 , (18)

Fo(k) =
m∑

�=1

f (n2�−1)e−ikn2�−1 + 1

2
Fx(k), (19)

Fe(k) =
m∑

�=1

f (n2�)e−ikn2� , (20)

and we(k) = w2(k), wo(k) = w1(k) + w3(k), and wx(k) =
[w3(k) − w1(k)]/2 ≡ iwi(k) − 1/2. Clearly, Fo(k) is the sum-
mation over the odd terms with the trapezoid rule, which counts
half the values at the two ends, Fe(k) is that over the even terms,
and Fx(k) is the extra term. Inserting the function y(k) in the
formula w1,2,3(k), the final expressions for we(k), wo(k), and
wi(k) are obtained as

we(k) =
(

sin(kh)

h tan(k/2)
− 2 cos(kh)

)
/h(1 − cos k), (21)

wo(k) = sin2(kh)

h(1 − cos k)
− we(k) cos(kh), (22)

wi(k) = h sin k − sin(kh) cos(kh)

2h(1 − cos k)
− 1

2
we(k) sin(kh).

(23)

At k = 0, these functions take their limit values,

we(0) = h

3

(
4 − 1

h2

)
,

wo(0) = h

3

(
2 + 1

h2

)
,

wi(0) = 0,

which are the same weights obtained previously for the series
summation [6]. The formulas (17)–(23) are the main result
here. Equation (17) is valid when the function f (x) is smooth in
each segment (n2�−1, n2�+1). As shown above, only in each of
these segments, f (x) is approximated as a parabolic function
and then the summation over the terms with the oscillating
exponential factor is performed exactly. By separating the
whole range (na,nb) into several pieces with different strides
according to the behavior of the function and using the
summation rule given above in each piece, we then obtain the
discrete Fourier transform. This reduces greatly the memory
storage and enhances the computation efficiency. Here is a
remark: except for the number of the selected points being
odd in each piece, there is no constraint on the numbers of
values of the input function f and the output results and no
constraint on the relation between the stride of k and the total
number of the selected points {ni}, which is different from the
condition of the fast Fourier transform (FFT). Therefore, it is
convenient for using. (FFT is an exact computation method
summing up all the terms involved in the transform. In some
cases, the ability of a computer may not allow storing all the
terms in the memory and use of the FFT is prohibited.)

Some problems may be related to the sine or cosine
transform:

S(k) =
n2m+1−1∑

j=n1

f (j ) sin(kj ), (24)

C(k) =
n2m+1−1∑

j=n1

f (j ) cos(kj ). (25)

By recognizing that the functions cos(kj ) and sin(kj ) are re-
spectively the real and negative imaginary parts of exp(−ikj ),
from Eq. (17), we obtain

S(k) = we(k)Se(k) + wo(k)So(k) − 1
2Sx(k) − wi(k)Cx(k),

C(k) = we(k)Ce(k) + wo(k)Co(k) − 1
2Cx(k) + wi(k)Sx(k),

with

Sx(k) = f (n2m+1) sin(kn2m+1) − f (n1) sin(kn1),

So(k) =
m∑

�=1

f (n2�−1) sin(kn2�−1) + 1

2
Sx(k),

Se(k) =
m∑

�=1

f (n2�) sin(kn2�),

Cx(k) = f (n2m+1) cos(kn2m+1) − f (n1) cos(kn1),

Co(k) =
m∑

�=1

f (n2�−1) cos(kn2�−1) + 1

2
Cx(k),

Ce(k) =
m∑

�=1

f (n2�) cos(kn2�).

To test the accuracy and efficiency of the summation rule,
we consider here an example,

�(x) =
∞∑

n=−∞

p

p2 + (2πn)2
exp(−i2πnx), (26)

where p is a parameter. The exact result of the summation is

�(x) = 1

2

exp(−px) + exp[p(x − 1)]

1 − exp(−p)
,

for 0 � x � 1. �(x) is a periodic function of x with peri-
odicity 1. For numerical calculation, because the term under
summation is even with n → −n, we rewrite Eq. (26) as

�(x) = − 1

p
+ 2

∞∑
n=0

p

p2 + (2πn)2
cos(2πnx). (27)

To get the summation converged in numerical calculation,
the cutoff N0 that is the terms we need to sum should
be much larger than p/2π . For example, supposing p =
105, we may take N0 = 100p/2π ≈ 1.6 × 106. For x ∼ 0,
the contribution from the remaining term of n > N0 is
O(p/2π2N0) ∼ O(1/100π ). According to the summation
rule, instead of summing term by term within the cutoff,
summation in Eq. (27) is taken over only selected numbers.
We here use our previous number-selection scheme [6]:
the selected numbers distribute in L successively connected
blocks (pieces) in the positive integer-number axis. Each block
contains M equal spaced numbers (selected). (Including the
two ends, there are M + 1 numbers in each block. The number
M is redefined here. Differing from the previous notation
where M was defined as the total number including the two
ends, here it counts the number on one end.) The stride (or
the length between two selected numbers) in the �th block
is h� = h�−1, with h a constant integer number. For this
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FIG. 1. (Color online) �(x) as a function of x at parameters p = 5
and p = 105. Solid lines represent the exact function. Circles are the
numerical results obtained using the present summation rule.

example, we use here [h,L,M] = [2,19,4]. The total number
of the selected numbers is LM + 1 = 77, but the cutoff
is N0 = MhL/(h − 1) − (M − h + 1)/(h − 1) ≈ MhL/(h −
1) = 221 ≈ 2.1 × 106. Therefore, the cutoff should be large
enough for p � 105. Figure 1 shows the present numerical
results (circles) for �(x) as a function of x at two parameters
p = 5 and p = 105. The calculation is compared with the
exact formula given by the solid lines in Fig. 1. For p = 5,
Fig. 1 just shows the result within a periodic range. For
p = 105, �(x) takes a sizable value when x is close to 0
or 1 within the periodic range 0 < x < 1 and is symmetric
about x = 0.5. Here we plot only the result for x close to
0 for p = 105, because the scale p is too large to depict
the result in a complete periodic range. It is seen that the
numerical calculation very accurately reproduces the exact
results. As for the efficiency, because the summation of N0 ≈
MhL/(h − 1) terms is approximately obtained by summing
over only LM + 1 terms, the efficiency c can be defined as
N0/[LM + 1]. That is,

c ≈ hL/L(h − 1). (28)

For the present example, the efficiency is c = 2.7 × 104.
In dealing with a physical problem, we may approach

summation like

�(x,p1,p2, . . .) =
∞∑

n=−∞
f (n,p1,p2, . . .) exp(−i2πnx),

where f (n,p1,p2, . . .) cannot be explicitly expressed but
given numerically. �(x,p1,p2, . . .) as a function of its ar-
guments needs to be computed numerically in the region of
(x,p1,p2, . . .), where the summation converges. According to
the present summation rule, first, we only need to numerically
calculate f at the selected numbers, which saves computation

time and memory storage for f . Second, the high efficiency
summation algorithm saves time significantly for getting
�(x,p1,p2, . . .).

To effectively apply the present summation algorithm, we
consider here another example,

g(τ ) = 1

β

∞∑
n=−∞

exp(−iωnτ )

iωn − ξ − �(iωn)
, (29)

where β = 1/T , ωn is the fermionic Matsubara frequency, and
�(iωn) = 
2/(iωn + ξ ) is the self-energy with 
 a parameter.
The exact result is

g(τ ) = −1

2

(
1 + ξ

E

)
F (−E) exp(−Eτ )

−1

2

(
1 − ξ

E

)
F (E) exp(Eτ )

for 0 < τ < β, where E =
√

ξ 2 + 
2 and F (E) =
1/[exp(βE) + 1] is the Fermi distribution function. Note that
G(iωn) ≡ 1/[iωn − ξ − �(iωn)] ∼ 1/iωn as n → ∞. There-
fore, the summation in Eq. (29) for τ → 0 is not absolutely
converging, but converges conditionally. In such a case, one
usually makes use of an auxiliary function to accelerate the
convergence in numerical calculation. We choose here the
auxiliary function as G0(iωn) = 1/(iωn − ξ ). The summation

g0(τ ) = 1

β

∞∑
n=−∞

G0(iωn) exp(−iωnτ )

= −F (−ξ ) exp(−ξτ ), for 0 < τ < β,

τ/β
0.0 0.2 0.4 0.6 0.8 1.0

g(
τ )

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

T/ξ = 0.3

T/ξ = 0.1

T/ξ = 0.01

FIG. 2. (Color online) g(τ ) as a function of τ (normalized by
β = 1/T ) at parameters T/ξ = 0.01, 0.1, and 0.3. Solid lines
represent the exact function. Symbols are the numerical results
obtained using the present summation rule.
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is known. We then need to do the numerical calculation given
as

g(τ ) = 2

β

∞∑
n=0

Re{[G(iωn) − G0(iωn)]e−iωnτ } + g0(τ ),

where the summation is absolutely converging in the limit
τ → 0. Using our number-selection scheme with [h,L,M] =
[2,17,4], we numerically calculate g(τ ). The obtained results
(symbols) are shown in Fig. 2 for parameters T/ξ = 0.01, 0.1,
and 0.3 and 
/ξ = 0.5. The solid lines in Fig. 2 represent the
exact formula of g(τ ). Clearly, the numerical computation is
in very good agreement with the exact result.

III. 3DEG UNDER RRDA

We now apply the above algorithm to study 3DEG under
RRDA. The uniform 3DEG is a fundamental system in
solid-state physics [7] and has been extensively studied for
developing the exchange-correlation functional of local den-
sity in the framework of density-functional theory [8]. Within
the Green’s function approach, most of the existing works
for studying the system are based on perturbation expansions
[9–12]. RRDA is considered to be superior to perturbation
expansions because it satisfies the microscopic conservation
laws [1,2]. The similar scheme, the fluctuation-exchange
approximation, has been extensively applied to the Hubbard
models for studying the mechanism of high-temperature
superconductivity in cuprates [6,13–20]. Differing from the
Hubbard models that describe narrow-band electrons with
short-range Coulomb repulsion, the 3DEG is a system of
electrons with infinite bandwidth and long-range Coulomb
interactions. The energy scale of an electron in 3DEG is
much larger than that in the Hubbard model and one has
to treat the summation over Matsubara frequencies with a
much larger cutoff in the numerical computation. Since the
Green’s function needs to be self-consistently determined by
coupled integral equations and the numerical computation is
not easy without a special method, RRDA has not been applied
to 3DEG. Our objectives here are to test the efficiency of the
present numerical algorithm and to examine the applicability
of RRDA to 3DEG.

The three-dimensional electron system with density n

at temperature T is embedded in a uniform neutralizing
background of positive charge. The Hamiltonian of the system
is given by

H =
∑
kσ

ε(k)c†kσ ckσ + 1

2V

∑
kk′qσσ ′

v(q)c†k+qσ c
†
k′−qσ ′ck′σ ′ckσ ,

where ckσ annihilates an electron of momentum k and spin
σ , ε(k) = k2/2 is the kinetic energy, v(q) = 4πe2/q2 is the
Coulomb interaction, V is the volume of the system, and the
term of q = 0 is excluded from the summation because of the
neutralizing background. Throughout the paper, we will use
the units in which h̄ = kB = m = a = e = 1, with m the mass
of the electron and a the Wigner-Seitz radius. The Coulomb
coupling strength is characterized by the parameter

rs = a/aB, (30)

= + + + +

FIG. 3. (Color online) Diagrammatic expressions for “free en-
ergy” functional 
. The line represents the Green’s function and the
wavy line is the Coulomb interaction.

with aB the Bohr radius. The Fermi degeneracy is measured
by the ratio T/EF with EF = k2

F /2 the Fermi energy and
kF = (3π2n)1/3 the Fermi wave number.

According to the quantum many-body theory, we start with
the electronic Green’s function G(k,iωn). It is related to the
self-energy �(k,iωn) via

G(k,iωn) = [iωn − ξk − �(k,iωn)]−1, (31)

where ξk = ε(k) − μ and μ is the chemical potential deter-
mined by

n = 2T

V

∑
kn

G(k,iωn) exp(iωnη), (32)

with η an infinitesimal small positive constant. With a
conserving approximation, the self-energy � is given as the
functional derivative [2]

� = δ
/δG, (33)

where 
 is the “free energy”functional of the system. The
Green’s function so determined satisfies the microscopic
conservation laws. Under RRDA, 
 is diagrammatically given
by Fig. 3. In the space of (r,τ ) with 0 < τ < β, � reads

�(r,τ ) = −G(r,τ )W (r,τ ), (34)

where W (r,τ ) is an effective interaction between electrons
as mentioned in the Introduction. In the space of (q,iνm)
with νm = 2mπT as the bosonic Matsubara frequency, W is
expressed as

W (q,iνm) = v(q)

1 − v(q)χ (q,iνm)
, (35)

where χ (q,iνm) is the bubble as shown in Fig. 3. In terms of
G, χ in (r,τ ) space is given by

χ (r,τ ) = 2G(r,τ )G(−r, − τ )

= −2G(r,τ )G(r,β − τ ), (36)

where the use of G(−r, − τ ) = G(r, − τ ) = −G(r,β − τ )
has been made. The Green’s function G is self-consistently
determined by Eqs. (31), (32), and (34)–(36). These integral
equations are solved by iterations. Clearly, in each iteration,
we need to Fourier transform G(k,iωn) to G(r,τ ) to calculate
χ (r,τ ), transform χ (r,τ ) to χ (q,iνm) to obtain W (q,iνm),
transform W (q,iνm) to W (r,τ ) to get �(r,τ ), and finally
transform �(r,τ ) to �(k,iωn) to return to G(k,iωn).

To numerically do the transforms with guaranteed accuracy,
we need to use auxiliary functions. The key points about the
transforms and the auxiliary functions are illustrated below.

(i) For transforming G(k,iωn) to G(r,τ ), we choose
G0(k,iωn) = 1/(iωn − ξ 0

k ), with ξ 0
k = ε(k) − μ0 and μ0 the

chemical potential of the noninteracting electron gas, as
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the auxiliary function did in the second example given by
Eq. (29). G0(k,τ ) = −F (−ξ 0

k ) exp(−ξ 0
k τ ) for 0 < τ < β has

been given in the example. From G0(k,τ ) to G0(r,τ ), we need
to carefully carry out the integral,

G0(r,τ ) = − 1

2π2r

∫ ∞

0
dk kF

( − ξ 0
k

)
exp

( − ξ 0
k τ

)
sin(kr).

(37)

Since it cannot be integrated out analytically, one has to
integrate it out numerically. Note that for small τ ∼ 0, the
factor kF (−ξ 0

k ) exp(−ξ 0
k τ ) decays slowly as k → ∞. In this

case, integrating out the slow decaying part analytically, we
have

G0(r,τ ) = 1

2π2r

∫ ∞

0
dk kF

(
ξ 0
k

)
exp

( − ξ 0
k τ

)
sin(kr)

−exp(μ0τ − r2/2τ )

(2πτ )3/2
, (38)

and the remaining integral is performed numerically with
Filon’s rule [21]. This formula is useful only for small τ .
For large τ , the factor exp(μ0τ ) is large and the rounding
error is big. There is the same factor in the integrand in
Eq. (38). The formula should be reformed as a summation
multiplied by this common factor. However, Eq. (37) is a
proper formula for numerical integration for large τ . Having
so obtained G0(r,τ ), we then need to numerically transform
δG(k,iωn) = G(k,iωn) − G0(k,iωn) to δG(r,τ ). We select
the fermionic Matsubara frequencies using the parameters
[h,L,M] = [2,17,8]. The obtained results are almost the same
as that using the parameters [h,L,M] = [2,17,12]. For the
momentum k with a cutoff kc = 25/a, its range is separated
into four regions: (0,kF − 
) with 
 = min(2T/kF ,kF /3),
(kF − 
,kF + 
), (kF + 
,10/a), and (10/a,kc) and we
use 100 uniform meshes in each of them. Since the Fermi
distribution is sharp at kF at low temperature, we need to
put dense points there. The r range is divided into three
regions, (0,a), (a,10a), and (10a,40a), with respectively 50,
100, and 150 equal-mesh grids. For the range of 0 < τ < β,
it is divided into 24 segments symmetrically about β/2.
The boundary points of the segments in the left of β/2 are
given by

τ12 = β/2,

τj = τj+1/4, for j = 1, . . . ,11,

τ0 = 0.

In each segment (τj ,τj+1), there are 20 uniform meshes for
coordinating the Green’s function G. It is seen that the meshes
become dense as τ → 0 or →β. This choice is necessary at
low temperature because the Green’s function G(k,τ ) varies
dramatically as τ → 0.

(ii) With G0, the natural auxiliary function for trans-
forming χ (r,τ ) to χ (q,iνm) is chosen as χ0(r,τ ) =
−2G0(r,τ )G0(r,β − τ ), and χ0(q,iνm) is given by

χ0(q,iνm) = − 1

2π2q

∫ ∞

0
dk

dF
(
ξ 0
k

)
dk

J (k,q,νm), (39)

with

J (k,q,ν) = 1

2
(k+k− + ν2/q2) ln

k2
− + ν2/q2

k2+ + ν2/q2

−kq + ν

(
arctan

qk−
ν

+ arctan
qk+
ν

)

and k± = k ± q/2. The remaining transform δχ (r,τ ) =
χ (r,τ ) − χ0(r,τ ) to δχ (q,iνm) is carried out numerically using
Filon’s rule.

(iii) From W (q,iνm) to W (r,τ ), we need to numerically
transform δW (q,iνm) = W (q,iνm) − v(q) to δW (r,τ ), while
v(q) to v(r) is trivial. At large q or large νm, δW (q,iνm)
becomes v2(q)χ (q,iνm). To imagine the behavior of χ (q,iνm)
in these limits, we consider

χ0(q,iνm) ∼ − 3

2π

ε(q)

ε2(q) + ν2
m

, for |ε(q) + iνm| → ∞,

as a measure of it. The transform of ε(q)/[ε2(q) + ν2
m] from

νm space to τ space is the same as in the first example given
by Eq. (26) by noting p = ε(q)/T . For large q and low T ,
ε(q)/T can be very large. Therefore, the cutoff for νm should be
large enough. We use the parameters [h,L,M] = [2,22,8] for
selecting νm’s (giving rise to almost the same results as that of
M = 12). The cutoff νm is νc = 225πT ≈ 3.3 × 107πT . In our
calculation, we first transform δW (q,iνm) to δW (r,iνm) choos-
ing δW 0(q,iνm) = v2(q)χ (0,iνm)/[1 − v(q)χ (0,iνm)] as the
auxiliary function. δW 0(r,iνm) is given by

δW 0(r,iνm) = [exp(−qmr) − 1]/r,

with qm = √−4πχ (0,iνm). The q integral in the numerical
transform is performed with Filon’s rule using 100, 200, and
100 uniform meshes in the ranges (0,1/a), (1/a,10/a), and
(10/a,35/a), respectively. Finally, we transform δW (r,iνm) to
δW (r,τ ).

(iv) The self-energy is separated to the Fock (that is
independent of ωn) and the remaining terms. The two terms
are transformed separately from (r,τ ) space to (k,iωn) space.

Note here that under RRDA χ (0,iνm) is not zero and is
different from RPA. To see it, by inserting the RPA self-energy
into the Green’s function and calculating χ (q,iνm), one then
finds χ (0,iνm) 	= 0. RRDA is such a process that the Green’s
function is corrected again and again until the self-consistency
is satisfied. A related problem is the plasmon excitation in the
system. With RPA, the frequency of plasmon is determined
by the singularity of the summation of ring diagrams. Under
RRDA, however, it should be determined by the singularity of a
two-particle propagator. The effective particle-hole interaction
in the two-particle propagator is determined by a second
functional derivative of 
 with respect to the single-particle
Green’s function G. Therefore, the diagram of the irreducible
two-particle propagator is not a simple bubble.

The maximum value of ε(q) here takes a role of criterion
in determining the cutoff νc of Matsubara frequency νm. The
largest q is 35/a, leading to largest ε(q) = 0.27 × 352EF ≈
333EF . For T/EF = 0.01, we have νc ≈ 106EF >> ε(q). In
a narrow-band system such as a Hubbard model, instead of ε(q)
as appears above, we may use the bandwidth to estimate the
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FIG. 4. (Color online) Function rG(r,τ ) at T/EF = 0.05 and
rs = 5.

cutoff. To see this, we start from the more general expression
for χ0(q,iνm),

χ0(q,iνm) = 4

V

∑
k


(k,q)
[
F

(
ξ 0
k

) − F
(
ξ 0
k+q

)]
ν2

m + 
2(k,q)
,

with 
(k,q) = ε(k) − ε(k + q). Clearly, νc should be much
larger than the maximum value of 
(k,q). In the Hubbard
model, the magnitude of the latter is in the order of the
bandwidth.

The points in the (k,iωn) or (q,iνm) and (r,τ ) spaces may
not be necessarily chosen so dense to coordinate the functions.
Even with so many points, the computation time for solving
the integral equations of the Green’s function with a personal
microcomputer is only a few seconds, which is tolerable to us.

With the techniques given above, we have solved the
integral equations. Figure 4 shows the function rG(r,τ ) at
T/EF = 0.05 and rs = 5. This function varies dramatically in
a region close to origin (0,0), where there is a sharp dip in
the surface given by rG(r,τ ). This behavior can be seen from
part of the free-particle Green’s function G0(r,τ ) as given by
the last term in Eq. (38). At large r , the surface seems like
a wave. This wave is related to the Friedel oscillations as
seen from Eq. (38), where the Fermi distribution function
varies drastically at kF . In Figs. 5 and 6, for the same
parameters T/EF = 0.05 and rs = 5, we show the real part
and imaginary part of the self-energy �(k,iωn), respectively.
As ωn → ∞, �(k,iωn) goes to the Fock exchange that is
real as shown in Fig. 5. At ka ∼ 2, �r (k,iωn)|n→∞ varies
dramatically, showing a logarithmic behavior due to the
Coulomb interaction. On the other hand, �i(k,iωn)|n→∞
becomes zero as shown by Fig. 6. In the limit k → ∞,
�(k,iωn) vanishes.

Figure 7 shows the chemical potential μ as a function of
temperature T at various coupling constant rs . At each rs , μ

seems as a constant at low temperature. Actually, μ slightly
decreases with T as shown in the inset of Fig. 7 for rs = 5,
which is a general feature of μ because electrons occupy higher

0
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6
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2
3

4
5

-3

-2

-1

0

log
10 n

Σ r(k
,iω

n
)

k α

FIG. 5. (Color online) Real part self-energy �r (k,iωn) at
T/EF = 0.05 and rs = 5.

energy levels with larger density of states due to the thermal
excitations.

Shown in Fig. 8 is the inverse compressibility defined by

κ−1 = n2

(
∂μ

∂n

)
T

= −nrs

3

(
∂μ

∂rs

)
T

. (40)

The corresponding μ as a function rs is depicted in the inset.
At small rs (high density), κ−1 is positive, implying that the
system is stable, while at large rs , κ−1 becomes negative and
the system is unstable. The critical value is rs ≈ 5, where κ

goes to infinity, implying that Wigner crystallization may take
place in the system. This critical value rs ≈ 5 under RRDA
drops in the range 4.83 � rs � 104 estimated by the earlier
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5

6

012345
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FIG. 6. (Color online) Imaginary part self-energy �r (k,iωn) at
T/EF = 0.05 and rs = 5.
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FIG. 7. (Color online) Chemical potential μ as a function of
temperature T for parameters, from top, rs = 1, 2, 3, 4, 5, 6, 8,
10, 15, 20, 25, and 30. The inset is a zoom in μ-T picture at rs = 5.

works [22–28] with 4.83 as the prediction of the Hartree-Fock
perturbation [29]. The earlier MC result [5] for the critical
value of Wigner crystallization is rs = 67.

We here need to emphasize that the compressibility κ is not
equal to −χ (0,0)/n2. According to the compressibility sum
rule, κ is related to an irreducible two-particle propagator. As
mentioned above, the diagram of the irreducible two-particle
propagator is not a simple bubble under RRDA.

rs

0 5 10

κ-1
(E

F
 /a

3 )

-0.2

-0.1

0.0

0.1

0.2

rs

0 5

μ  
/E

F

-4

-2

0

10 15

FIG. 8. (Color online) Inverse compressibility κ−1 as a function
of rs at T/EF = 0.01. The inset shows μ as a function of rs at
T/EF = 0.01.

With the results for the Green’s function and the self-energy,
we calculate the energy E = 〈H 〉. E is given by

E =
∑

k

[2ε(k) + �x(k)]n(k) − T

2

∑
qm

v2(q)χ2(q,iνm)

1 − v(q)χ (q,iνm)
,

(41)

where �x(k) is the Fock exchange part of the self-energy
�x(k) = �(k,i∞), and n(k) is the distribution function. On the
other hand, E can be obtained also from the thermodynamic
function � as

E = ∂

∂β
(β�)μV + μN, (42)

where N = nV is the total number of the electrons and � is
given by [30]

� =
(


 −
∑
k,σ,n

exp(iωnη)[�G − ln(−G)]

)/
β. (43)

Under the conserving approximation, because of Eq. (33), the
two equations (41) and (42) are equivalent. Having �, we
obtain the free energy F ,

F = � + μN, (44)

which is related to E by F = E − T S with S as the entropy.
In Fig. 9, we plot the results for 
ε ≡ (E − E0)/N and 
f ≡
(F − E0)/N as functions of T with

E0/N = 1.105

r2
s

− 0.458

rs

(a.u.) (45)

as the ground-state energy in atomic unit (a.u.) given by the
Hartree-Fock perturbation [29]. E increases with T because
of the thermal excitations, but the increment is less than the
heat T S, so F decreases with T . In the limit T → 0, both of
them become the same result—the ground-state energy. 
ε
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Δε
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F
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 Δ
f/

E
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FIG. 9. (Color online) Energy 
ε and free energy 
f per particle
as functions of T at rs = 1, 2, 5, and 10.
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FIG. 10. (Color online) Ground-state correlation energy εc (in
atomic unit) per particle as functions of rs . The present calculation
(circles) is compared with RPA (squares) and MC (solid circles).

and 
f at T = 0 are the ground-state correlation energy per
particle εc. Shown in Fig. 10 is the result for εc as a function of
rs . The present calculation (RRDA) is compared with MC [5]
and RPA. By RPA, εc is given by [29]

εRPA
c = 1

2N

∑
q

∫ ∞

−∞

dν

2π
{ln[1 − v(q)χ0(q,iν)]

+ v(q)χ0(q,iν)}. (46)

Clearly, in the whole range of the coupling constant plotted
here, the present RRDA calculation is much closer to MC than
RPA. The present result is even almost the same as the MC
simulation at rs � 2. Note that the result from Eq. (41) where
�x , n(k), and χ are replaced with the corresponding functions
of free electrons as in RPA is not the same as from Eq. (46)
plus E0/N because RPA is not a conserving approximation.

In our previous work [4], we have studied the two-
dimensional interacting electron gas (2DEG) under RRDA. In
that time, we could not perform approximated discrete Fourier
transform from the Matsubara frequency axis to the imaginary
time axis, but carried out the calculation using an approximated
series summation algorithm for the direct summation over the
Matsubara frequency. To test the present numerical method
of the discrete Fourier transform, we have reinvestigated the
2DEG system. For solving the integral equations determining
the Green’s function, the numerical computation with the
present algorithm is much easier and faster than that with the
previous method. Shown in Fig. 11 is the ground-state energy
as a function of the coupling constant rs for 2DEG. The present
calculation (circles) reproduces precisely the previous results
(diamonds). For comparison, the results of MC simulation
(solid circles) [31] and RPA (squares) are also depicted in
Fig. 11. We make a correction here for the RPA result in the
previous work. The previous RPA notation for the ground-state
energy is not obtained from Eq. (46), but from Eq. (41). That is

rs

0 5 10 15 20 25

ε (
a.

u.
)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

RRDA

RPA

MC

2D electron gas

FIG. 11. (Color online) Ground-state energy ε (in atomic unit)
per particle as functions of rs for two-dimensional electron gas. The
present calculation (circles) is compared with RPA (squares) and MC
(solid circles). The diamonds are the RRDA results of the previous
numerical calculation.

not the usual meaning for the ground-state energy of the RPA
calculation.

As seen from Figs. 10 and 11, RRDA reproduces quite
accurately the ground-state energy of the MC results, better for
higher-dimensional system. A question then is raised: Why is
the critical value rs ≈ 5 for the singularity of compressibility
of 3DEG very different from the MC value 67 for the Wigner
crystallization? To answer it, we recall the expression μ =
(∂E/∂N )V,T =0 and write κ−1 for T = 0 as

κ−1 = n2

V

(
∂2E

∂n2

)
V,T =0

. (47)

Clearly, though the ground-state energy is obtained accurately
with an approximation, its second derivative with respect to
n may in general not be good. Under RRDA, the summation
of the most divergent ring diagrams gives the predominate
contribution to the ground-state energy. However, to its
derivatives, the contribution from the neglected diagrams may
be significant also.

Having obtained the total energy E and the free energy F ,
we then get the entropy S as

S = (E − F )/T . (48)

Shown in Fig. 12 is s = S/N as a function of T at various
coupling constants rs . The temperature in Fig. 12 is normalized
with the energy e2/a (that is a scale larger than EF for
rs > 1.84). As is seen for smaller rs , s varies linearly in a
wider range of low temperature. At large rs , the tangent of s

decreases as T increases, reflecting the strong coupling effect.
The low-temperature result for s at large rs is hard to calculate
accurately, since the difference between E and F is very small.
The situation has been shown in Fig. 9 where T is normalized
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FIG. 12. (Color online) Entropy s per particle as functions of T

at rs = 1, 5, 10, 20, and 30.

with EF that is a smaller scale than e2/a for large rs . The
overall relative error of the numerical calculation for E and F

is in the range (0.001,0.01). The difference between them can
fall into the error bars at large rs and at low T . The numerical
calculation for s is therefore meaningful only at high tem-
perature. At large rs , the electrons are strongly coupled. The
average energy of an electron is in the order of e2/a. Therefore,
e2/a is the proper energy scale for a strong coupling case.

With the results for entropy S, we calculate the specific heat
C defined as

C = T

(
∂S

∂T

)
n

. (49)

In Fig. 13, we plot the result for C as a function of rs at
various T . C is normalized by CF , the specific heat of the free
electrons,

CF = π2NT/2EF . (50)

As seen from Fig. 13, C/CF monotonically decreases with rs

for rs > 1. For fixed rs , C/CF is smaller at higher T , reflecting
the tangent change of s(T ) as shown in Fig. 12. The dashed line
in Fig. 13 represents the Gell-Mann high-density expansion for
the specific heat [32]

CGM/CF = {1 + αrs[log(π/αrs) − 2]/2π}−1, (51)

with α = (4/9π )1/3. CGM/CF first decreases from unity as rs

departing from 0 and then turns to increases with rs . Of course,
it is valid at small rs . As rs → 0, the result given by RRDA
should be close to this expansion.

IV. CONCLUSION

By conclusion, we have developed the approximated
algorithm for the discrete Fourier transform. When the function

rs

0 10 20 30

C
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0.0

0.2

0.4

0.6

0.8

1.0
T/(e2/a) = 0.01

0.02

0.05

0.1

FIG. 13. (Color online) Specific heat C normalized by CF of
free electrons as functions of rs at T/(e2/a) = 0.01, 0.02, 0.05,
and 0.1. The dashed line at small rs is the Gell-Mann high-density
expansion [32].

to be transformed is piecewise smooth, its transformation
can be accurately obtained using a number of selected
points with corresponding weights. This algorithm reduces
the requirement for computer memory storage and enhances
the numerical computation efficiency by several orders. Its
accuracy has been examined by examples.

We have applied the numerical algorithm to study
the three-dimensional interacting electron gas under the
renormalized-ring-diagram approximation. The integral
equations determining the Green’s function are easily solved
by the present numerical algorithm. Since the bandwidth of the
system is infinite, the number corresponding to the cutoff of
the fermionic or bosonic Matsubara frequency at low tempera-
ture in the numerical computation is extremely large. With the
present algorithm, instead of computing the functions at about
2LM Matsubara frequencies in each iteration, one needs to
calculate them at only LM + 1 selected ones. The parameters
L and M used here are L = 17 (22) for fermions (bosons) and
M = 8. The requirement for the computer memory storage is
greatly reduced and the efficiency is c = 2L/L ≈ 7.7 × 103

(1.9 × 105) for L = 17 (22). We have obtained the results for
the chemical potential, compressibility, free energy, entropy,
and specific heat of the system. The ground-state energy
obtained by the present calculation is in very good agreement
with the result of Monte Carlo simulation.
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