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The sampling of compact configurations is crucial when investigating structural properties of semistiff
polymers, like proteins and DNA, using Monte Carlo methods. A sampling scheme for a continuous model
based on configuration biasing is introduced, tested, and compared with conventional methods. The proposed
configuration biased Monte Carlo method, used together with the Wang-Landau sampling scheme, enables us
to obtain any thermodynamic property within the statistical ensemble in use. Using the proposed method, it is
possible to collect statistical data of interest for a wide range of compactions (from stretched up to several toroid
loops) in a single computer experiment. A second-order-like stretched-toroid phase transition is observed for a
semistiff polymer, and the critical temperature is estimated.
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I. INTRODUCTION

The use of computer simulations to investigate the structure
of macromolecules is a rather well developed area for many
types of polymers [1–7]. In cases when the system under
investigation undergoes an essential change in geometry (for
example, a phase transition), conventional Metropolis Monte
Carlo (MC) is not an efficient simulation method [1]. One way
to improve the efficiency is to include a configurational bias. It
is a useful tool when modeling gas-liquid phase transitions for
simple ionic liquids in the framework of the restricted primitive
model [8] as well as when studying configuration properties
of semistiff polymers [1].

Configuration biased Monte Carlo (CBMC) methods are
suitable when performing polymer simulations in order to
sample configurations which are confined in a general way.
Confinement can be straightforward: due to the physical size
of the boundaries of the system [2]. As an example, one
can consider tightly packed viral DNA in the capsid whose
dimensions are comparable with the persistence length of
DNA [3]. Another type of confinement is due to a high
concentration of surrounding molecules. In this case, most
of the attempts to change the geometry of the chain will be
doomed due to steric factors (overlapping). The polymer also
can become more compact due to the presence of compaction
agents [4].

There are several types of chain moves which are widely
used in computer simulations of polymer systems. For contin-
uous models, pivot moves [9], crankshaft, and single bead
(monomer) displacements are traditionally used to achieve
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efficient sampling [5]. A common problem for all these moves
is that they fail for dense systems [10] and can not be used
to produce compact configurations, especially in the case of
semistiff polymers [1]. This is the main reason why the prob-
lem of thermodynamic stability for compact conformations of
semistiff polymers still is not solved computationally.

Nevertheless, some studies of conformation stability for
compact polymers have been carried out using both molecular
dynamics (MD) and MC methods. In MD, the initial config-
uration is prepared in the conformation under investigation
(e.g., toroid, globule, or cigar), and during the simulation,
the stability of the given structure is observed [11]. In the MC
approach, it is possible to prepare the system in a compact state
and then try to move parts of it in small displacements [12].
If the system is in a stable state (minimum in free energy), it
will fluctuate around this state or else degrade in the case
of a badly guessed initial configuration. Another way to
investigate stability is to release the polymer and let it find
the stable state itself while modifying its geometry throughout
the experiment [1,5]. In this case, it is crucial how the geometry
changes are performed, since it has been shown that it is hardly
possible to sample structures more compact than two coils of
toroidal-like or cigarlike conformations with only clothed pivot
and crankshaft moves [1].

An alternative to the pivot moves is a bead-by-bead
regrowth of an entire chain. The orientation of each monomer
is governed by the configuration bias used. This sampling
technique showed high efficiency in the case of lattice models
for flexible polymers [6]. In the present work, we have
extended the model to include the stiffness of the chain. We
also used a continuous model where the number of orien-
tations is not determined by the structure of the underlying
lattice.

It is shown that a CBMC method applied to semistiff
polymers in a continuous model can shed light on the problem
of sampling compact toroidal-like configurations.
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The paper is organized as follows: in Sec. II, the Rosenbluth
ideas of configuration generation of polymer systems are
briefly described and some modifications are introduced.
The Wang-Landau sampling technique is coupled with the
Rosenbluth sampling, and formulas for the transition proba-
bilities are derived. In Sec. III, the model used is described
and tested using well-known techniques. The details of the
implementation are also discussed. In Sec. IV, the newly
derived method is applied to a semistiff polymer with a torsion
stiffness. The phase transition temperature is estimated. In the
last section, we summarize the major features of our method
as well as some points for future development of the presented
method.

II. ROSENBLUTH SAMPLING APPLIED TO SEMISTIFF
POLYMERS

Computer simulations of semistiff polymers, with the goal
of collecting statistical properties for a wide range of chain
compactions, face two main problems: how to generate the
compact configurations and how to force the system to explore
a wide range of compactions (from several loops to an uncoiled
structure). In order to solve both these problems, we introduce
two biases, one configurational in order to construct compact
configurations and another forcing the system to coil and
uncoil during the MC simulation. The former is referred
to as a Rosenbluth-like biasing [13], and the latter is the
Wang-Landau biasing scheme [14]. One should mention that
for flexible chains the problem of compaction is less difficult,
and it has been solved in continuous models [15,16] as well as
for lattice models [17].

A. Rosenbluth-like sampling

An elegant technique for sampling polymer configurations
was introduced by Rosenbluth and Rosenbluth in 1955 [18].
The main drawback of the initial idea was that it leads to a non-
Boltzmann sampling [13,19]. It means that during a simulation
with this sampling technique, the generated configurations are
not Boltzmann distributed, and some corrections were needed.
A more recent technique involving Rosenbluth sampling was
introduced by Frenkel et al. [20]. This method allows the
generation of Boltzmann-distributed configurations, and it can
be used in an ordinary CBMC simulation.

The ideas described above are very general and can be
modified if needed. It is possible to construct your own
Rosenbluth-like factors in order to introduce a configuration
bias to the MC sampling procedure. To produce compact
configurations of a polymer chain, the temperature dependent
biasing Rosenbluth factor as introduced in [20] is, however,
not efficient enough for these cases, and stronger conditions
for constructing a biasing factor are needed.

We introduce here a new Rosenbluth-like factor

W (λ) =
l−1∏
i=1

wi(λ), (1)

where l is the number of beads in the chain, and

wi(λ) =
k∑

j=1

exp
[ − λur

i (j )
]
, (2)

where λ is a numerical factor, k is the number of trial
orientations for every monomer, and ur

i (j ) is a construction
of type:

ur
i (j ) = 1 − ui(j )

mink
j=1{ui(j )} , (3)

where ui(j ) is the interaction energy between monomer i in
the trial position j and the already grown part of the chain.
The type of construction in Eq. (3) was chosen to transform
nonbonded energies to the interval [0 : ∞). For example,
ur

i (j ) = 0.0 for the lowest of ui(j ), and ∞ for overlapping
configurations.

So, among the k trial configurations, one is selected with a
probability [21]

pi(λ,u) = e−λur
i (j )

wi(λ)
. (4)

As it can be seen from Eq. (4), the smaller (more negative)
the nonbonded interaction energy between a trial position of
the monomer and the already grown part of the chain is, the
larger is the probability of selecting a given trial position. This
will result in the generation of a compact structure by setting up
the corresponding parameter λ regardless of the temperature.
If λ = 0.0, it will mean that we do not favor selecting compact
structures, and all trial configurations are equiprobable. If λ >

0, for example, λ = 20.0 − 50.0, pi(λ,u) is peaked around 0,
and we will mostly select such trial configurations which result
in very compact structures. A more detailed discussion about
the choice of λ will be given in Subsec. IV B.

Sometimes, however, especially for long chains, all trial
orientations will result in overlapping configurations, the so
called dead-valley problem. In this case, Eq. (3) will not work,
and we will regrow the chain from start. This does not introduce
any additional biasing in the scheme, though, since we are
accumulating data for nonoverlapping configurations.

B. Wang-Landau sampling technique
with Rosenbluth sampling

As mentioned above, Rosenbluth-like sampling allows one
to generate compact configurations. Moreover, the degree of
compactness is governed by λ, which is an input parameter
and can be varied. It means that one can find or select a λ,
which provides sampling of configurations with various levels
of compactness.

A problem is that these stable structures have a local free
energy minimum, so once the system finds itself in such a state,
it will spend many MC steps there. It also means that other
parts of the configurational space will remain unexplored.

Fortunately, the Wang-Landau (WL) sampling technique
provides a way to circumvent this drawback. The idea behind
WL is that the less probable it is for a state to be visited,
the higher the acceptance probability for this state becomes.
Applying this to polymer configurations means that even if the
system falls into a stable state, sooner or later it will be forced
to leave it by the dynamically changing acceptance rate in the
WL procedure [14]:

π [o → n] = min

[
1,

�(Eo)

�(En)

]
, (5)
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where �(Eo) and �(En) are the energy densities of the old
and new states, respectively. The density of energy states
is defined as �(E) = ∫

δ(E − U (q))dq, where dq denotes
the differential of the configurational space, and U (q) is the
potential energy of the given configuration q. It should be
noted that Eq. (5) can be applied only in the case when we
select trial configurations randomly, which is not true in our
case, and some modifications are needed.

Let us apply the idea of WL sampling to the Rosenbluth
procedure for generating configurations. We follow the no-
tation from Frenkel and Smit [13]. Detailed balance as a
configuration flow can be described as

K(o → n) = K(n → o), (6)

where K(o → n) and K(n → o) are the numbers of accepted
moves (on average) from old to new and from new to old
configurations, respectively. Equation (6) can be factorized
according to

K(o → n) = p(o)α(o → n)π (o → n), (7)

where p(o) is the probability for a system to be found
in the given state {p(o) ∝ exp[−βU (o)] for the canonical
ensemble}, α(o → n) is the probability of selecting a new
configuration (referred to as the Markov’s transition matrix),
and π (o → n) is the probability of accepting a move from an
old to a new state.

In our case, we bias the configurations in two ways.
First, we introduce a Rosenbluth-like bias αR(o → n) =
e−λ(n)�(n)/W [n,λ(n)], and after that a bias from the WL
scheme: αWL(o → n) = Q(l,V ,T )/e−βE(o)�[E(o)] [22]. The
result is

e−βE(o)

Q(l,V ,T )

e−λ(n)�(n)

W [n,λ(n)]

Q(l,V ,T )

e−βE(o)�[E(o)]
π (o → n)

= e−βE(n)

Q(l,V ,T )

e−λ(o)�(o)

W [o,λ(o)]

Q(l,V ,T )

e−βE(n)�[E(n)]
π (n → o), (8)

where λ is the compactness factor, W (λ) is defined in Eq. (1),
�(E) is the energy density of states, and � is the reduced
nonbonded energy of the chain [23]:

� =
l∑

i=1

ur
i . (9)

After simplifications, Eq. (8) can be written [6,24]

π (o → n) = min

[
1,eλ�� W [n,λ(n)]

W [o,λ(o)]

exp (S(Eo))
exp (S(En))

]
, (10)

where the relation S = kB ln � was used.
Provided that � and W converge during the iterative

WL procedure, S also converges to some value which is
the configuration entropy of the chain up to some additive
constant. Similar ideas for a lattice polymer model were
introduced in [6].

Special attention should be paid to the fact that S =
S(E,V,l), where E, V , and l are the energy, volume of the
simulation cell, and number of beads in the chain, respectively,
but S is not a function of λ. It should also be mentioned that
in the initial scheme [13], it was proposed to retrace the old
configuration of the existing chain to determine its Rosenbluth

factor. In our case, we have just one chain, which we fully
regrow to get a new configuration. In this case, we calculate
W for the initial conformation, W (o) = W , fully regrow the
chain, and calculate W (n) for this. One MC step in our case is
a bead-by-bead construction of the whole chain.

III. THE MODEL

To test the method described above, a freely rotating chain
was chosen because of its simplicity and ability to form
compact structures. Many analytical results also can be derived
for this model. The limiting case of the freely rotating chain
is a wormlike polymer, which has proven to be a very suitable
model for stiff polymers, such as DNA [25].

Other models, with an implied bending stiffness like the
freely jointed chain with a bending and torsion potential are
more complicated and require more input parameters. In the
freely rotating chain model, it is also possible to introduce a
torsional stiffness [see Eq. (17) and Fig. 1].

The input parameters for the freely rotating chain without
torsional stiffness are the number of beads, l, the bond length b,
and the angle between consecutive bonds, θ . A number
of structural features of the chain can also be calculated
analytically [26]. The mean square end-to-end distance is

〈
R2

ee(N,b,α)
〉 = Nb2

(
1 + α

1 − α
+ 2α

N (α − 1)2
(αN − 1)

)
,

(11)

and the mean square radius of gyration is

〈R2
g(N,b,α)〉

= Nb2

[
1

6

(
1 + α

1 − α

)
(N + 2)

(N + 1)
+ 2α3(αN − 1)

N (N + 1)2(α − 1)4

− Nα2

(N + 1)2(α − 1)3
− α

(N + 1)(α − 1)2

]
, (12)

where α = cos θ and N = l − 1 is the number of bonds.

FIG. 1. (Color online) Segment of the chain. The angle θ and the
bond length b are parameters of the chain. The torsional angle ϕ can
provide a torsion stiffness according to Eq. (17).
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TABLE I.
√〈Rg(N )2〉 dependence for the freely rotating model.

Data obtained for b = 3 and α = 0.875 (θ ≈ 29◦). The forth column
shows the importance of using the exact relation [Eq. (12)] instead of
the approximate equation.

√〈Rg(N )2〉
N Exact, Eq. (12) Averaged, Eq. (14) Eq. (12) with N 
 1

19 13.84 13.82 20.68
29 18.99 18.92 25.54
39 23.44 23.29 29.62
49 27.37 27.19 33.20
59 30.92 30.93 36.43
69 34.16 34.12 39.40

During the simulation, 〈R2
g〉1/2(i) for the ith energetic

interval was accumulated using

〈
R2

g(i)
〉 = 1

NMC

NMC∑
j=1

R2
g(j )(i), (13)

where NMC is the number of MC visits to the ith energetic
interval. After convergence of the simulation, the result of

√
〈R2

g〉 =
∑

i

√
〈R2

g(i)〉eS(Ei )

∑
i e

S(Ei )
(14)

was compared to the exact result [Eq. (12)]. Good agreement
between our results and the analytical value for a phantom
chain (bead size equals to 0) can be seen from the Table I.

To investigate compact structures, Lennard-Jones (LJ)
interactions were used for nonbonded interactions between
the beads of the chain:

U (r) = 4ε[(a/r)12 − (a/r)6], (15)

where ε is the potential well depth and a is the bead diameter.
Reduced dimensionless parameters were used with the size

of the bead, a, as the unit of length and ε as the unit of energy.
In “reduced units,” the LJ interactions become

U (r) = 4ε[(a/r)12 − (a/r)6]

= 4ε[(1/r∗)12 − (1/r∗)6] = εU ∗(r∗), (16)

where U ∗(r∗) = 4[(1/r∗)12 − (1/r∗)6] and r∗ = r/a.

The torsion energy between the planes formed by the bond
vectors (ri ,ri+1) and (ri+1,ri+2) can be written (see Fig. 2)

U ∗
tor = G{[(ri+1 × ri) · (ri+2 × ri+1)]/C + 1.0}, (17)

where [·] stands for the dot product and (×) for the vector
product. The constant C = [ri+1 × ri]2 = [ri+2 × ri+1]2, and
G is a dimensionless quantity defining the amplitude of the
torsion energy. The latter energy is shifted, so that the lowest
torsion energy is 0 when the chain has the largest end-to-end
distance Ree = Nb cos(θ/2). The full configuration energy in
“reduced units” thus becomes:

U ∗
tot = U ∗(r∗) + U ∗

tor. (18)

In the rest of this text, the asterisk sign will be omitted.

IV. RESULTS

A. Comparison with pure Wang-Landau

To show that S is not a function of λ, a compactness
parameter λ > 0.0 was chosen [27]. The result for the
configuration entropy S(E) is shown in Fig. 3(a). To show
that for short chains, both methods, Eqs. (5) and (10), sample
the same (on average) configurations, Rg(E) was accumulated
during the simulations and is shown in Fig. 3(b). The small
difference in results between the two methods can be estimated
by looking at the insets in the figures. For this test case, the
most stretched and the most compact configurations are shown
in Fig. 4.

B. The choice of λ

The choice of the compaction parameter λ is important
as it can be seen in Eq. (4), that the larger λ is, the faster
the probability will decay. It was mentioned above that
λ = 0.0 corresponds to the case in which we choose the
trial orientation randomly. If a large λ > 0.0 is chosen, one
would sample mostly compact configurations. It is also true
that the configuration entropy S(l,V ,E) does not depend on
λ, and, in principle, it is possible to change the compaction
parameter λ during the simulation. Fortunately, the choice of
this convergence parameter λ can be done in a smart way. It
is possible to find a value of λ, such that the probabilities for
all the k trial orientations are about the same magnitude. Since
the probabilities for all k trial orientations do not differ by

FIG. 2. (Color online) Illustration of Eq. (17). Left: the direction of the vector product of ri+1th and ri bond vectors is denoted as n1. The
direction of the corresponding vector product for ri+2 and ri+1 is denoted as n2. The normals n1 and n2 are perpendicular to the plane σ ,
which contains the centers of the beads. One can see that for such a configuration, Eq. (17) gives U ∗

tor = 0.0. Right: the graph corresponding to
Eq. (17) is shown.
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(a) (b)

FIG. 3. (Color online) (a) Configuration entropy as a function of energy, S(E), and (b) radius of gyration as a function of energy, Rg(E),
obtained by Eq. (5) (thin line) and by Eq. (10) (thick dashed line). In the inset of (a), the difference �S = S[Eq. (10)]−S[Eq. (5)] in the
common energy interval is shown. The parameters are l = 15, λ = 15.0, G = 0.2, α = 0.875 (θ ≈ 29◦), b = 3.0, and k = 20.

many orders in magnitude, it is possible to get both compact
and prolonged configurations with a carefully chosen value
of λ. The usual drawback of this kind of biasing is the
necessity to be able to estimate a suitable value before doing
the experiment. As a possible way for systematically selecting
λ, we can use the following procedure. First, estimating the
range [Rmin

g : Rmax
g ] and calculating the approximate energies

[Emin : Emax] for these Rg borders. The range of energies will
provide the borders for S(E), and λ can then be adjusted to
visit [Rmin

g : Rmax
g ] in an efficient way.

C. Proper sampling of the configuration space

The sampling of the configuration space can be projected to
the range of Rg values visited throughout the simulation. The
Rg range for the self-avoiding configurations was divided into
100 intervals. The number of visits to the different Rg intervals
for both schemes, Eq. (5) with one MC step as a tail rotation

FIG. 4. (Color online) Most compact and the most prolonged
configurations for a short chain: l = 15, θ ≈ 29◦, and b = 3.0.

and Eq. (10) with one MC step being a full chain regrowth,
are shown in Figs. 5(a) and 5(b), respectively. One can notice
that even after 100 · 5000 = 500 000 tail rotations following
Eq. (5), the most compact states are still unvisited, while
using Eq. (10), it is enough to perform 100 · 100 = 10 000
chain regrowths to sample all Rg intervals. The structures
approximately corresponding to the first 5 and last 5 of the
Rg intervals are shown in Fig. 6.

D. Computational aspects

With an inappropriate choice of parameters, the Markov
chain converges to its steady state very slowly, which means
that the simulation will not give correct results in finite time.
For example, too small particle displacements in the MC
simulation of a molecular liquid will result in very slow mixing
and equilibration, while too big steps will result in a large
number of overlaps significantly reducing the efficiency.

In this work, the important simulation parameters are the
number of intervals, Nb, in the desired energy range [E1 :
E2], the number of trial orientations for each bead, k, and the
compaction factor λ.

We found that for a chain length l ∈ [15 : 80] and torsion
stiffness G ∈ [0.00 : 0.40] the energy range of interest is E ∈
[−30.0 : 30.0] in “reduced units.” We also observed that it
is reasonable to choose the number of energy intervals of
order Nb ∈ [20 : 100]. A larger Nb influences the speed of
convergence significantly. The number of trial orientations is
k ∈ [5 : 50]. Generally, the longer the chain, the larger the
number of trial orientations should be used for good sampling.

The Wang-Landau algorithm demands additional parame-
ters to be specified. Two types of counters are used: one vector
for the visits of the energy intervals Ei and another for the
accumulation of entropy S(Ei). During a simulation, the first
counter is updated for every visit to a specific energy interval,
while for the entropy counter, we use S(Ei) = S(Ei) + �S,
where �S is initially set to �S = 1.0. After the histogram
representing the number of visits becomes flat, the first counter
is reset to 0, and �S is reduced to �S = �S/2. The simulation
is terminated when �S becomes less than some predefined
small number.
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FIG. 5. (a) Visits of the Rg intervals during an experiment with the scheme using Eq. (5), and (b) the scheme using Eq. (10). The chain
length is l = 60 with θ ≈ 29◦, b = 1.0, k = 10, and λ = 15.0.

There is no unambiguous connection between the configu-
rational energy and the configuration. For example, different
configurations can have energies falling into the same energy
interval. A similar situation is with the configurational bias:
factors like W (λ) and � in Eq. (10) are slightly different for the
same energy interval and do not converge for the ith energy
interval, while the energy density of states �(Ei) converges
for a given interval, according to its physical sense. This
divergence does not allow the sampling scheme to converge,
forcing us to use the fact that a quantity like 〈W (λ)/e−λ�〉 has
an average which converges for every energy interval, so it is
possible to use the average


(λ) = 〈W (λ)/e−λ�〉 (19)

FIG. 6. Example of a compact and a prolonged structure, gen-
erated using Eq. (10). The system is l = 60, θ ≈ 29◦, k = 10, and
λ = 15.0.

in Eq. (10) to make the resulting curve S(E) smoother. The
assumption we made, however, is shown to work by the results
shown in Fig. 7. In this case, Eq. (10) can be written

π (o → n) = min

[
1,

〈
W [n,λ(n)]

e−λ(n)�(n)

〉 〈
e−λ(o)�(o)

W [o,λ(o)]

〉
�(Eo)

�(En)

]
.

(20)

All the simulations were performed according to formula
[Eq. (20)]. After these preparations, the curves S(E) were used
for calculating thermodynamic averages.

We also made sure to control the correctness of the approach
using Eq. (19). A short chain was used (l = 15, G = 0.1, θ ≈
29◦, b = 3.0, and k = 10) and the results of Eq. (5) with pivot
moves, and Eqs. (10) and (20) with bead-to-bead regrowing
were compared. The configurational entropy S(E) and the
radius of gyration, Rg(E), for all these three methods are
plotted in Fig. 7. The results are in good agreement with each
other.

E. Semistiff chain phase transition

Using the model described above, we could observe a
phaselike transition for semistiff chains with a torsional
stiffness. We applied the sampling scheme [Eq. (20)] to larger
chains and investigated the conformational changes which
occur with a change in temperature.

The chain lengths l = 40, l = 60, and l = 80 with a fixed
bond length b = 3.0 and fixed bond angle θ ≈ 29◦, and a
torsion potential [Eq. (17)] with G = 0.10 were used. The
sampling scheme [Eq. (20)] was used during the simulation
and the compactness parameter λ was chosen to sample both
compact and prolonged conformations.

The graphs for

〈E(T )〉 =
∑

i Eie
S(Ei )−βEi∑

i e
S(Ei )−βEi

(21)

and the heat capacity

CV (T ) = 1

T 2
(〈E2(T )〉 − 〈E(T )〉2) (22)

for l = 40 are plotted in Fig. 8(a).
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FIG. 7. (Color online) (a) Entropy dependence of the energy, S(E), and (b) the energy dependence of the radius of gyration, Rg(E), for the
three methods: Eq. (5) (thin solid), Eq. (10) (thin crossed), and Eq. (20) (thick dashed). The system is l = 15, G = 0.1, θ ≈ 29◦, b = 3.0, and
k = 10. The insets show the difference between Eqs. (5) and (20).

It should be noticed from Fig. 8, that 〈E(T )〉 experiences a
rapid, but continuous change during the phaselike transition,
while CV (T ) has a special point as a function of temperature.
So this transition can be considered as a second-order-like
transition. This transition is accompanied by the collapsing of
the chain: 〈Rg(T )〉 decreases by a factor of 2, while CV (T ) →
∞ as seen in Fig. 8(b). The temperature point Tc ≈ 0.27 can
be considered as the phase transition temperature for the given
model.

The canonical ensemble (NVT) averaged internal energy
〈E(T )〉 for l = 40 was compared with the values calculated
from the microcanonical (NVE) ensemble by the formula

1

T
=

(
∂S

∂E

)
l,V

(23)

and is shown in Fig. 9(a). We can use Eq. (23) since we obtain
S(E) from the simulation, and we can calculate the derivative
numerically. The coincidence is reasonably good but Eq. (23)
gives some deviations. To estimate the errors due to system
size, 〈E(T )〉 was calculated for a short chain l = 15, where

the entropy S(E) can be calculated with very good precision
[see Fig. 9(b)]. One can observe some minor deviations with
l = 15 as well, but it is mostly due to small system size, while
full coincidence of the results can be expected for large l.
This leads us to believe that the reasons for the deviations
are the not smooth enough S(E) and the not full equivalence
of the (NV T ) and (NV E) ensembles [28], which has been
mentioned for the case of lattice polymers [7].

The heat capacity CV (T ) with varying chain length l =
40,60,80 is shown in Fig. 10. We can also observe some
additional peaks, and the nature of these should be investigated
in future work.

V. DISCUSSION

The proposed method enables us to efficiently sample struc-
tures from the uncoiled to the highly compact configurations
in comparison to common pivot and crankshaft moves. As a
result, it is possible to investigate conformational properties
of “difficult” systems, like semistiff polymers. The scheme
[Eq. (20)] with a properly chosen parameter λ ensures that

CV

E

CV
Rg

C
V

C
V

temperature T , reduced units temperature T, reduced units

FIG. 8. (a) Specific heat capacity CV (T ) as a function of temperature [Eq. (22)] (solid line) and the ensemble averaged configuration energy
〈E(T )〉 as a function of temperature (dashed line). (b) The specific heat capacity as a function of temperature, CV (T ) [Eq. (22)] (solid line),
and the radius of gyration as a function of temperature, 〈Rg(T )〉 (dashed line). A second-order-like transition from coil to toroid can be noticed
from the behavior of CV (T ) near Tc ≈ 0.2 accompanied by the collapsing of the coil, as can be seen from the 〈E(T )〉 graph. The system is
l = 40, θ ≈ 29◦, b = 3.0, k = 20, and G = 0.1.
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FIG. 9. (Color online) Canonical average 〈E(T )〉 with Eq. (21) (dashed line) and microcanonical with Eq. (23) (solid line) for the system:
(a) l = 40 and (b) l = 15. Other parameters are θ ≈ 29◦, b = 3.0, k = 40, and G = 0.1.

for each energy, all (or almost all) of the configurations which
correspond to that energy will be sampled. Without loss of
generality, it should be possible to apply the proposed method
to concentrated semistiff polymer solutions, since the principle
of how the configurations are generated for a polymer in a
concentrated solution remains the same, as when considering
a single polymer chain.

An alternative to achieve a proper sampling in the energy
space and in the configuration space is to build up the
two-dimensional density of states �(E,Rg) instead of the
one-dimensional �(E). But even in the case of �(E,Rg),
the problem of generating configurations will remain, and
some configurational biasing technique will be needed. The
random pivot move will not work because it is inefficient for
building up compact configurations. In any case, constructing
a two-dimensional density of states will require much more
computational resources.

The proposed method here has, however, to be used
with some care. The most obvious case for caution is the
convergence of the biasing function [Eq. (19)] in the energy

0.2 0.3 0.4 0.5
T, reduced units

0

200

400

600

800

1000

1200

1400

c v
C

V
(T

)

T , temperature in reduced units

FIG. 10. Constant volume heat capacity CV according to Eq. (22)
for different chain lengths: dot-dashed line for l = 40, dashed line
for l = 60, and solid line for l = 80. Other parameters are θ ≈ 29◦,
b = 3.0, k = 40, and G = 0.2.

intervals. For short chains, it works well, but the situation
can become worse when increasing the chain length. The
convergence might not be sufficient and some additional
smoothing is needed. Some artifacts could be produced during
the smoothing procedure. Future work includes developing
even more suitable biasing functions for compact structure
generation.

Another area for future investigation is the choice of the
biasing function. In the present work, we choose the biasing
function as a reduced nonbonded energy [Eq. (3)]. This is,
however, not the only possible choice. Some testing was
carried out for different biasing functions, e.g.,

wi(λ) =
k∑

j=1

exp[−λri(j )], (24)

where ri(j ) is the distance between the ith monomer in the
j th trial position and the center of mass of the already grown
part of the chain. Depending on the compaction parameter
λ, this biasing will also result in compact structures, mostly
toroidal-like. For the short chains which can not form more
than two loops, both biasing functions [Eqs. (2) and (24)] give
the same result, but for longer chains, Eq. (24) has problems
with the convergence of the biasing factors [Eq. (19)]. More
fundamental work is needed in order to understand how to
construct optimally behaving biasing functions.
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APPENDIX

1. End-to-end distance

The correlation between bond vectors ri and rj for a freely-
rotating chain is [31]

〈ri,rj 〉 = l2(cos θ )|i−j | = l2α|i−j | (A1)

which means
〈
R2

ee

〉 =
N∑

i=1

N∑
j=1

l2α|i−j | = Nl2 + 2l2
N∑

i=1

i−1∑
k=1

αk

= Nl2 + 2l2
N∑

i=1

α

(
αi−1 − 1

α − 1

)

= Nl2

(
1 + α

1 − α
+ 2α(αN − 1)

N (α − 1)2

)
, (A2)

where k = i − j and α = cos θ substitutions were used.

2. Mean-square radius of gyration

Using

〈
R2

g

〉 = 1

(N + 1)2

N∑
i=1

N∑
j=i+1

〈(Ri − Rj )2〉, (A3)

where Ri is a radius vector of the bead i. We can use the result
in Eq. (A2) to obtain [31]

〈
R2

g

〉 = l2

(N + 1)2

N∑
i=1

i∑
j=1

|j − i|
(

1 + α

1 − α
+ 2α(α|j−i| − 1)

|j − i|(α − 1)2

)

= l2

(N + 1)2

N∑
i=1

i∑
k=1

k
1 + α

1 − α
+ 2α(αk − 1)

(α − 1)2

= l2

(N + 1)2

N∑
i=1

[
i(i + 1)

2

1 + α

1 − α
+ 2α

(α − 1)2
α

αi−1

α − 1

− i
2α

(α − 1)2

]

= l2N

[
(1 + α)

6(1 − α)

N + 2

N + 1
+ 2α3(αN − 1)

N (N + 1)2(α − 1)4

− 2α2

(N + 1)2(α − 1)3
− α

(N + 1)(α − 1)2

]
. (A4)

In the limit N → ∞, Eq. (A4) results in the well-known
relation:

〈
R2

g

〉 = l2N

6

(1 + α)

(1 − α)
. (A5)
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