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This paper deals with the computation of periodic orbits of dynamical systems up to any arbitrary precision.
These very high requirements are useful, for example, in the studies of complex pole location in many physical
systems. The algorithm is based on an optimized shooting method combined with a numerical ordinary differential
equation (ODE) solver, TIDES, that uses a Taylor-series method. Nowadays, this methodology is the only one
capable of reaching precision up to thousands of digits for ODEs. The method is shown to be quadratically
convergent. Some numerical tests for the paradigmatic Lorenz model and the Hénon-Heiles Hamiltonian are
presented, giving periodic orbits up to 1000 digits.
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I. INTRODUCTION

An important topic in physics is the study of dynamical
systems, where the location and the study of the periodic orbits
(POs) of the systems give relevant information. Poincaré [1]
pointed out that the skeleton of a dynamical system is formed
by the families of POs depending on the parameters of the
system [2,3]. The nature of such POs, in particular the unstable
periodic orbits (UPOs), gives us a good knowledge of the
system and provides critical information in chaotic regions.
The position and stability of the POs [4,5] determine the long
behavior of the system. Thus, the POs are the main kernel
of several important physical applications, as in the “scar”
theory in quantum mechanics [6], in the analysis and control
of chaotic dynamical systems [7,8], in the study of open Hamil-
tonian systems in several fields [9], and so on. The location
of POs has been a well-studied problem by physicists [10–13]
and mathematicians using several numerical algorithms, but
the procedures to compute them numerically are not exact, in
general.

The goal of this paper is to obtain a fast and accurate
algorithm for computing periodic orbits up to any arbitrary
precision for low-dimensional problems. This study has
been motivated by the problem of complex pole location
in physics [14–16] and, in particular, by the work of D.
Viswanath [17], where very high precision in POs has become
essential. Viswanath developed a method [18] to compute
high-precision POs and applied it to the Hill’s problem [19]
that describes the motion of the Moon around the Earth.
Later, regarding his method [20] he computed very high
precision (500 digits) POs in the Lorenz problem and used
them to study the fractal structure of the Lorenz attractor
and the pole location. Nowadays, his algorithm is the unique
algorithm in literature capable of computing high-precision
POs. To reach this goal he has used very clever algorithms
in order to avoid numerical ordinary differential equation
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(ODE) integration methods because a standard method cannot
integrate up to such a high precision level, but it is quite
difficult to use in a general setting. So, in this paper we are
going to develop a new method to compute POs with arbitrary
precision, which combines three important themes: an opti-
mized shooting method with the Newton-Raphson method, the
Taylor-series method (implemented by means of the software
TIDES [21]), and the singular value decomposition (SVD)
[22,23].

The equations of the proposed method differ when we study
a dissipative case or a conservative one, like a Hamiltonian
system. To check the method with both models, we choose
two classical and well-known problems: the Lorenz model and
the Hénon-Heiles problem. The Lorenz system of differential
equations arises from the work of E. N. Lorenz [24], who
was studying thermal variations in an air cell underneath a
thunderhead. He noticed that initial conditions with small
differences eventually produced vastly different solutions. The
Lorenz system has become one of the most widely studied
systems of ODEs because of its wide range of behaviors.
The classical Hénon-Heiles Hamiltonian [25] was posed to
the study of galactic dynamics to describe the motion of stars
around a galactic center. It was one of the first models of
Hamiltonian chaos and this model has several applications in
theoretical chemistry.

The organization of the paper is as follows. In Sec. II,
we show our corrector algorithm. We present the equations
for both the dissipative and the Hamiltonian cases. In
Sec. III, we explain the necessity of the use of an accurate
numerical ODE integrator like TIDES (Taylor integrator for
differential equations) [21]. This freeware library computes,
simultaneously, both the solution and the partial derivatives in
any arbitrary precision. Another important point that we deal
with in Sec. IV is to solve the above linear systems where the
matrix of the system is not necessarily a square matrix. So,
we use the SVD to find the least-norm solution that will be
the solution if the matrix of the system is a nonsingular square
matrix. In Sec. V we show the results of some numerical tests
that prove the good behavior of the method for both cases,
the dissipative case and the Hamiltonian case, respectively.
Finally, in Sec. VI we present the conclusions of this
work.
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II. THE CORRECTOR ALGORITHM

Let

x = x(t ; y), t ∈ R, x, y ∈ Rn, (1)

be the solution of the autonomous differential system

ẋ = f (x); x(0) = y, x ∈ Rn, (2)

where y represents the initial conditions.
A periodic orbit of the system (2) is characterized by a

vector y of initial conditions and a period T such that the
periodicity condition

x(T ; y) − y = 0 (3)

is fulfilled.
To find the roots of Eq. (3), that is, to find the initial

conditions of the periodic orbit, we will use a method [26,27]
based on the Newton-Raphson method. This is an iterative
scheme that begins with a set, ( y0,T0), of approximate
initial conditions [x(T0; y0) − y0 ≈ 0]. These approximated
initial conditions may be obtained, for instance, by use
of the grid-search method [28,29] or the Schmelcher and
Diakonos method [10,30], which are often used in the physics
community.

Let us suppose that at step i we have a set of corrected initial
conditions ( yi ,Ti). Now, we improve these initial conditions
by adding the corrections (� yi ,�Ti) in such a way that

||x(Ti + �Ti ; yi + � yi) − ( yi + � yi)|| < ||x(Ti ; yi) − yi ||.
(4)

Approximate corrections (� yi ,�Ti) are obtained by
expanding

x(Ti + �Ti ; yi + � yi) − ( yi + � yi) = 0

in a multivariable Taylor series up to the first order

x(Ti ; yi) − yi +
(

∂x
∂ y

− I

)
� yi + ∂x

∂t
�Ti = 0, (5)

where I is the identity matrix of order n and the partial
derivatives of the solution with respect to the initial conditions
and with respect to the time must be evaluated at ( yi ,Ti).

The n × n matrix ∂x/∂ y is the solution of the variational
equations. This matrix evaluated at ( yi ,Ti) is an approximation
of the monodromy matrix M of the PO. The column vector
∂x/∂t represents the derivative of the solution with respect
to the time, i.e., ẋ = f (x). This vector, evaluated at ( yi ,Ti),
corresponds to the expression f ( yTi

), where yTi
= x(Ti, yi).

Then we write

(M − I )� yi + f ( yTi
)�Ti = −( yTi

− yi), (6)

or, in matrix formulation,

( (M − I ) f ( yTi
) )

(
� yi

�Ti

)
= ( yi − yTi

), (7)

that represents a linear system with n equations and n + 1
unknowns.

To solve the linear system (7) we have several options. We
may reduce the number of unknowns by looking for periodic
orbits with the same period (�Ti = 0), but the existence of
these orbits is not warranted. Another possibility is to take into

account that a tangent displacement is a translation along the
initial solution. Such displacement is avoided by constraining
the variation of the initial conditions to an n-dimensional plane
that is not tangent to the solution, in particular, an orthogonal
displacement,

( f ( yi))
T � yi = 0, (8)

is considered.
Adding the condition (8) to the system (7), we have the

(n + 1) × (n + 1) linear system⎛
⎝ M − I f ( yTi

)

( f ( yi))T 0

⎞
⎠ (

� yi

�Ti

)
=

(
yi − yTi

0

)
. (9)

When the differential system (2) admits one or more
integrals, a new constrain or vector of constrains, respectively,
G(t ; x) = g, must be added to the periodicity condition (3).
To maintain the new constrain we impose the condition

G(Ti + �Ti ; yi + � yi) − g

≈ G(Ti ; yi) − g + ∂G
∂x

∣∣
(Ti ; yi )

� yi + ∂G
∂t

∣∣
(Ti ; yi )

�Ti = 0.

In an autonomous Hamiltonian problem we have the integral
of the energy H(x) = h. Then, taking into account that the
Hamiltonian does not depend on the time, the constraint
condition has the form

(∇xH)|(Ti ; yi ) � yi = h − hTi
. (10)

So, in a Hamiltonian system, (9) must be completed with the
condition (10), and we have⎛

⎜⎝
M − I f ( yTi

)

( f ( yi))T 0

(∇xH)|(Ti ; yi ) 0

⎞
⎟⎠

(
� yi

�Ti

)
=

⎛
⎜⎝

yi − yTi

0

h − hTi

⎞
⎟⎠ , (11)

that is, a linear system with n + 2 equations and n + 1
unknowns.

III. SOLVING ODE’S AND VARIATIONAL EQUATIONS
WITH ARBITRARY PRECISION ARITHMETIC

In our algorithm there are two key points to compute the
correction: computing the left matrix of the linear system
(7), (9) or (11) and then solving them. To compute the
matrix we need to integrate the ODE (2) and to compute
the partial derivatives of its solution (1) with respect to the
initial conditions y. To do that, we use the software TIDES,
which computes simultaneously both the solution and the
partial derivatives of the solution of (2) in double or multiple
precision (using TIDES together with the multiple precision
libraries MPFR and GMP), by using the Taylor-series method
(TSM) [21,31].

Let us suppose that the Taylor-series expansion of (1) is
given by the expression

x(t) =
∑

i

x[i] hi, h = t − t0, x[i] = 1

i!

dx(i)(t0)

dti
. (12)

Then, substituting x by its power series expan-
sion in (1), expanding the function f (

∑
i x[i] hi) =∑

i f [i](x[0], . . . ,x[i]) hi , and equating the coefficients of the
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series, we eventually have the main relation of the TSM:

x[i+1] = f [i](x[0], . . . ,x[i])

(i + 1)
, (13)

which gives, in an iterative way, beginning from the initial
condition x[0] = y, a method of finding the coefficients x[i+1]

of the Taylor expansion of the solution of the system. This
procedure is based on automatic differentiation techniques
[32]. Finally, we use this Taylor series to compute the
numerical value of the solution if the integration point is
inside the convergence radius of the series or we recompute
the expansion until this condition is fulfilled.

Usually, the matrix of partial derivatives � = ∂x/∂ y of the
solution with respect to the initial conditions is computed by
using the variational equations �̇ = (∂ f /∂x) · �, which differ
for each problem and are sometimes very difficult to formulate.
In TIDES, instead of formulating the variational equations, we
use the relations (12) to create iterative formulas (see Ref. [33])
and to compute simultaneously the solution and the partial
derivatives in an automatic way. This simplifies the process
and permits us to extend it to any differential equation and to
work with any precision without difficulties.

IV. LINEAR SYSTEMS AND SINGULAR VALUE
DECOMPOSITION

Finally, to find the correction we need to solve a linear
system Ax = b, where the matrix A is not necessarily a square
matrix. Instead, to solve the system, we will use the least-norm
method. This method tries to find a vector x that minimizes
the residual d = ||A x − b||. When A is a nonsingular square
matrix, the minimum of the residual is zero and the least-norm
solution coincides with the solution of the linear system A x =
b. Then, we will try to obtain the least-norm solution to ensure
a correction when we do not have an exact solution. To find
the least-norm solution we will use the SVD [22,23].

Apart from the SVD method we may use the QR decom-
position. Although the QR method has lower computational
cost [2n2m − 2n3/3 + O(n2) for an m × n matrix] than the
SVD method [4n2m − 4n3/3 + O(n2)] we have chosen SVD
because it is specially well adapted for rank-deficient problems
and we want to develop a general algorithm useful also in these
situations. In fact, a periodic orbit presents a rank-deficient
matrix when its family of POs crosses a bifurcation point
or when the system has some extra unknown integrals. In
any case, the most expensive part of the algorithm is the
numerical solution of the ODE system with high precision,
and so the global complexity is similar, using both SVD and
QR algorithms.

A singular value decomposition of a m × n matrix A is a
(nonunique) factorization

A = U � V T , (14)

where U is a m × m orthogonal matrix, V is a n × n orthogonal
matrix, and � is a m × n matrix whose elements are all
zero except the elements, σii = si � 0, i � min(n,m), of the
diagonal. The numbers si are the singular values of the matrix
A, and the number r � min(n,m) of singular values different
from zero is the rank of the matrix A.
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FIG. 1. (Color online) The periodic orbits LR and LLRLR of the
Lorenz model.

By multiplying the system A x − b = U � V T x − b, by
UT , it is transformed into the system � x∗ − b∗, where x∗ =
V T x and b∗ = UT b. Since orthogonal matrices preserve norm
d = ||A x − b|| = ||� x∗ − b∗||. As � is a diagonal matrix,
we may find easily the vector x∗ that minimize d. This solution
is given by taking x∗

i = b∗
i /si if si �= 0, and x∗

i any value in
other case. Then x = V x∗ is the least-norm solution of the
linear system with a residual d = (

∑
(b∗

i )2)1/2, where the sum
is over all index i corresponding with a singular value equal to
zero. If there is no singular value equal to zero, then least-norm
solution is the exact solution of the linear system.

V. TESTS

In order to show the performance of this method we present
in this section some tests on two classical models: the Lorenz
model, as an example of chaotic dissipative systems, and the
Hénon-Heiles model, as an example of Hamiltonian systems.
All the tests have been done on a personal computer PC
Intel Core i7 CPU 860, 2.80 GHz under a 2.6.32-29-generic
SMP x86 64 GNU/Linux system. The files with the initial
conditions, with 1000 precision digits, of the four examples in
this paper, and the programs to check that the initial conditions
correspond to a periodic orbit of such precision, are presented
online [http://gme.unizar.es/pages/fourpoLHH.html].

A. The Lorenz model

The Lorenz model is given by [24]

ẋ = σ (y − x), ẏ = −x z + r x − y, ż = x y − b z, (15)

where x = (x,y,z) ∈ R3 and b,σ,r ∈ R are the parameters. In
this case we will take the classical Saltzman’s values of the
parameters b = 8/3, σ = 10, and r = 28.

It is well known that the chaotic attractor of the Lorenz
model presents the shape of the wings of a butterfly. This
system has three equilibrium points, one at the origin and two
symmetric ones on the center of the wings, one of them P R

with x > 0 and another one P L with x < 0. To classify the
orbits foliated to the chaotic attractor, we may use symbolic
notation [20]. Every time a trajectory passes through the left
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FIG. 2. (Color online) Computational relative error vs. CPU time
and number of iterations.

side of the butterfly the letter L is assigned to the trajectory.
If the trajectory passes through the right side of the butterfly
the letter R is assigned. Then, a infinite chain of symbols
characterizes each trajectory. Periodic orbits repeat indefinitely
the finite sequence of symbols of its period, and then they can
be characterized by a finite number of symbols.

To check the method proposed in this paper we have taken
two sets of approximate initial conditions (with just five correct
digits) of two different periodic orbits with symbolic sequences
LR and LLRLR (see Fig. 1). The LR orbit has the initial values
for our algorithm:

(x,y,z) = (−13.764,−19.579,27),

and a period T = 1.5586. The LLRLR orbit has the initial
values for our algorithm:

(x,y,z) = (−12.699,−17.197,27),

and a period T = 3.8695.

On the top of Fig. 2, we show the CPU time in seconds
versus the number of digits for obtaining periodic orbits for
the Lorenz model up to 1000 digits of precision. We observe
that the behavior is quite similar for both periodic orbits,
LR and LLRLR, of the Lorenz model and the computational
complexity of our numerical algorithm is O(d4) being d =
− log10(TOL) the requested number of digits.

30 digits
16 digits

FIG. 3. (Color online) (Top) Number of exact digits depending on
the number of time periods in the numerical integration of an unstable
periodic orbit for the Lorenz model using 1000 digits. (Bottom) Forty
time periods using multiple precision and standard double precision.

It is well known that the Newton method has quadratic
convergence, so our algorithm is quadratically convergent, too,
as we see on the bottom picture of the Fig. 2. We obtain our goal
of 1000 digits of precision in just 10 iterations and, as shown
on the two periodic orbits, the number of digits of precision is
doubled at each iteration.

Once we have our POs with any precision, we are able
to obtain high-precision estimates of the orbit. For example,
the Lyapunov exponent λ of a periodic orbit is defined
as log m1/T , where m1 is the magnitude of its leading
characteristic multiplier and T is its period. For instance, we
show the value of λ up to 40 digits for the orbit LR,

λ � 0.9946500250305010060026396388385871828508,

that is, we correct the values given in Ref. [20]. So, with this
value, we may estimate the number of periods that we may
follow the periodic orbit with some precision. This total time is
of the order of eλTtotal � 1/u, with u being the round-off unit of
the computations. If we take as example the LR orbit with 1000
digits (u ≈ 3.8055 × 10−1000), we obtain Ttotal = − log u/λ ≈
2313.74, that is, we can follow 1484 orbits approximately.

The picture on the top of Fig. 3 shows that with real
simulations we can go up to 1478 orbits, that is, quite close to
the theoretical estimate. In the bottom picture we observe the
evolution of 40 periods using double precision (in thin blue
line) and 30 digits of precision (in thick red line). We observe
that to maintain the precision we need initial conditions with
high precision, as the ones given by our algorithm.

We remark that our algorithm computes POs with very high
precision in a quite reasonable time, less than 3 h, for orbits
with 1000 precision digits. This means that nowadays it is able
to make high-precision studies when needed.
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FIG. 4. (Color online) OFLI2 and PSS sections and two periodic
orbits of the Hénon-Heiles problem for H = E = 1/8.

B. Hamiltonian case: Hénon-Heiles

The Hénon-Heiles system is given by the Hamiltonian:

H = 1
2 (X2 + Y 2) + 1

2 (x2 + y2) + x2y − 1
3y3, (16)

where (x,y) represents the position vector and (X,Y ) repre-
sents the velocity.

The Poincaré surfaces of section (PSS) and more recent
techniques like the chaos indicator OFLI2 [34] give a good

way to distinguish regular from chaotic orbits in Hamiltonian
systems with two degrees of freedom. On the top of the Fig. 4
we can see the OFLI2 section x = 0 of the Hénon-Heiles
problem at the energy level H = 1/8 [red (dark) color is
associated with chaotic motion, whereas blue (light gray) color
with regular region]. The plot is very similar to the PSS of the
Hénon-Heiles problem at the same energy level, but in this
figure we see more details about the islands of periodic orbits
inside the chaotic sea. In this figure, we have taken the two
periodic orbits pointed out with a black circle. The left point
corresponds to an unstable periodic orbit with initial conditions
(with just five correct digits):

(x,y,X,Y ) = (0,−0.0170,0.4997,0),

of period T = 32.040. The right point corresponds to a stable
periodic orbit with initial conditions:

(x,y,X,Y ) = (0,0.5729,0.2170,0),

with period T = 32.377. At the bottom picture of Fig. 4, we
show our orbits, the stable one in the dashed blue line and the
unstable one in a continuous red line (the dots are the values
of the initial conditions).

If we want to follow the unstable periodic orbit for a long
time we may use high-precision initial conditions to propagate
them without falling into the chaotic region. On the top of
Fig. 5, we show the CPU time in seconds versus the number of
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FIG. 5. (Color online) Computational relative error vs. CPU time
and number of iterations.
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digits for obtaining periodic orbits for the Hénon-Heiles model
up to 1000 digits of precision. We observe that the behavior is
quite similar for the two orbits, the stable and the unstable,
of the Hénon-Heiles Hamiltonian and the computational
complexity behaves like O(d4) as in the Lorenz model. As
before, the algorithm presents a quadratic convergence as
shown in Fig. 5. We remark that in this test we have to use the
extended linear system (11) to be able to obtain the periodic
orbits for the Hamiltonian case.

VI. CONCLUSIONS

In this paper we extend classical algorithms to compute
periodic orbits in dynamical systems in order to be able to
obtain high-precision periodic orbits. This method may be used
in the studies of dynamical systems where high precision is de-
manded. The method combines the use of an optimized shoot-

ing method, the singular value decomposition, and recent tech-
niques of a high-precision solution of ODEs. Moreover, it can
be applied to any dynamical system, dissipative or Hamilto-
nian, just by using the correct system of equations. The method
has proved its applicability with two paradigmatic examples,
the Lorenz model and the Hénon-Heiles Hamiltonian, obtain-
ing orbits with 1000 precision digits. Besides, we show that
the computer time is reasonable since the complexity is poly-
nomial in the number of digits. Therefore, with this technique
it is possible to give, in an easy way, periodic orbits with an
arbitrary number of precision digits for any dynamical system.

ACKNOWLEDGMENTS

The authors acknowledge the support from the Spanish
Research project MTM2009-10767. The authors thank the
referees for their remarks.

[1] H. Poincaré, Les Méthodes nouvelles de la Mécanique Céleste
(Dover, New York, 1957).

[2] R. Barrio, F. Blesa, and S. Serrano, New J. Phys. 11, 053004
(2009).

[3] K. Papadakis, C. Goudas, and G. Katsiaris, Astrophys. Space
Sci. 295, 375 (2005).
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