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When a small radiating or scattering object is placed near a multilayer array of plasmonic nanospheres, on
the other side the optical near field is enhanced due to the excitation of resonant modes in the layers. For some
particular frequencies, the field behind the array is concentrated in a subwavelength region, creating a super
resolution effect. Resonating layers are able to reproduce (transport) part of the evanescent spectrum to the other
side of these layers which otherwise would decay rapidly. We explore the mechanism of evanescent field transport
and subwavelength field concentration on the other side of the layered material and show the relationship between
near-field enhancement, field concentration, and modal dispersion characteristics. A detailed investigation of these
phenomena is carried out by using an effective numerical model based on the array scanning method (ASM)
combined with the Ewald method to accelerate the convergence of the dyadic Green function calculation. The
subwavelength-sized spheres forming the arrays are represented as single dipole radiators, and the model of their
interactions takes into account all the radiative and reactive field components.
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I. INTRODUCTION

Recently a new approach to the realization of super
resolution imaging devices was suggested [1–4]. It was based
on the possibility to enhance evanescent fields and form
subwavelength images, more properly, subwavelength field
concentrations, with the use of arrays of small resonant
particles such as plasmonic nanospheres. This “superlensing”
approach has some advantages over other approaches which
traditionally use a bulk double-negative metamaterial slab [5]
or single-negative one (in devices for only one polarization) as
proposed in previous studies by using one [5,6] or multiple [7]
thin layers of silver. In 2004, subwavelength imaging was
experimentally demonstrated in double arrays of resonant
electric dipoles [1] and, in 2005, in a “superlens” formed by
two parallel planar arrays of coplanar split ring resonators
(SRRs) [8]. In the papers in Refs. [9–11] one can find further
theoretical and experimental studies of such subwavelength
imaging devices based on the excitation of magneto-inductive
waves at radio frequencies. There, the authors theoretically and
experimentally showed that they could achieve subwavelength
imaging using two layers of split-ring resonators at frequencies
close to the boundary of a stopband and a passband of modes
traveling along the layers.

Different approaches to form subwavelength field concen-
tration using thin layers were explored in Refs. [12–16]. These
papers referred to the subwavelength focusing and not to the
subwavelength imaging in the sense that the grid was able
to generate a field concentrated in a specified subwavelength
region. This subwavelength focusing is obtained by transform-
ing an incident plane wave into a complex spatial spectrum
containing evanescent components such that the phase contri-
butions from the planar grid elements sum constructively only
in a subwavelength region. In Ref. [14] the subwavelength
imaging was mentioned, however, its physical mechanism is

different from that considered in the present paper, as it did
not use resonant response in the grids and does not allow
resonant amplification of evanescent field components. Using
the approaches of Refs. [12–16], an imaging system can be
realized only using mechanical scanning.

The principle of field concentration used in the device
investigated in this paper, as well as in Refs. [1–4], is based on
resonant excitation of surface modes that are characterized by
large tangential wave numbers. As it was shown in Ref. [17],
chains of silver nanospheres may exhibit dispersion curves
with rather flat regions, so that oscillations with a wide range
of wave numbers can be resonantly excited by external evanes-
cent fields. This feature of the arrays of small resonant particles
can be used to design devices for subwavelength imaging
or subwavelength field concentration in the optical region.
In Ref. [4], such a possibility was demonstrated with the
use of two parallel two-dimensional periodic arrays of metal
nanospheres. The superlensing properties of the structure were
demonstrated by calculating the field distribution in the image
plane on the other side of the array. Note that the array had
a finite extent in the cited paper and only two layers were
considered [4].

In this paper we consider single-layer, double-layer, and
multi-layer periodic arrays of electrically small metal spheres,
with an infinite extent along two directions, excited by a
single electric dipole source or two electric dipole sources on
one side. This layered “artificial material” is able to provide
field enhancement and subwavelength focusing effects. Both
phenomena are investigated in detail and related to the modal
dispersion characteristics. There are several advantages of
investigating an infinite structure instead of the one with a
finite extent, as in Ref. [4]. Some basic principles of such
devices were not understood, and we think that it is important
to simplify the problem and analyze the phenomena without
the contribution of the reflected waves at the array truncations.
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FIG. 1. (Color online) Geometry of the problem: (a) one layer of nanosperes; (b) N layers of nanospheres (only the x-z cross-section cut is
shown).

Furthermore, as we will show in this paper, the analysis
of an infinite structure (excited by a single source) can be
also numerically advantageous compared to that of a finite
structure. The approach suggested in this paper uses the array
scanning method (ASM) [18–24] that expresses the field
produced by a single source in a periodic environment via
a spectral integral over the Brillouin zone.

In Refs. [25,26] a full-wave approach to calculate plane
waves scattering by layers of two-dimensional (2D) periodic
arrays of metal spheres possibly alternating by dielectric slabs
has been developed. The field scattered by each sphere is
represented as a sum of spherical waves. In this paper, we
use the single dipole approximation (SDA), which takes into
account only the field of the electric dipole spherical wave for
each sphere. This approach is reasonable in our case as the
spheres are much smaller than the wavelength and the electric
polarizability is predominant near the plasmonic resonance.
Accordingly, each sphere is modeled as a radiating dipole
with a given polarizability. Since the problem is periodic in
two directions, the calculation of the required periodic dyadic
Green function (GF) is accelerated with the Ewald method
[27–29], whose expressions for dyads are shown here for the
first time. This approach is very efficient for the case of dipole
excitation and for that of mode analysis. Besides providing an
effective model suitable to analyze this kind of problem, in this
paper we investigate how the field enhancement is related to
the resonant modes excited in the layered array, and how these
two are related to subwavelength focusing. In particular, we
analyze how the field is transported by these resonant modes
across the layers and how this creates field enhancement, which
can be seen equivalently as an amplification of the evanescent
field components. Since evanescent fields are transported
away from the source, for certain frequencies they can add
coherently to form a subwavelength region of strong field
concentration, creating the subwavelength focusing effect.

II. MODEL OF DIPOLE EXCITATION FOR INFINITE
ARRAY OF SPHERES

The structure under investigation is shown in Fig. 1. It
consists of an infinite array (of one or more layers) of metallic

nanospheres, which is periodic along the x and y directions.
The radius of spheres rP is considerably smaller than the
wavelength λ in the host material (free space in this paper).
The periods of the array are a and b with respect to x and
y, respectively. The transverse positions of the spheres are
ρmn = max̂ + nbŷ, m,n = 0, ± 1, ± 2,..., and thus the m =
n = 0 sphere is located at (x,y) = (0,0). Here bold symbols
denote vectors and unit vectors are denoted by a hat (̂ ) . In this
paper we focus on multilayer configurations as in Fig. 1(b),
with layers at longitudinal positions z1, z2, . . . ,zN , where N is
the number of layers. The array is excited by a dipole source
with the dipole moment pS placed at rS = xS x̂ + yS ŷ + zS ẑ.

The field excited by a single electric dipole in the proximity
of an infinite periodic structure can be efficiently calculated
using the array scanning method (ASM) [18–24]. Accordingly,
the solution of the problem in Fig. 1 is retrieved from the
solutions of the associated auxiliary problem in Fig. 2, where
the periodic array of spheres is excited by a periodic system
of linearly phased dipoles

pS,mn = pSe
−jkt ·ρmn , (1)

placed at positions rS,mn = rS + ρmn, m,n = 0, ± 1, ± 2,....
Here kt = kx x̂ + ky ŷ is the transverse excitation wave vector.

FIG. 2. (Color online) ASM formulation: excitation by the
periodic system of linearly phased dipoles.
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According to the ASM method, the field E(r, rS) at an
arbitrary point r produced by a single dipole source at rS is
given by [23,24]

E(r, rS) = ab

(2π )2

∫ π/a

−π/a

∫ π/b

−π/b

E∞(r,rS,kt ) dkxdky, (2)

where E∞(r,rS,kt ) is the field at r, in the presence of the
periodic array of spheres, produced by the periodic array of
dipoles at rS,mn = rS + ρmn, with the transverse wave vector
kt , integrated over the Brillouin zone. The next section is
devoted to the determination of E∞(r,rS,kt ) and to its effective
evaluation.

III. PERIODIC EXCITATION OF THE INFINITE ARRAY
OF NANOSPHERES

As the spheres are much smaller than the wavelength, we
can treat them as point dipoles. This approximation has been
already used in several other papers (e.g., in Refs. [1–4,17,30–
37]). The electric and magnetic fields at position r, produced
by an elementary electric source at position rS with the dipole
moment pS , are expressed in terms of the GF as

E(r) = G(r,rS) · pS, (3)

H(r) = jω∇G(r,rS) × pS. (4)

Here

G(r,rS) = 1

ε0εh

[
k2G(r,rS)I + ∂2G

∂r2
(r,rS)

]
, (5)

is the symmetric electric-field dyadic GF that provides the
electric field at position r produced by a dipole at rS ,

G(r,r′) = e−jk|r−r′ |

4π |r − r′| , (6)

is the scalar GF [the time harmonic convention exp(jωt) is
assumed and suppressed], I is the identity dyadic, and the
symbol ∂2G/∂r2 is defined as

∂2G

∂r2
(r,rS) · pS ≡ ∇(∇G(r,rS) · pS). (7)

Furthermore, εh is the relative permittivity of the material
hosting the spheres and k = ω

√
εh/c is the wave number in

the host medium.

A. One layer of spheres

Suppose that a layer of spheres is located at z = 0. The
dipole moment p∞ of the sphere at the origin, (m,n) = (0,0),
is given by the expression

p∞ = αE∞
loc(0,rS,kt ), (8)

where E∞
loc(0,rS,kt ) is the local electric field at the origin

produced by the array of sources pS,mn plus that of all the metal
spherical nanoscatterers except for the one at (m,n) = (0,0),
and α is the polarizability of a metal sphere. The inverse of the
polarizability α is given by [1–4,17,36,37]

1

α
= εm + 2εh

4πε0εhr3
p(εm − εh)

+ j
k3

6πε0εh

, (9)

where rp is the radius of the sphere and

εm = ε∞ − ω2
p

ω(ω − jωD)
, (10)

is the relative permittivity of metal represented here using the
Drude model with the plasma radian frequency ωp and the
damping radian frequency ωD , the values of which depend
upon the adopted metal. The dimensionless parameter ε∞ in
Eq. (10) is chosen to better fit the real part of the material
permittivity in the frequency range of interest.

The local field E∞
loc(0,rS,kt ) is thus given by the sum

E∞
loc(0,rS,kt ) = G∞(0,rS,kt ) · pS + �

G∞(0,0,kt ) · p∞, (11)

where G∞(r,r′,kt ) is the electric-field dyadic GF for the
periodically phased array of dipoles

G∞(r,r′,kt ) =
∞∑

m,n=−∞
G(r,r′ + ρmn)e−jkt ·ρmn

= 1

ε0εh

[
k2G∞(r,r′,kt )I + ∂2G∞

∂r2
(r,r′,kt )

]
,

(12)

and G∞(r,r′,kt ) is the corresponding 2D periodic scalar GF

G∞(r,r′,kt ) =
∞∑

m,n=−∞
e−jkt ·ρmnG(r,r′ + ρmn). (13)

The term
�

G∞(r,r′,kt ) in Eq. (11) is the same dyadic GF as
in Eq. (12) without the (m,n) = (0,0) term, and thus it is not
singular at r = r′. Therefore, the Mexican hat (˘) denotes here
the regularized GF defined as

�

G∞(r,r′,kt ) ≡ G∞(r,r′,kt ) −
G(r,r′). After the substitution of Eq. (11) into Eq. (8) one
has [4]

p∞ = α

[
G∞(0,rS,kt ) · ps + �

G∞(0,0,kt ) · p∞
]
, (14)

which leads to the linear system

A(kt ) · p∞ = G∞(0,rS,kt ) · pS, (15)

thus determining p∞, where

A(kt ) ≡ 1

α
I − �

G∞(0,0,kt ). (16)

Note that the symmetric dyadic A(kt ) requires the compu-
tation of three diagonal terms and two equal elements out of
its diagonal (Axy = Ayx), when represented in the Cartesian
system, with a total of four independent values.

The periodic GF in Eq. (12) can be evaluated very efficiently
by using the Ewald method, as shown in the Appendix. Besides
its fast convergence properties, the Ewald method also has the
great advantage that it converges very rapidly for complex
transverse wave vectors kt , whereas the series in Eq. (12)
would diverge in this case. This feature is useful when looking
for complex modes that propagate along the array, which will
be the subject of future studies, or when, as done in this paper,
a deformation of the integration path is applied in Eq. (2).

Once the solution p∞ of Eq. (15) for the dipole moment of
each nanosphere is determined, the electric and magnetic fields
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at an arbitrary position r, produced by the array of exciting
dipoles at rS,mn, phased with the transverse wave vector kt ,
can be evaluated by

E∞(r,rS,kt ) = G∞(r,0,kt ) · p∞ + G∞(r,rS,kt ) · pS, (17)

H∞(r,rS,kt )=jω[∇G∞(r,0,kt )×p∞+∇G∞(r,rS,kt )×pS].

(18)

The field produced by a single dipole at rS is obtained
by inserting E∞(r,rS,kt ) or H∞(r,rS,kt ) into Eq. (2). It is
remarkable that for every wave vector kt in Eq.(2), only the
3 × 3 linear system in Eq. (15) needs to be solved to evaluate
E∞(r,rS,kt ). Therefore, even though the integral evaluation
of Eq. (2) requires sampling the Brillouin zone in several
points (for example, in 20 × 20 spectral points), the overall
computation time is not long [23].

B. A note on the computational cost

For example, suppose that S operations are needed to
solve the 3 × 3 linear system (15), and the Brillouin zone
is discretized in P × Q spectral points (P along kx and Q
along ky). The overall cost to determine E(r,rS) in Eq. (2)
is thus P × Q × (22 + S), where 22 is the total number of
dyadic GF calculations [four elements in the matrix A(kt ),
six elements in the symmetric matrix in the right-hand side
of Eq. (15), and 12 elements in the symmetric matrices in
Eq. (17)]. For simplicity we can assume that S = 33 operations
are needed to solve a system with three unknowns, as, for
example, needed when using the lower-upper (LU triangular
matrices) inversion method. The error in E(r,rS) in Eq. (2)
resulting from the periodic sampling of the Brillouin zone is
represented by the additional field contributions coming from
the “virtual source images” at locations rS + mPax̂ + nQbŷ,
with m,n = 0, ± 1, ± 2, . . . [23].

When small losses are present, in the spherical particles
or in the ambient, the error can be negligible already with
P and Q in the range of 20. We compare the computational
cost of the ASM with P = Q = 20 spectral samples, with a
case of a truncated array of 20 × 20 spheres with the total
of 202 × 3 = 1200 unknowns. The ASM computational effort
is P × Q × (22 + S) = 19,600 operations, compared to the
truncated case which needs the computation of 202 × 6 matrix
elements to fill the linear system and at least (202 × 3)3 =
1.728 × 109 operations to solve the linear system (we recall
that for simplicity we estimate S as the cube of the number of
unknowns 202 × 3). Though in general the ASM technique is
very advantageous, the case studied in this paper is one of the
toughest because the superresolution achieved with the array
device is produced by exciting a special mode (see Sec. V).
In mathematical terms this is described by complex poles in
the ASM integrand in Eq. (2), which are close to the real kx ,
ky axes in all quadrants. This is not a standard situation for
periodic structures.

The presence of losses helps the computation in this case
since the poles are slightly off the real axes. For the lossless
case, poles may be on the real axes and it is recommended
to perform a path deformation without enclosing poles when
calculating Eq. (2) and to use adaptive integration. In all the

problems treated, which follow, numerical convergence was
achieved by using path deformation and adaptive integration.

C. N layers of spheres

The previous formulation is here generalized for the case
of N-layer arrays [Fig. 1(b)]. We obtain the following matrix
equation for the determination of the dipole moments p∞

n :(
1

α
I − �

G∞(zmẑ,zmẑ,kt )

)
· p∞

m −
N∑

n=1
n�=m

G∞(zmẑ,znẑ,kt ) · p∞
n

= G∞(zmẑ,rS,kt ) · pS, m = 1,...,N. (19)

Here p∞
n is the dipole moment of the spheres at the (0,0)

position of the layer n (n = 1,. . ., N). Once the solution p∞
n ,

n = 1,. . ., N of Eq. (19) has been determined, the electric and
magnetic fields at an arbitrary position r, produced by the array
of exciting dipoles, phased with the transverse wave vector kt ,
are then evaluated by

E∞(r,rS,kt ) =
N∑

n=1

G∞(r,znẑ,kt ) · p∞
n + G∞(r,rS,kt ) · pS,

(20)

H∞(r,rS,kt ) = jω

[
N∑

n=1

∇G∞(r,znẑ,kt ) × p∞
n

+∇G∞(r,rS,kt ) × pS

]
. (21)

D. Excitation by a plane wave

In case one wants to excite the layers with a plane wave
to analyze transmission and reflection properties, for example,
the only modifications needed are the following: one needs
to replace the right-hand side of Eq. (15) with Einc(r,kt ),
evaluated at r = 0 in the case of a single layer, whereas in
the case of N layers one needs to replace the right-hand side
of Eq. (19) with Einc(r,kt ) evaluated at r = zmẑ.

IV. MODAL PROPAGATION IN THE ARRAY OF SPHERES

Modes are found by looking for the eigensolutions of
Eq. (15), which are those that satisfy Eq. (15) without the
forcing term, that is,

A(kt ) · p∞ = 0. (22)

The search is made numerically. Fast evaluation of the
periodic dyadic GF using the Ewald method shown in the
Appendix renders the search for the eigenmodes very efficient.
This Ewald GF evaluation is faster than the accelerated scheme
suggested in the paper of Simovski et al. [38], due to its
Gaussian convergence rate.

Dispersion curves for single- and double-layer arrays of
silver nanospheres placed in a host medium with εr = 1
are shown in Figs. 3 and 4, respectively. The radius of the
nanospheres is rp = 25 nm, the periods are a = b = 73 nm,
and the distance between the layers in the case of the
double-layer array is h = 95 nm. The Drude model for silver
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FIG. 3. (Color online) Dispersion curve for a single-layer array
of silver nanospheres.

permittivity in Eq. (10) assumes ε∞ = 5, ωp = 2πfp with
fp = 2175 THz (λp = c/fp = 138 nm), which are the values
used in Refs. [39,40]. In this section devoted to modal analysis
we assume ωD = 0 since we focus only on the determination
of the dispersion diagram with real modes. Complex modes in
such arrays will be the subject of future investigations.

The dispersion curves for the single-layer array are shown in
Fig. 3, for 0 � kx � π/a and ky = 0, where we show the three
supported modes. They correspond to the dipole moments p∞
parallel to the x, y, and z axes. The mode polarized along y
and traveling along x cannot be excited by the electric dipole
source along z, considered in the next section. The small box
in the figure represents the region where the mode polarized
along z has a flat dispersion curve. This peculiarity is important
to create the sought subwavelength focusing and possibly the
superresolution, as was already discussed in Ref. [3].

The same kind of plot for the double-layer array is shown
in Fig. 4. There are six possible modes traveling along the
x direction. Two of them have dipole modes parallel to the
y direction and as already stated above, they cannot be excited
by a z-directed dipole. The four other modes have dipole
moments p∞

1 and p∞
2 , in layers n = 1 and n = 2, with both

x and z components.

V. SUPERRESOLUTION AND FIELD ENHANCEMENT

We show here that two main effects are provided by a
single-layer or a multilayer array of nanospheres excited by a
nearby dipole source: subwavelength focusing and near-field
enhancement. Now, the source is situated at the coordinate
origin, its dipole moment is directed along the z axis, and its
magnitude is chosen as pS,z = 10−30 C/m. The periods of
the array are a = b = 73 nm. The first layer is placed at z1 =
95 nm. In the case of a multilayer array of nanospheres, the
interlayer distance is h = 95 nm and the relative permittivity
of the media hosting the nanospheres is εh = 1. The field
is calculated in the “image plane” z = (N + 1)95 nm, at the
distance 95 nm above the last layer (the number N of layers
may vary, see Fig. 2). The radius of nanospheres is rp = 25 nm.

FIG. 4. (Color online) Dispersion curve for a double-layer array
of silver nanospheres.

In Fig. 5 the near-field enhancement
|Ez(robs)|2/ |Einc

z (robs)|2, defined as the ratio between
the field intensity with and without the array at the position
robs = (0,0,(N + 1)95 nm), is shown versus frequency for
different numbers of layers N = 1,2,3,4. The field without
the array corresponds to the field Einc

z of an isolated dipole.
The near-field enhancement is observed in a wide frequency
range for any number of layers, and increases when increasing
the number of layers.

The frequencies relative to the strongest near-field enhance-
ment for one and two layers in Fig. 5 correspond to the flat
parts of the dispersion curves in Figs. 3 and 4. For example, for
one layer one can see there is a peak at f ≈ 796 THz, which
is the value corresponding to flat dispersion in Fig. 3. For two
layers, there are three peaks at f ≈ 787, 808, and 846 THz,
which are the values corresponding to flat dispersion in Fig. 4.
This is the first time that this correspondence is shown for a
superlens made of two layers.

The flatter the part of the dispersion curve of the excited
modes (Figs. 3 and 4) the wider the part of the evanescent

FIG. 5. (Color online) Near-field enhancement for different num-
bers of array layers, defined as the ratio of the intensity with and
without the arrays.
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FIG. 6. (Color online) Field distributions in the image plane, along x and for y = 0, for the double-layer (N = 2) array at the maximum
field enhancement frequencies shown in Fig. 5: (a) f = 787 THz, (b) f = 808 THz.

spatial spectrum, which is reconstructed at the observation
point at a specified frequency due to the resonant array. The
presence of the array results in the excitation of a strong field
in the vicinity of the layers since several spectral components
(waves with different wave numbers) are excited by the source
and are able to transmit their evanescent field to the observation
point. The field enhancement is particularly strong for a large

number of layers. Therefore the device made by layers of
nanospheres can be used to amplify certain evanescent field
components, with respect to what happens in a homogeneous
medium.

Figure 6 shows the field distribution moving along the
x direction, for y = 0, in the “image” plane zobs =
(N + 1)95 nm for a double-layer array (N = 2), at the two

FIG. 7. (Color online) Field distributions in the image plane, along x for y = 0, for arrays with N = 3 layers (a,c) and N = 4 layers (b,d),
at the frequencies that yield the maximum near-field enhancement.
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FIG. 8. (Color online) Field distributions across layers for f =
808 THz. (a,b) Ex and Ez, along the z line with x = a/2 and y = 0.
(c) Ez along the z axes (with x = y = 0).

frequencies (f = 787 THz and f = 808 THz) yielding the
maximum of the near-field enhancement shown in Fig. 5. The
half-power width of the “image” is marked by arrows and
the result in Fig. 6 clearly shows that subwavelength field
localization (denoted as “focusing” by some researchers) is
achieved at the frequencies which correspond to the maximum
near-field enhancement. For the frequency f = 787 THz, the
half-power width of the “image” is significantly smaller than a
quarter wavelength. This frequency corresponds to the flattest
part of a dispersion curve in Fig. 4, which means that the

largest part of evanescent spectral components excited at that
frequency are enough to reconstruct a subwavelength field
localization. For a reference we have also reported in Fig. 6
the field that would result without the array, which corresponds
to the incident field (dashed line). As it is much weaker than
the field with the array, this is another confirmation of the
near-field enhancement already seen in Fig. 5.

Figure 7 shows similar results for three- and four-layer
arrays, showing for the first time that subwavelength focusing
can be achieved for more than two layers, and that sub-
wavelength focusing is obtained at more frequencies. Field
localization with a half-power width, approximately equal to
0.15λ, is achieved, for example, at f = 790 THz for four
layers.

To better illustrate the physical mechanism, in Fig. 8
we plot the field across the array layers for the frequency
f = 808 THz, which corresponds to the maximum field
enhancement for two layers, and is very close to that for
three and four layers of nanospheres. Figures 8(a) and 8(b)
represent the x and z components, respectively, of the E field
along the line parallel to the z axis with x = a/2 and y = 0.
In all considered cases the field component Ey vanishes for
symmetry reasons. Figure 8(c) represents the z component of
the field along the z line with x = 0, y = 0 (here, both Ex

and Ey vanish). The vertical dash-dotted lines indicate the
z positions of each layer of nanospheres shown in scale at the
bottom of the plots.

It is interesting to note that the field has a similar behavior
for any number of layers. It decreases more slowly than the
incident field, for increasing z, because of the presence of
the layers of nanospheres. The plots clearly show that the
presence of the layers permits to maintain the field strength at
larger distances than without these layers. The incident field
decreases as 1/r (r is the distance from the dipole) and rapidly
becomes very weak. Instead, when the nanosphere layers are
present, a small incident field (to any layer) is able to excite
the resonant mode, which is thus responsible for producing a
strong scattered field near the layer. This field decays away
from each layer, but is able to strongly excite the subsequent
resonant layer.

Only above the last layer of nanospheres does the field
decrease more rapidly than the incident field. It decays
exponentially since it is related to a mode in the array
propagating in the transverse direction, and the “spatial”
component excited by the source is already too weak (we
stress here that a source near a periodic structure excites
the modes and a “spatial” field that collects the continuous
spectrum of wave numbers, as shown in Sec. V of Ref. [21],
and in Ref. [41]). The “maintenance” of the evanescent field
across the layers can be interpreted as “enhancement” or
“amplification” when compared to the field without the layers
(the incident field), which decreases rapidly. Since the field
maintained (or transferred) across the layers is made of the
evanescent part of the excited spectrum, it has large transverse
wave-number components (small spatial wavelengths) and is
thus able to reconstruct the subwavelength field localization
far from the source.

The results of the investigation of the superresolution
possibility are shown in Fig. 9. The double-layer array is
excited by two z-directed dipole sources with dipole moments
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FIG. 9. (Color online) Illustration of superresolution. Electric field distribution at the intersection of the observation plane and (a) y-z plane
(the plane of sources) and (b) the x-z plane, (c) in the observation plane.

pS,z = 10−30 C/m located at positions (0, −55 nm, 0) and (0,
55 nm, 0). We still use the array of nanospheres with radius
rp = 25 nm and periods a = b = 73 nm. The sources are at
z = 0, the first and second nanosphere layers are at z1 = 67
nm and z2 = 162 nm. The observation plane is at z = 229
nm, and thus 67 nm away from the top layer of nanospheres.
The frequency is f = 789 THz (λ = 380 nm). Thus, the
distance to the observation plane from the dipole sources
is 0.6λ, and the distance between the sources is 0.29λ =
110 nm. In Fig. 9 the horizontal dash-dotted line corresponds
to the half-power level of the field in the presence of the array.
Note that considering the half-power level in Fig. 9(a) with the
two layers of nanospheres, the “images” of the two sources at
y = ±55 nm are well separated in the observer plane at z =
229 nm. Instead, without the two-layer array of nanospheres
the two field contributions, each produced by a source, are not
distinguishable one from the other, in the observer plane at
z = 229 nm [Fig. 9(a), dashed line].

In Fig. 9(b) we also show the field distribution along the
x direction, with y = 0 and z = 229 nm (note that the two
sources are displaced along y). There are strong interference
maxima which are due to the superposition of the fields of
two coherent contributions. Indeed, as already seen in Figs. 6
and 7, the field produced by a single source in the observation
plane has several maxima. From a field analysis near each

source, not shown here (an example could be seen in Ref. [42]),
the field is strong in a ring region of the image plane (in
the x,y plane, for z fixed) around each of the sources. Therefore,
interference maxima produced by the two sources may arise
at the points of intersection of the corresponding two rings. In
Fig. 9(b) these maxima almost reach the half-power level of
the field maximum in Fig. 9(a). Their level can be reduced by
optimization. The three-dimensional (3D) Fig. 9(c) illustrates
the distribution of the electric field maxima in the image plane.
The results clearly show strong enhancement of evanescent
fields as well as subwavelength focusing, where the two
main peaks corresponding to two nearly placed sources are
clearly resolved. On the other hand, the presence of parasitic
interference maxima at the level of some 70% of the main peak
shows limitations for the imaging applications in our current
design.

VI. INFLUENCE OF THE DISTANCE h BETWEEN
TWO LAYERS

Figures 10 through 12 illustrate the influence of the
distance h between layers, when only two layers are con-
sidered, on the nanospheres’ excitations and on the resulting
near-field enhancement. All the other parameters were fixed:
The dipole source is situated at rS = 0, the layers have periods
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FIG. 10. Strength of the dipole moment p1 normalized to the
source dipole strength pS in the layer of nanospheres closest
to the source versus distance h between the two layers and
wavelength.

a = b = 73 nm, and the bottom one is 73 nm above the
source. The observation point is placed at a distance of
73 nm above the upper layer, at robs = (2a+h)ẑ. The distance h
between the layers varies. In Fig. 10 it is interesting to note
that the nanosphere dipole moment p1, representing the dipole
strength of the nanosphere at (x,y) = (0,0) in the layer closest
to the source, is larger than the exciting dipole moment pS . In
other words |p1|/|pS | > 1 in a wide range of frequencies and
distances h. Note that when h is large, the excitation of p1 in
the first layer of nanopsheres does not depend on h anymore,
as shown by the parallel vertical lines in Fig. 10, since the
interference between the two layers of nanospheres becomes
weak. The strongest near-field enhancement corresponds to
the strongest excitations of both layers, and especially of
the second layer p2. However, the maxima in Figs. 10 and
11, showing |p1|/|pS | and |p2|/|pS |, exhibit similar trends
(darkest regions), which correspond to the strongest near-field

FIG. 11. As in Fig. 10, with the difference that the strength of the
dipole moment p2 of the second layer is shown.

enhancement, as shown in Fig. 12, in the presence of the
two layers of nanospheres. These results are important to
show that at any specific frequency there is a corresponding
optimal distance h that maximizes the field enhancement.
For each small value of h there are two frequencies giving
maximum near-field enhancement. Figure 11 shows that to
have a strong excitation of the second layer the distance
h should not exceed twice the period of the array because
otherwise the second layer could not be excited strongly
enough by the evanescent field from the first layer. In general,
strong excitation of the second layer implies strong near-field
enhancement, as shown in Fig. 12. However, as also shown in
Fig. 12, larger interlayer distances h may also yield to strong
near-field enhancement because, even though in this case the
second layer would not be strongly excited, the incident field
(the direct field, in absence of the layers) would be very
weak because of to the increased observation-source distance
|robs − rS | = 2a + h. As an example, one should note the
30 dB near-field enhancement at λ = 375 nm for h = 190 nm
(i.e., for |robs − rS | = 336 nm).

VII. CONCLUSION

The near-field enhancement and subwavelength focusing
properties of layers of infinite arrays of metallic nanospheres
have been investigated at optical frequencies for a dipole
source oriented orthogonally to the array plane. Earlier, similar
investigations were performed for arrays of a finite extent
and only for one and two layers. The main advantages of
the present formulation are that certain physical phenomena
are not hindered by truncation effects, and the possibility
to use more efficient algorithms to numerically facilitate the
investigation of multilayer arrays, based on the array scanning
method (ASM) combined with the Ewald method, whose
dyadic expressions have been provided here for the first time.

The near-field enhancement and subwavelength focusing
properties are investigated for a single layer and multilayer
arrays of metal nanospheres. It is clearly shown that the
frequencies providing these phenomena correspond to the

FIG. 12. Near-field enhancement at the observation point robs =
(2a + h)ẑ versus distance h between layers and wavelength. Darkest
regions represent the maximum near-field enhancement.
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flat parts of the dispersion curves for the modes polarized
orthogonally to the array. This property provides a way
to predict and optimize the near-field enhancement and
subwavelength focusing of an array based on its dispersion
characteristics.

The influence of the distance between the layers of the array
on the resonant excitation of each layer and on the frequency of
the maximal near-field enhancement has been investigated and
certain optimal regions have been determined. Tunability of
the operational frequency, imposed by the plasmon resonance
of the chosen metal, can be achieved by using dielectric core-
metal shells.

In summary, the explored device made by layers of metal
nanospheres can be used for two purposes: near-field en-
hancement and subwavelength focusing. This paper analyzes
and stresses certain properties which show how to control
such phenomena. However, we should stress that this is not
an imaging device in the usual sense of this term because
by measuring the field distribution in the “image plane”
it is not possible to uniquely reconstruct the distribution
of possibly volumetrically distributed sources. The presence
of interference maxima at some lower level also make the
superresolution application still challenging.

APPENDIX: ACCELERATION OF THE PERIODIC
GREEN’S FUNCTION BY USING THE EWALD METHOD

We show here how G∞(r,r′,kt ), Ğ∞(r,r′,kt ),
∇G∞(r,r′,kt ), ∂2G∞

∂r2 (r,r′,kt ), and ∂2Ğ∞
∂r2 (r,r′,kt ) discussed

in the text are calculated with the Ewald method [27–29] at
point r = ρ + zẑ, due to a dipole source at r′ = ρ ′ + z′ẑ.
This approach is significantly faster than that based on the
analytical extraction of the slowly convergent part of the
representing series [36].

The Ewald representation for the 2D periodic scalar GF in
Eq. (13) is [24,27,28]

G∞(r,r′,kt ) = Gspectral(r,r′,kt ) + Gspatial(r,r′,kt ),

(A1)

with

Gspectral(r,r′,kt ) = 1

4jA

∞∑
p,q=−∞

fpq(z − z′)
kzpq

e−jktpq ·(ρ−ρ ′),

(A2)

Gspatial(r,r′,kt ) = 1

8π

∞∑
m,n=−∞

f (Rmn)

Rmn

e−jkt · ρmn , (A3)

Here A = ab is the area of the unit cell,

ktpq = kxpx̂ + kyq ŷ = kt + 2πp

a
x̂ + 2πq

b
ŷ, (A4)

is the transverse wave vector with components

kxp = kx + 2πp

a
, kyq = ky + 2πq

b
, (A5)

and

kzpq =
√

k2 − ktpq · ktpq , (A6)

is the z-directed wave vector which is defined with Imkzpq � 0,

unless complex modes in the bottom Riemann sheet are consid-
ered. Furthermore, Rmn = |Rmn|, with Rmn = r − (r′+ρmn),
and ρmn = max̂ + nbŷ. It is convenient to define the following
functions:

fpq(z) = ejkzpq |z|erfc(α+
pq) + e−jkzpq |z|erfc(α−

pq), (A7)

α±
pq = jkzpq

2E
± |z|E, (A8)

and

f (R) = ejkRerfc(β+) + e−jkRerfc(β−), (A9)

β± = ER ± jk

2E
. (A10)

Here E is the Ewald splitting parameter whose value is
given in Eq. (A22). The complementary error function is
defined as

erfc(z) = 2√
π

∫ ∞

z

e−t2
dt. (A11)

For the gradient of G∞(r,r′,kt ) we obtain

∇G∞(r,r′,kt ) = ∇Gspectral(r,r′,kt ) + ∇Gspatial(r,r′,kt ),

(A12)

where, after some tedious but simple algebraic steps,

∇Gspectral(r,r′,kt ) = 1

4jA

∞∑
p,q=−∞

e−jktpq · (ρ−ρ ′)

kzpq

[ẑf ′
pq(z − z′)

× − jktpqfpq(z − z′)], (A13)

∇Gspatial(r,r′,kt )

= 1

8π

∞∑
m,n=−∞

e−jkt ·ρmn

(
f ′(Rmn)

R2
mn

− f (Rmn)

R3
mn

)
Rmn.

(A14)

For the matrix ∂2G∞/∂r2 of the second derivatives of
G∞(r,r′,kt ), defined as in Eq. (7), we obtain

∂2G∞

∂r2
(r,r′,kt ) = ∂2Gspectral

∂r2
(r,r′,kt ) + ∂2Gspatial

∂r2
(r,r′,kt ),

(A15)

where

∂2Gspectral

∂r2
(r,r′,kt )

= − 1

4jA

∞∑
p,q=−∞

1

kzpq

e−jktpq · (ρ−ρ ′)F spectral,pq(z − z′),

(A16)
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Fspectral,pq (z) =

⎛⎜⎝ k2
xpfpq(z) kxpkyqfpq(z) jkxpf ′

pq(z)

kxpkyqfpq(z) k2
yqfpq(z) jkyqf

′
pq(z)

jkxpf ′
pq(z) jkyqf

′
pq(z) −f ′′

pq(z)

⎞⎟⎠
= ktpqktpqfpq(z) + j (ktpq ẑ + ẑktpq)f ′

pq(z) − ẑẑf ′′
pq(z), (A17)

∂2Gspatial

∂r2
(r,r′,kt ) = 1

8π

∞∑
m,n=−∞

e−jkt ·ρmnF spatial,mn,

(A18)

F spatial,mn =
(

f ′(Rmn)

R2
mn

− f (Rmn)

R3
mn

)
I +

(
f ′′(Rmn)

R3
mn

− 3f ′(Rmn)

R4
mn

+ 3f (Rmn)

R5
mn

)
RmnRmn, (A19)

For large z, the function erfc(z) is asymptotically ap-
proximated as erfc(z) ∼ e−z2

/(
√

πz). Therefore, all the se-
ries in Eqs. (A2), (A3), (A13), (A14), (A16), and
(A18) have Gaussian convergence with m,n and p,q,
and only a few terms are needed, usually only m,n,p,

q = −1,0,1.
The regularized GFs, Ğ∞(r,r′,kt ), ∂2Ğ∞

∂r2 (the Mexican hat �

denotes the regularized GFs), can be evaluated by subtracting
the (m,n) = (0,0) term of the pure spatial representation of
G∞(r,r′,kt ), ∂2G∞

∂r2 [see Eq. (13) for example] from the expres-
sions (A1) and (A15). For the problem discussed in this paper,
we need these regularizing values only for r = r′. Thus, in this
case,

Ğ∞(r,r,kt ) = Gspectral(r,r,kt ) + Ğspatial(r,r,kt ), (A20)

∂2Ğ∞

∂r2
(r,r,kt ) = ∂2Gspectral

∂r2
(r,r,kt ) + ∂2Ğspatial

∂r2
(r,r,kt ),

(A21)

where the regularized terms are

�

Gspatial(r,r,kt ) = 1

8π

∞∑
m,n=−∞

(m,n)�=(0,0)

f (Rmn)

Rmn

e−jkt ·ρmn

+ lim
r→0

(
1

8π

f (r)

r
− e−jkr

4πr

)
= 1

8π

×
∞∑

m,n=−∞
(m,n)�=(0,0)

f (Rmn)

Rmn

e−jkt · ρmn+ 1

8π
(f ′(0)+2jk),

∂2�

G∞
spatial

∂r2
(r,r,kt ) = 1

8π

∞∑
m,n=−∞

(m,n)�=(0,0)

e−jkt · ρmnF spatial,mn

+ lim
r→0

(
F spatial,00|R00=r − ∂2

∂r2

e−jkr

4πr

)
= 1

8π

∞∑
m,n=−∞

(m,n)�=(0,0)

e−jkt · ρmnF spatial,mn

+ 1

24π
(f ′′′(0)−2jk3)I.

The “optimum” E parameter that results in the same
asymptotic rate of decay for the Gspectral and Gspatial series
is [28,29]

Eopt =
√

π

A
. (A22)

With this choice of E, the rate of exponential decay is the
same in both the spatial and spectral series. This choice of
E also minimizes the total number of terms in the overall
computation.
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