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Transparent uniaxial anisotropic spherical particles designed using radial anisotropy
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Based on Mie scattering theory and the assumption that the particle is electrically small in size (kta �
1, kma � 1), an analytic relationship between radial and tangential permittivity parameters has been established
for achieving minimal scattering from an arbitrary rotationally uniaxial anisotropic spherical object incident by
a plane wave. Analysis of fields in both the far- and near-field zones indicates that the derived relation is not
only valid for electrically small particles, but also applicable to larger ones whose sizes are comparable with
the free space wavelength after slight adjustments in parameters. Furthermore, it is observed that the dielectric
spherical particle of reduced tangential permittivity yields better transparency performance than the design using
a plasmonic cover by Alu and Engheta [Phys. Rev. E 72, 016623 (2005)]. As such, particles with carefully
engineered radial anisotropy are transparent without using any coating and are ideal for applications with space
constraint and stringent transparency criteria.
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I. INTRODUCTION

During 1940s, research on invisibility was initiated for
military purposes to hide aircraft from radar detection via
stealth technology such as absorbent paint or purpose shaping.
Later on, the concept of nonabsorbing coating of invisibility
was envisioned in the research community [1]. In recent
years, the interest in invisibility has revived as a result of
advances in metamaterials. Unlike stealth technology where
the incident power is either converted to heat or reflected
in other directions, the usage of metamaterials opens up the
possibility of preserving both the magnitude and direction of
the incoming power flow. Moreover, potential applications of
invisibility have spread to various engineering aspects, for
instance, in medical probing and imaging.

Several ingenious approaches have been devised for the
design of metamaterial coatings of invisibility, among which
the two most popular ones are developed according to
transformation optics [2–5] and scattering cancellation [1,6–8]
techniques, respectively. The former approach is mathemati-
cally elegant in a sense that the designed coating is independent
of the object to be hidden. On the other hand, this approach
is practically challenging, and it requires materials to be both
inhomogeneous and anisotropic. Methods have been proposed
to reduce the material complexity of the transformation
cloak by means of confining inhomogeneity to the radial
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direction [9–11] or forcing relative permeability to unity
[12]. The latter approach, utilizing scattering cancellation
technique, is ideal for electrically small particles where the
higher-order contributions to the scattered fields are negligible.
Furthermore, the coating is readily realizable by plasmonic
materials such as noble metals at their plasma frequencies. In
this work, the scattering cancellation approach is adopted for
its ease of implementation.

In contrast to previously discussed cases where the em-
ployment of metamaterial coatings is necessary, we aim to
design a spherical particle which is made transparent by the
introduction of radial anisotropy. This work is inspired by
the recent progress on the analysis and characterization of
electromagnetic scattering by rotationally uniaxial anisotropic
spheres. Based on full-wave Mie scattering theory, field
solutions for scattering from anisotropic spheres can be
analytically derived by a myriad of techniques, such as the
expansion of spherical vector wave functions [13] or the
introduction of Debye potentials [14,15] or novel potentials
[16,17]. In particular, Debye potentials are utilized in this
work. Previously, parametric analysis in the far-field zone has
been carried out to study the effects of anisotropy on scattering
by single spheres, be that diminution or enhancement [17,18].
As an extension, in this paper, an exact analytic relation
in terms of constitutive parameters has been established
for minimal scattering from rotationally uniaxial anisotropic
spheres. Full-wave numerical analysis has been performed to
validate the transparency relation in both the far- and near-field
zones. In particular, effectiveness of the proposed design with
reduced tangential or radial permittivity, in terms of scattered
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fields and time-averaged Poynting vector distributions, has
been compared against the former coated design in the near-
field zone. With regard to its realizability, several designs of
artificial radial anisotropy have been reported, such as media
embedded with metal wires [19], multishell fullerene with
central cavity [20], composites containing graded fibers [21],
and thin layers with alternating permittivity [22,23].

In this paper, we extend the scattering cancellation tech-
nique to the case of rotationally uniaxial anisotropic spheres
to minimize scattering. Following the theoretical formulation
of fields with Debye potentials, we derive the transparency
relation for zero scattering of rotationally uniaxial anisotropic
spherical particles. In the long wavelength limit, we take one
step further to examine the dipolar scattering coefficient and
reach an expression of the effective permittivity of rotationally
uniaxial anisotropic spheres. Last but not least, results from
the full-wave numerical analysis are presented to validate
the derived transparency relation and to demonstrate the
effectiveness of the proposed designs in comparison to former
design by Alu and Engheta [6].

II. THEORETICAL ANALYSIS

A. Theoretical background

In this paper, the interaction between electromagnetic
waves and the spherical scatterer is formulated based on the
Mie scattering model extended to the case of rotationally
uniaxial anisotropic materials. The configuration of the prob-
lem is shown in Fig. 1. A rotationally uniaxial anisotropic
spherical scatterer of radius a is centered at origin o and
immersed in an isotropic host medium whose permittivity
and permeability are denoted by εm and μm, respectively. An
x-polarized monochromatic plane wave with unit amplitude
travels along the z direction, given by

Ei = x̂eikmze−iωt , (1)

where km = ω
√

εmμm. It should be noted that e−iωt is the
implicit time-dependent factor and is suppressed in subsequent
formulations without affecting any results. The permittiv-
ity and permeability tensors of the scatterer are defined
in the spherical coordinates as ε̄ = (εr − εt ) r̂ r̂ + εt Ī and
μ̄ = (μr − μt ) r̂ r̂ + μt Ī , where the identity tensor is defined
as Ī = r̂ r̂ + θ̂ θ̂ + φ̂φ̂, εr (μr ) is the radial component of
permittivity (permeability) along the r̂ direction, and εt (μt ) is
the tangential component of permittivity (permeability) along

FIG. 1. Configuration of a scattering of incident plane wave by a
rotationally uniaxial anisotropic spherical scatterer.

the direction that is perpendicular to the r̂ direction. It should
be noted that kt = ω

√
εtμt .

The incident wave described by Eq. (1) can be expanded
in terms of spherical harmonics. In particular, the radial
component of the incident electric field is given by

Ei
r = cos φ

(kmr)2

∞∑
n=1

in+1 (2n + 1) Ĵn (kmr) P (1)
n (cos θ ) , (2)

where Ĵn(z) denotes the nth-order Riccati-Bessel function of
the first kind; P (1)

n (cos θ ) denotes the first-order associated
Legendre function of degree n. An important relationship
is given by B̂n(z) = √

πz/2Bn+1/2(z), where B̂n represents
the nth-order Riccati-Bessel functions of the first, second,
and third kinds, namely, Ĵn, Ŷn, Ĥ (1)

n ; Bn+1/2 represents
the pertinent (n + 1/2)th-order cylindrical Bessel functions,
namely, Jn+1/2, Yn+1/2, and H

(1)
n+1/2, whose definitions are

available in standard texts [24]. P (1)
n (cos θ ) is related to the

Legendre function of degree n, Pn(cos θ ), by dPn(cos θ )/dθ =
P (1)

n (cos θ ). All special functions mentioned in this paper
strictly follow the definitions in [24].

For the convenience of matching boundary conditions along
the spherical surface, we decouple the fields into transverse
magnetic (TM) and transverse electric (TE) modes with respect
to the r̂ direction, which can be derived from the scalar TM
and TE Debye potentials [15], �TM and �TE, respectively.
Subsequently, we focus on results for TM mode only, since
pertinent results for the TE mode can be conveniently derived
by duality.

By following similar procedures presented in [15], the
radial components of the incident, scattered and transmitted
electric fields can be derived, with the introduction of appro-
priate Debye potentials, as

Ei
r =

(
∂2

∂r2
+ k2

m

)(
r�TM

i

)
, (3)

Es
r =

(
∂2

∂r2
+ k2

m

)(
r�TM

s

)
, (4)

Eobj
r =

(
∂2

∂r2
+ k2

t

)(
r�TM

obj

)
. (5)

After making comparisons between the two expressions of Ei
r

in Eqs. (2) and (3), the TM Debye potential for the incident
field can by derived as

r�TM
i = cos φ

k2
m

∞∑
n=1

in+1 (2n + 1)

n(n + 1)
Ĵn(kmr)P (1)

n (cos θ ) . (6)

Furthermore, the TM Debye potentials for the scattered and
transmitted fields can be expressed as

r�TM
s = −cos φ

k2
m

∞∑
n=1

T TM
n

in+1(2n + 1)

n(n + 1)

× Ĥ (1)
n (kmr) P (1)

n (cos θ ) , (7)

r�TM
obj = −cos φ

k2
t

∞∑
n=1

cTM
n

in+1(2n + 1)

n(n + 1)

× ĴvTM
n

(kt r) P (1)
n (cos θ ) , (8)
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where T TM
n denotes the nth-order TM scattering

coefficient, cTM
n denotes the nth-order coefficient of the

transmitted TM wave within the spherical object, ĴvTM
n

denotes
the vTM

n th-order Riccati-Bessel function of the first kind
with

vTM
n =

√
εt

εr

n(n + 1) + 1

4
− 1

2
. (9)

By matching boundary conditions at r = a and solving
the resultant linear equations, the nth-order TM scattering
coefficient can be expressed as

T TM
n = CTM

n

CTM
n + iDTM

n

, (10)

where

CTM
n =

∣∣∣∣∣
μt

μm
Ĵn (kma) ĴvT M

n
(kta)

kt

km
Ĵ ′

n (kma) Ĵ ′
vT M

n
(kta)

∣∣∣∣∣ , (11)

DTM
n =

∣∣∣∣∣
μt

μm
Ŷn (kma) ĴvT M

n
(kta)

kt

km
Ŷ ′

n (kma) Ĵ ′
vT M

n
(kta)

∣∣∣∣∣ , (12)

with the prime sign denoting the derivative with respect to the
argument.

The total scattering cross section of the object is defined
as the ratio of the time-averaged total scattered power to the
time-averaged incident power, denoted by

σT = 2π

k2
m

∞∑
n=1

(2n + 1)
(∣∣T TM

n

∣∣2 + ∣∣T TE
n

∣∣2)
. (13)

B. Derivation of transparency relation

To achieve zero scattering with reference to Eq. (13), we
need to nullify the scattering coefficients. Taking the TM mode
as an example, it can be observed that T TM

n diminishes as
long as its numerator CTM

n given in Eq. (11) goes to zero.
With the assumption that the scatterer is electrically small
(kma � 1,kta � 1), the closed form expression of CTM

n can
be worked out as follows.

First, limiting values of Riccati-Bessel functions with
small arguments can be expressed with reference to pertinent
expressions of cylindrical Bessel functions [24] as

Ĵv (kma) = √
π (km/a 2)v+1/
 (v + 3/2), (14)

Ŷv (kma) = −
√

1/π
 (v + 1/2) (kma/2)−v, (15)

where 
(·) denotes gamma function [24] and Re(v) > 0.
By substituting Eq. (14) into Eq. (11), we then have

CTM
n = π

2

μt

μm

(
kma

2

)n+1
(kta2)v

TM
n



(
n + 3

2

)



(
vTM

n + 3
2

)
×

[(
vT M

n + 1
) − εt

εm

(n + 1)

]
. (16)

After setting CTM
n = 0 and substituting Eq. (9) into Eq. (16),

we have

εt

εm

=
n + εr

εm

(n + 1) εr

εm

. (17)

By duality, similar relation can be derived for nullifying the
nth-order TE scattering coefficient as

μt

μm

=
n + μr

μm

(n + 1) μr

μm

. (18)

For scattered fields by electrically small particles, the electric
dipolar contribution (corresponding to n = 1) dominates and
higher-order contributions become negligible in the summa-
tion in Eq. (13). Thus, the transparency relation with canceled
electric dipole is derived from Eq. (17) as

εt

εm

= 1

2

εm

εr

+ 1

2
. (19)

Furthermore, we presume the scatterer is nonmagnetic (i.e.,
μr = μt = μ0). As such, Eq. (18) is always satisfied. In other
words, the TE scattering coefficient in the present case is
always negligible for small particles. When magnetic materials
of the concerned scattering are considered, however, Eq. (18)
will play an important role in the wave characterizations.

With reference to Eqs. (14) and (15), the electric dipolar
scattering coefficient can be simplified from Eqs. (10)–(12) in
the quasistatic limit as

T TM
1 = − 1

3i
(kma)3

2εt

vTM
1 +1

− εm

εt

vTM
1 +1

+ εm

. (20)

As shown by Eq. (20), contributions of the tangential and radial
components of permittivity to the dipolar scattering cannot be
decoupled into two independent entities. Therefore, it can be
inferred that the total dipole moment, in this case, is not a
simple superposition of isolated contributions of tangential
and radial components of permittivity. Coupling effect plays
an important role. The above analysis provides physical insight
into the parametric analysis of the electric and magnetic
anisotropy in [17].

When the sphere is isotropic with εt = εr = εs , Eq. (20) is
reduced to the Rayleigh scattering case as

T TM
1 = − 2

3i
(kma)3 εs − εm

εs + 2εm

. (21)

By making comparisons between Eq. (20) and (21), we arrive
at an expression of effective permittivity of the anisotropic
sphere as

εs = 2εt

vTM
1 + 1

, (22)

which was derived independently for the first time when
this paper was finished, to our knowledge. However, it was
known that the same expression was independently obtained,
expressed in a different form, and published in another paper
slightly later in [25]. Equation (22) is particularly useful
for future analysis of composite medium embedded with
rotationally uniaxial anisotropic inclusions. It can be inferred
from Eq. (22) that the effective permittivity of the particle
εs is always equal to that of the surrounding medium εm,
when the transparency relation given by Eq. (19) is satisfied.
This observation coins with the “neutral inclusion” concept
developed for the design of transparent particles in [26].

016605-3



LIU, LI, LEONG, AND ZOUHDI PHYSICAL REVIEW E 84, 016605 (2011)

III. NUMERICAL ANALYSIS

A. Far-field analysis

With the introduction of radial anisotropy, we attempt
to suppress the electric dipolar term T TM

1 , which is the
major contributor to wave scattering for an isotropic spherical
particle. For instance, an isotropic sphere with ε = 3ε0,
μ = μ0, and a = λ0/5 yields normalized total scattering
cross section of σT/λ2

0 = 0.12 where the dominant scattering
coefficient T TM

1 = 0.47 is about three times T TE
1 = 0.18. In

the following analysis, the total scattering cross section and
first few scattering coefficients for three cases are examined,
namely, for electrically small particle (a = λ0/100) with
varying εr and larger particle (a = λ0/5) with either varying
εr or varying εt . The host medium is presumed to be air with
εm = ε0 throughout this section.

To begin with, we set εt = 3ε0 and a = λ0/100. The
normalized total scattering cross section σT/λ2

0 is examined
over a range of εr/ε0 in Fig. 2(a). The dip of the plot
occurs at εr/ε0 = 0.2, which is in perfect agreement with
the previously derived transparency relation in Eq. (19). In
Fig. 2(b), the contribution of the first-order TM scattering
coefficient, T TM

1 , is plotted against εr/ε0. The TE and higher-
order TM scattering coefficients are not presented here since
their magnitudes, being at least two orders lower than T TM

1 , are
comparatively negligible. In this case, the electric dipolar term,
T TM

1 , can thus be treated as the sole contributor to scattering.
The minima of T TM

1 and σT/λ2
0 take place at the same εr/ε0

FIG. 2. (a) Normalized total scattering cross section and (b)
contribution of the first-order TM scattering coefficient, with respect
to εr/ε0, with εt = 3ε0, μ = μ0, and a = λ0/100.

FIG. 3. (a) Normalized total scattering cross section and (b)
contributions of several TM and TE scattering coefficients, with
respect to εr/ε0 with εt = 3ε0, μ = μ0, and a = λ0/5.

value. As such, minimum scattering takes place due to the
cancellation of the electric dipole depicted in Eq. (20).

At a = λ0/100, the case with εr = 3ε0 and varying εt yields
a similar plot as in Fig. 2. The result is not shown here for the
sake of brevity.

In Fig. 3, the particle has the same parameters as those in
Fig. 2, except a = λ0/5 instead of λ0/100. In Fig. 3(a), the
dip occurs at εr/ε0 = 0.25, which is higher than in Fig. 2(a).
As such, the transparency relation given by Eq. (19) requires
slight adjustment in value. This is because as the object
becomes larger, small-argument approximations to Riccati-
Bessel functions are no longer appropriate. Therefore, the full
expression in Eq. (11), instead of the simplified expression in
Eq. (16), has to be equal to zero in order to cancel T TM

1 .
In Fig. 3(b), it can be observed that as the particles size

increases, the contribution of the magnetic dipole T TE
1 is no

longer negligible. T TE
1 is independent of εr and therefore has

no effect on the position of the dip in Fig. 3(a). As such,
the position of the minimum σT/λ2

0 is still determined by the
minimum in T TM

1 . In other words, the minimum in scattering
corresponds to the cancellation of electric dipole even when
the particle size is comparable to the free space wavelength.

In Fig. 4, the object has the same parameters as those in
Fig. 3, except that εr = 3ε0 is held as constant instead of εt .
In Fig. 4(a), the dip occurs at εt/ε0 = 0.62, which is slightly
lower than the predicted value of εt/ε0 = 0.67 in Eq. (19). The
position of the dip in Fig. 4(a) depends not only on the dip in
electric dipole T TM

1 but also on values of magnetic dipole T TE
1
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FIG. 4. (a) Normalized total scattering cross section and (b)
contributions of several TM and TE scattering coefficients, with
respect to εt/ε0 with εr = 3ε0, μ = μ0, and a = λ0/5.

and electric quadrupole T TM
2 since they all vary with changing

εt , as shown in Fig. 4(b).

B. Near-field analysis

Among the six components of scattered fields, the radial
electric field Es

r is selected for demonstrating effects of
canceling T TM

1 , since its expression solely depends on the
TM Debye potential as shown in Eq. (4). Furthermore, the x-z
plane, also termed as the E plane, is chosen for field plotting
after inspecting Eq. (7). It is apparent that the TM Debye
potential, as well as all of its multipolar terms, yield maximal
values in the E plane where cos φ = 1.

Four cases are carefully examined. An isotropic sphere with
ε = 3ε0, μ = μ0, and a = λ0/5 is chosen as the reference
scatterer in Fig. 5(a). Designed according to procedures
proposed in [6], a coating layer with optimal parameters, ac =
1.49a and εc = 0.5ε0, is placed around the reference sphere
in Fig. 5(b). The last two cases are obtained by introducing
optimal tangential or radial permittivity into the reference
sphere. In Fig. 5(c), we have εt = 3ε0 and εr = 0.25ε0; in
Fig. 5(d) we have εt = 0.62ε0 and εr = 3ε0, corresponding to
the optimal values observed at the dips in Figs. 3(a) and 4(a),
respectively.

Figure 5(a) serves as the reference plot, displaying a dipolar
pattern for the magnitude of the radial component of the
scattered electric field |Es

r | in the E plane for an isotropic
spherical particle. The rest of the contour plots in Fig. 5 mani-
fest quadrupolar patterns signifying the successful cancellation

FIG. 5. (Color online) Contour plots of magnitudes of radial
components of scattered electric fields in the x-z plane for (a) an
isotropic sphere with ε = 3ε0, μ = μ0, and a = λ0/5; (b) the same
as (a), except for a coating of ac = 1.49a and εc = 0.5ε0; (c) the same
as (a), except that εt = 3ε0 and εr = 0.25ε0; and (d) the same as (a),
except that εt = 0.62ε0 and εr = 3ε0.

of the electric dipolar contribution T TM
1 to scattering. Among

the three quadrupolar patterns, Fig. 5(b) representing former
work [6] depicts the highest scattering magnitude because the
added coating layer increases the total volume of the scatterer
and hence enhances higher-order contributions to scattering.
The scattering pattern in Fig. 5(c) is the lowest in magnitude
in agreement with the close-to-zero values of T TM

1 and T TM
2

as shown in Fig. 3(b) at the optimal point of εr = 0.25ε0.
In short, the two proposed designs yield better transparency
performance in the TM mode than former work, in a sense that
the magnitudes of the radial components of the scattered fields
in Figs. 5(c) and 5(d) are about one order lower than that in
Fig. 5(b).

Figure 6 shows the total time-averaged Poynting vector
distribution in the E plane for the same setups as in Fig. 5.
Figures 6(b)–6(d) display different degrees of reduced forward
scattering as compared with Fig. 6(a). Figure 6(d) shows the
best performance with nearly unperturbed power flow. This
is because both the TM and the TE scattering coefficients
of a dielectric sphere can be significantly reduced with the
introduction of optimal εt value, as shown in modal analysis
at εt = 0.62ε0 in Fig. 4(b), which leads to negligible scattered
power in Fig. 6(d). On the other hand, the forward scattering
in Fig. 6(c) is not fully eliminated, despite of the low
contribution from TM mode, as shown in Fig. 5(c), since
its TE scattering coefficients are unabated by changing εr

value, as shown in Fig. 3(b). Overall, the proposed design
in Fig. 6(d) with negligible forward scattering demonstrates
superior transparency performance over the one representing
the former design in Fig. 6(b).

IV. CONCLUSIONS

In this paper, we have demonstrated that carefully engi-
neered radial anisotropy, in an effort to cancel the dominant
electric scattering coefficient T TM

1 , leads to remarkable reduc-
tion in scattering by a single dielectric sphere. A transparency
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FIG. 6. (Color online) Total time-averaged Poynting vector distribution in the E plane for the same four cases as in Fig. 5.

relation between εr and εt has been analytically established
based on the Mie theory which leads to the precise prediction
of the optimal parameters for electrically small particles and
requires slight adjustments with the increase in particle size.
The design with optimized tangential permittivity gives the
best transparency performance in a sense that that the power
flow is almost unaffected by the presence of the object. On the
other hand, the design with optimized radial permittivity can
be improved by reducing contributions from its TE scattering
coefficients with a suitable permeability, which can be a topic
for future work.

Compared to previous coating designs, the designed single
anisotropic sphere has its distinct merits. From an engineering
point of view, it is more robust. For instance, in applications
such as medical probing and imaging, this technique can be
applied to design a robust probe without having to worry
about the wear and tear of any additional coating layer whose
performance depends on a fixed core-shell radial ratio [6,15].

In addition, the design with reduced tangential permittivity
yields better transparency performance over the coated design,
as shown in the near-field analysis. As such, the proposed
design is useful for applications with space constraint, long
durability, and stringent transparency criteria.
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