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Dissipative rogue waves: Extreme pulses generated by passively mode-locked lasers
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We study numerically rogue waves in dissipative systems, taking as an example a unidirectional fiber laser
in a nonstationary regime of operation. The choice of specific set of parameters allows the laser to generate a
chaotic sequence of pulses with a random distribution of peak amplitudes. The probability density function for
the intensity maxima has an elevated tail at higher intensities. We have found that the probability of producing
extreme pulses in this setup is higher than in any other system considered so far.
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I. INTRODUCTION

The concept of rogue waves describes a unifying idea that
applies to a number of extreme phenomena in hydrodynamics,
optics, plasma physics, and other fields [1]. It has been studied
extensively in the case of ocean waves [2-5], as this is essential
for reducing the travel risk for mariners. In recent years, these
studies have extended to the areas of optics [6], capillary
waves [7], and even finance [8], thus enriching significantly
the original concept.

Until now, rogue waves were mostly studied in conservative
systems, with the nonlinear Schrodinger equation (NLSE)
being the most popular model [2]. However, experience tells
us that rogue waves cannot appear without a sufficient energy
supply. This seems to be a paradox. Indeed, how a conservative
system that conserves energy can generate rogue waves, which
require a significant amount of external energy to be pumped
into them?

The solution for this paradox is more or less simple. In
the case of the NLSE, exact solutions to model rogue waves
contained a finite background. Thus, the energy supply for
the rogue waves is provided by the infinitely distributed
continuous wave which carries an infinite amount of energy.
For example, Peregrine solitons [9], which are considered
prototypes of rogue waves in the ocean [10] and in optics [11],
are always located on a finite background. This background is
necessary as it serves as an unlimited energy supply for the
rogue waves whenever they appear. Generally speaking, the
background is unstable and splits into a multiplicity of pulses.
However, the unlimited amount of energy is still there because
of the conservative nature of the model.

In the open ocean, the background is created by the winds
over the water surface. Indeed, in most cases, rogue waves
cannot appear in the quiet ocean. Stormy conditions are one
of the essential prerequisites for their generation. Transfer of
the background energy into a single strong wave is the main
mechanism for generating rogue waves.

Incorporating the energy supply into the nonlinear wave
equation instead of using a conservative system seems to
be a natural way to further improve the model. Thus,
generalizing the model and using a dissipative system with
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an external energy supply from the very beginning may be
useful in considering rogue waves. The first attempts of such
generalization have already been done. Montina et al. [12]
studied non-Gaussian statistics and extreme waves in a
unidirectional optical oscillator pumped with an external light
beam. Self-splitting of the beam into small-scale, strongly
focused “optical needles” created conditions in which some
of these filaments contained significantly more energy than
the average, thus generating a specific form of rogue waves.

In the present work, we use a model different from that
in [12]. Namely, we consider high-intensity waves in the
temporal domain rather than in space. Our system is defined
by a set of equations that describes an optical cavity with
gain and loss. In this model, we studied the optical field
created when gain is high enough to generate a chaotic
sequence of a multiplicity of pulses inside the cavity. This
sequence of pulses with chaotically distributed amplitudes is
in continuous interaction and may form pulses with amplitudes
significantly higher than the average. The pulses with the
largest amplitude can be considered rogue waves generated this
way. We confirmed numerically that their statistics are indeed
different from Gaussian. The probability distribution function
has a long tail corresponding to high-amplitude waves, which
is a direct indication of the presence of rogue waves in the
system.

II. THE MODEL

In order to be concrete, we consider a typical lumped
model of a mode-locked fiber laser [13], shown schematically
in Fig. 1. Namely, the ring cavity is composed of three
basic components: (1) an erbium-doped fiber (EDF), (2) a
single-mode fiber (SMF) with anomalous dispersion, and (3) a
saturable absorber, which is followed by an output coupler that
splits out a certain amount of the energy accumulated during
the round trip.

The evolution of the field envelope, /(z,t), in the SMF is
governed by the NLSE:

D )
e+ SV o+ Y =0, (1)
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FIG. 1. (Color online) Model of the fiber laser used in our
simulations. Notations are as follows: SMF, single mode fiber; SA,
saturable absorber; OC, output coupler; and EDF, erbium-doped fiber.

where D is the dispersion parameter, z is the propagation

distance, and ¢ is the time in a frame of reference moving with

the group velocity, all in normalized dimensionless units.
Pulse propagation in the EDF is modeled by
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Qsat 1s the parameter representing the saturation energy, g, is
the small signal gain, and §, represents the spectral width of
the gain. I'; is the ratio between the nonlinear coefficients in
the EDF and SMF. More precisely, it corresponds to the ratio
between the effective mode areas of the EDF and SMF, when
both fibers are made of the same glass material, for example,
silica.

The instantaneous saturable absorber (SA) is modeled by
the following transfer function:

1(t)

T=T,+AT———,
’ L + 1(2)

3)

where I(t) = |y (¢)|%, T, is the transmission level at low
intensities of the optical field, AT is the transmission contrast,
and I, is the saturation intensity. The output coupler is
characterized by the transmission coefficient 7,. The latter
is the coefficient representing power transfer between the two
sections of the cavity. A typical 0.5-dB coupling loss is added
at the EDF-SMF junction.

The values of the parameters introduced with this model
define the mode of operation of the laser system. We can
choose the parameters in such a way that the laser operates in
one of the following modes: (1) it is a continuous wave (CW)
regime, (2) it generates a single stable, stationary pulse every
round trip, (3) it generates a periodically oscillating pulse with
the period equal to N round trips, (4) it generates several pulses
per round trip, or (5) it generates a chaotic field.

Transformation from a CW to pulsing regime in simple
distributed models usually occurs when the CW operation
becomes unstable [14]. A similar transition happens in lumped
setups. The stationary regime of single-pulse operation is
provided by a realistic choice of the model parameters (given
in the caption of Fig. 2) and for moderate values of the gain.
The latter can be controlled either by g, or by the saturation
parameter Qg,. We have chosen Qyg, as the control parameter
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FIG. 2. (Color online) Bifurcation diagram constructed by vary-
ing Qg while keeping the rest of the parameters fixed. The plot
is split into two sections (a) and (b) for convenience. Each (red)
dot on the diagram represents the absolute maximum of the field
amplitude observed at each round trip. The regions with a single
maximum for a given Qg, in (a) correspond to a stable single-pulse
operation. The regions with a wide vertical band represent a chaotic
output. These regions appear repeatedly when increasing Q. Each
of them occupies a finite interval along the Q, axis, being a
potential area for the appearance of rogue waves. Parameters of the
system are D, = —0.735, ', =3, go =4, B, = 0.008, Lsyr = 1.1,
Lgpr = 0.22, T, =70%, Ty = 0.3, AT = 0.7, and I, = 0.6.

as it can be expressed directly in units of the energy pumped
into the cavity.

The bifurcation diagram constructed by increasing the value
of the control parameter Qg is shown in Fig. 2. When
decreasing Qg,, we obtained a similar bifurcation diagram
with slightly shifted bifurcation points. Certain fixed values
of Qg provide a chaotic regime independent of the direction
of the change. For example, this occurs when the values of Qg
equal 3, 6, or 60. We concentrate on these three specific cases,
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FIG. 3. (Color online) Chaotic evolution of the pulse in the cavity
for Qg = 3. The evolution variable, N, is the number of round trips.

which are shown in Figs. 2(a) and 2(b) by vertical dashed lines.
Analogous bifurcation diagrams are obtained when changing
the small signal gain g, rather than Qg,. We do not present
them here and concentrate on varying just Q.

Sequential transformations between various modes of
operation when increasing Q, can be seen in the bifurcation
diagram of Fig. 2. The laser generates a single pulse with
well-defined amplitude at Qg between 1.25 and 2.34. The
pulse switches amplitude between two fixed values after
every round trip when Qg, increases above 2.34. This tran-
sition corresponds to the period doubling of the single-pulse
regime [ 15]. There are several such transitions in Fig. 2(a) with
increasing number of pulses inside each round trip. Namely,
the laser generates two pulses when Qg is around 4.5. It
generates three pulses when Qg is around 7, and so on. The
switch to a multipulse regime occurs when the laser operates
in the anomalous path-averaged dispersion, which is the case
in all simulations performed here.

At each set of transitions, period doubling is followed by
period quadrupling, and after a sequence of transformations
the dynamics switches to a chaotic regime when the pulses
randomly change amplitude after each round trip. Well-
developed chaotic behavior of a single pulse can be observed
at Qg = 3. An example of this dynamics is shown in Fig. 3.
For this value of Qg,, the model does not allow an increase
of the number of pulses. Splitting of a single pulse does not
multiply the number of pulses as any additional pulse in the
cavity dissipates and only one of them survives. At the next
region of chaotic dynamics when Qg is around 6, we can
observe the random evolution of mainly two pulses in each
round trip. For the chosen set of parameters, the number of
pulses in the cavity is roughly proportional to Qg, divided
by 3.

For higher values of Qgy, the number of pulses in the
cavity increases. The interaction between them produces
significantly more complex field profiles. Depending on the
position of Qg, within each interval of chaotic behavior, the
pulses may repel or attract each other. For example, when
Qsae 1s around 30, the pulses mainly repel each other. They
tend to be distributed more or less uniformly within the cavity.
The dynamics reveals their chaotic motion and collisions. The
dynamics within the cavity at Qg = 30 does not reveal any
special features. Thus, it is not presented here.

For other values, the pulses have the tendency to group
into bunches. An example of this behavior is shown in Fig. 4
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FIG. 4. (Color online) Chaotic evolution of a group of pulses
when Qg = 60. Note the different scale in the ¢ axis with respect
to Fig. 3.

obtained for Qg = 60. Here we can observe simultaneously
around 20 main pulses with chaotically changing amplitudes.
The bunch stays isolated, and pulses that separate from the
group eventually vanish. These pulses are submerged into
a sea of small-amplitude radiation waves. Then the whole
output radiation generated by the laser can be considered
completely chaotic. We stress that the specific form of the
initial conditions does not influence directly the long-term
evolution of the group. We observe similar results starting
either from a single Gaussian beam of arbitrary width or
a set of individual well-separated bell-shaped pulses. Initial
conditions are forgotten after a few round trips, and then the
group dominates in the subsequent dynamics.

This regime is ideal for studying rogue waves. Pulse
amplitudes vary in large intervals from very small amplitudes
to completely unexpected high rises. One example is shown
in Figs. 5 and 6. For each N, we traced the pulse with the
highest amplitude in # domain. In Fig. 5, this peak amplitude
is plotted as a function of N. Using such diagrams, we detected
the tallest pulse in any particular run that starts with chaotic
initial conditions.

A section of the optical field profile containing the tallest
pulse for this special value of round trip, N = 276, is shown
in Fig. 6. We can see that the pulse intentionally positioned
in the middle of the interval, + = 0, can be considered as a
rogue wave as its maximum intensity is almost three times
higher than the maximum intensity of the pulse that is next in
height. This example shows clearly the random appearance of
rogue waves in our model. Higher peak amplitudes can also
be observed, but the probability of their appearance is smaller.

III. STATISTICS OF THE PULSES

The statistical properties of radiation can be studied either
using the whole bunch of pulses or just isolating a finite
interval within the bunch. In either case, we obtained identical
results. Another example of a pulse sequence obtained for the
case Q = 60 is shown in Fig. 7. It is obtained for the same
set of parameters as Fig. 6, but due to the randomness of the
process, the average pulse intensities here are lower. In this
sense, it can be considered as a more typical output profile
among the whole set presented in Fig. 4.

A part of the same realization contained in the red box is
presented in Fig. 8. Fivefold magnification in the time scale
allows us to see more clearly the shapes of separate pulses.
Typically, we used 65536 points to describe the total temporal
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FIG. 5. (Color online) (a) Evolution of the absolute maximum
amplitude of the field in ¢ with the number of round trips, N, for
Qsa = 60 (solid blue line). The highest maximum in this run is
observed when N = 276. This value is marked by the dashed (red)
vertical line. (b) The contour plot of the same simulation in the (¢,z)
plane, that is, inside the cavity for the two nearest round trips. Each
of the two focused spots (red online) here (at t = 0) is a signature of
arogue wave. The output radiation contains only those formed at the
coupler position, that is, at the integer values of N.
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FIG. 6. (Color online) Main segment of the transverse field profile
of the laser radiation at the round-trip number N = 276. The whole
bunch of pulses occupies the larger temporal interval [—50,50].
The extreme pulse in the middle can be considered as a rogue wave.
The inset shows the same pulse in higher resolution.
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FIG. 7. (Color online) A sample of the output radiation from the
model laser. Parameters are the same as in the caption of Fig. 2 with

Qsat = 60.

interval of [—400,400]. This means that every individual pulse
is smoothly approximated within the numerical grid which is a
necessary condition for having accurate simulations. The solid
red curve in this figure represents the envelope of the output
field intensity, while the dashed green vertical lines show the
position of the field maxima. We counted these maxima in
order to calculate the probability density function (PDF) of
the output field.

PDFs can be constructed in various ways. For ocean waves,
it is customary to count the wave height as the height from
trough to crest. This measure has its justification in the action
the wave produces on ships. In optics, the natural measure of
the pulse height is its maximal intensity relative to the zero
level. This is a quantity usually determined by the optical
measuring equipment. Thus, it would be natural to construct
the PDF calculating the intensity heights of the maxima in the
sequences; a typical example is the one shown in Fig. 8.

On the other hand, the notion of rogue wave derived from
the oceanic terminology and, in principle, we can also easily
calculate the pulse height as the height from trough to crest
of intensity, thus allowing for certain comparisons between
optical rogue waves and the oceanic ones. This exercise would
make sense if we are using the optical rogue waves as a small-
scale model for oceanic ones. Additionally, the comparison of
various techniques in constructing the PDF is of significant
value by itself.

Such comparison is based on the fact that nonlinear waves in
optics as well as deep-water waves in the ocean are described
by the same nonlinear Schrodinger equation. This common
description may call for direct analogies between them.
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FIG. 8. (Color online) Part of the curve enclosed in the
central (red) box in Fig. 7.
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However, even if the equation is the same, the measurable
quantities are different. Namely, in optics, we measure the
intensity, that is, the square modulus of the amplitude of
the envelope of the carrier wave, which is a complex field.
In the case of deep-water waves, the carrier wave is a real
function. A measurable quantity is the real part of the envelope
multiplied by the carrier wave. This difference leads to a
significant distinction between the two types of waves. Direct
comparisons should be done with care.

Although for conventional laser applications, people have
been mostly interested in low-noise CW radiation on the one
hand and stable single-pulse mode locking on the other hand,
there is presently a growing interest in studying chaotic laser
radiation. A decade after the intensive studies of the statistical
properties of transverse laser modes [16], research has focused
on the statistical properties of single transverse-mode laser
emitters. Indeed, chaotic quasi-CW oscillators could be ap-
plied in optical cryptography for secure communications [17],
whereas noiselike, wide-band laser pulses can be useful for
low-coherence reflectometry [18]. However, the generation of
a truly chaotic field in the temporal domain is still largely
mysterious. Although pulse generation in mode-locked lasers
is presently well understood, the recent focus on excitable
dynamics within the multiple-pulse quasi-mode-locked regime
stimulates further interest in exploration of this type of
systems [19].

Generally, the statistics of laser radiation is measured as
the second factorial moment [20]. Roughly speaking, the main
value of interest is the intensity distribution of the output
radiation. Depending on the model, this distribution can look
Gaussian [20] or can be a more complicated function of the
intensity [21]. When studying rogue waves, we are dealing
with the distribution of the maxima of radiation rather than
radiation at every point. We expect that the density of maxima
should be different from the density of probability at every
point of radiation.

IV. PROBABILITY DENSITY FUNCTION

The bifurcation diagram in Fig. 2 reveals many regions of
chaotic dynamics in our laser system. They all have different
statistical characteristics. The dynamics depends to a great
extent on the number of pulses that exist simultaneously in
the cavity. In order to show this, in Fig. 9, we compare the
output laser pulses obtained for two values of the parameter
Qsat, namely, 3 and 6. In one case (Qg,; = 3), the output signal
consists mainly of a single pulse of random amplitude, while
in the other case (Q, = 6), it consists of two main pulses per
round trip, each one with random amplitude.

In order to study the statistical properties of the output
radiation in each of these cases, we accumulated data over
a large number of round trips. The temporal signal has been
taken after the output coupler, which corresponds to a stro-
boscopical measurement process as it would be implemented
in the frame of a realistic experiment. We constructed the
probability density functions for all local peak intensities /peax
exceeding the threshold of 0.2. The two probability density
functions are shown in Fig. 10.

There is a clear difference between the curves. Namely, the
single-pulse dynamics does not allow for high field intensities.
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FIG. 9. (Color online) Contour plots of evolution of two sample
pulses when Qg = 3 (left) and Qg = 6 (right). The vertical axis
corresponds to N, and the horizontal axis corresponds to ¢.

Pulses with intensity above 2.8 virtually do not exist. On the
other hand, the appearance of a second pulse in the cavity
stimulates the growth of the intensity of each of them. Then
the corresponding PDF has significant values at intensities
higher than 2.8 (blue curve).

This growth of the probability for intensities above 2.8
is related first to the asymmetric distribution of the energy
between the two pulses and second to the pulse interaction. The
two pulses move chaotically across the cavity and unavoidably
collide. Collisions are inelastic in nonintegrable systems, thus
allowing for energy exchange between the pulses. Moreover,
the pulses can merge or multiply. Such interactions may
create the pulses that have higher intensities in comparison
with the case of the single-pulse evolution. The shape of
the PDF for Qg = 6 in Fig. 10 reveals the appearance of
such high-intensity pulses. In fact, the highest intensities
are increased more than twice in comparison with the case
Qgar = 3.

The appearance of pulses with high intensity suggests that
these can be identified as rogue waves in dissipative systems.
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FIG. 10. (Color online) Probability density functions for Qg = 3
(red curve) and Qg = 6 (blue curve).
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FIG. 11. (Color online) Probability density function for the
maxima of intensity (red curve) and for the pulse hight from crest
to trough (blue line). The two curves are virtually identical. For
comparison, the dashed (green) line is drawn for a pure exponential
decay of the probability.

We can call them dissipative rogue waves. As the number of
pulses in the cavity increases, the chances for their interaction
also become significantly higher. This means that as the value
of Qsa becomes larger, the probability of finding a rogue wave
with large intensity becomes higher.

For the value Qg = 60, the probability density function
is shown in Fig. 11. It is calculated in two different ways.
The dotted (blue) curve in Fig. 11 shows the PDF which has
been constructed using as the definition of the wave height
the intensity from crest to trough in Fig. 8. The solid (red)
curve on the same figure shows the PDF constructed using the
maxima of the signal intensity counted from the zero level
in Fig. 8. As we can see, qualitatively and quantitatively,
the two curves are nearly identical. High-intensity parts of
the two curves (above 20) have larger variations as the
total amount of data here is much less than for the lower
intensities. Unlike for the case of water waves, the PDF can
be calculated based on the pulse intensity relative to the zero
level. This is a measurable quantity and its use is more natural
in optics.

Our results demonstrate that the high-intensity parts of the
PDF are indeed elevated. The two curves in Fig. 11 are not
straight lines as is expected for any of the classic distributions.
For the sake of comparison, in Fig. 11, we also drawn a straight
dashed (green) line fitted to approximate the low- to medium-
intensity part of the curves. The data at the high-intensity
part of the curves are orders of magnitude above this line.
Thus, high-intensity events occur more often than they should
according to the Gaussian or Rayleigh distributions.

A tricky feature of our plots in Fig. 11 is that the
probability of small-amplitude pulses tends to infinity. In
optical experiments [6], the low-amplitude pulses are usually
eliminated completely from the measurements in order to
avoid such difficulties. Then the presence of rogue waves
manifests itself in L-shaped curves for the PDFs. However,
to be accurate, we have to account for all data rather than just
for the high-amplitude waves.
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FIG. 12. (Color online) Significant wave height shown by the
dotted (blue) curve versus the low-intensity threshold, /;,, when the
maxima below I,,;, are not accounted for. The probability of having a
pulse with a peak intensity above the level of 2.2 times the significant
wave height, Iswy is shown by the dashed (red) line.

An important issue in defining rogue waves is the level
of the significant wave height (SWH). The latter requires the
knowledge of the probability of appearance of waves of all
amplitudes, starting from the zero level. This is problematic
as the PDF in our case does not have a constant limit at
low intensities. Instead, it increases to high value that may
depend on many factors, including the size of the numerical
grid. Thus, counting the total number of events required
for the calculation of the SWH is complicated. In order to
overcome this difficulty, we have to remove small-intensity
pulses below a certain threshold from consideration. This
threshold, say Ini,, is one of the essential parameters in
the definition of the SWH and consequently of the rogue
wave.

In order to show that, we calculated the SWH for various
levels of the threshold intensity, Iji,. The results are shown in
Fig. 12. Here, the blue dotted line represents the SWH versus
I'nin- Despite the fact that the SWH decreases indefinitely when
we decrease the Iy, the straight-line approximation from the
high-intensity part of the curve provides us with the rough
estimate of the SWH being around 4. This approximate value
can be used for the definition of the minimum intensity of a
rogue wave, which is normally (using the common definition
taken for ocean waves) 2.2 times the SWH, that is, 8.8 in our
case.

The red dashed line in Fig. 12 shows the probability of the
appearance of a pulse with an intensity above this level. As we
can see from the figure, this probability is relatively high. Even
if we choose an unreasonably high value of I,,i,, ignoring most
of the low-amplitude pulses, this probability is above 0.001.
The lower limit of the probability is above 0.01. Thus, extreme
pulses in dissipative systems may appear quite often. Roughly
speaking, every pulse out of a hundred can be counted as being
extreme. This probability is significantly higher than in any of
the systems considered so far.

In conclusion, we considered a typical fiber laser cavity in
aregime of generating multipulse sequences. At certain sets of
parameters, the laser can serve as an example of a dissipative
system which transforms a continuous pump of energy into
a chaotic train of pulses with random amplitudes. We have
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found that the probability of producing extreme pulses in this
laser is higher than in other systems.
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