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Control of solitons
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A method for adiabatic control of envelope solitons in the driven nonlinear Schrödinger equation is developed.
The approach is based on the autoresonant effect, when the soliton is captured (“phase locked”) by a two-phase
resonant driving with slowly varying frequencies. Threshold conditions for amplitudes and variation rates of
the driving required for the control of both the amplitude and the velocity of the soliton are found. Numerical
simulations demonstrate that the method allows one to control solitons for a long time according to a given
scenario, while the threshold conditions are fulfilled locally.
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I. INTRODUCTION

Envelope solitons are fundamental objects in physics of
nonlinear waves. The envelope solitons are studied experi-
mentally in different materials [1,2] and they have important
applications in optical communications [3,4]. A principal
problem in this context is how to excite solitons with
predefined parameters and control soliton dynamics. Several
approaches to this problem have been reviewed in Ref. [5]. In
this paper we will use another approach, which is based on the
effect of autoresonance [6,7].

The main idea of autoresonance dates back to Refs. [8,9]
for the acceleration of relativistic particles. The adequate
theory of the effect was proposed in Ref. [10] for the simplest
model of a nonlinear pendulum. The autoresonance occurs in
nonlinear systems under periodic driving with slowly varying
parameters (usually, the driving frequencies). If the phase of
oscillations of the system is captured by the drive in the vicinity
of the resonance(“phase locking”), and the amplitude of the
driving exceeds some threshold value, the phase locking will be
preserved for a long time allowing one to control the amplitude
of oscillations by varying the driving frequency. A wide
range of applications of the autoresonance associated with
the nonlinear oscillator is discussed in Ref. [11] for plasmas,
vortex, and planetary dynamics. At present, autoresonance
has been applied in optical couplers [12], superconducting
Josephson resonators [13], driven Bose-Einstein condensates
[14], and excitation of antiproton plasmas [15]. Mathematical
aspects of the problem have been reviewed in Ref. [16]. The
idea of autoresonance was first applied to the control of non-
linear periodic waves [17] and solitons [18] in the Korteweg-
de Vries equation. The main result of application of the
autoresonance to nonlinear wave systems is excitation of waves
to high amplitudes by a small resonant drive starting from a
background noise. In the case of the nonlinear Schrördinger
(NLS) equation, it was demonstrated in Refs. [6,7]
for both one-phase and multiphase driving. A specific problem
is the autoresonant control of already existing high amplitude
solitons. For the one-phase driving, this problem has been
studied for the sine-Gordon [19] and NLS equations [20].
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In this paper we will study the autoresonant control of the
solitons in the perturbed NLS equation

iut + 1
2 uxx + |u|2 u = εf (x,t), (1)

which is often used to describe dynamics of the envelope
solitons in various areas of nonlinear wave physics. The
perturbation in the right-hand side of Eq. (1) is supposed to
be small (0 < ε � 1) and have a form of the periodic two-
phase driving

f (x,t) = eiψ(t)
(
1 + g eik[x−X(t)]

)
, (2)

where ψ and X are given functions of time so that the
frequency ψt = �(t) and the velocity Xt = U (t) of the second
phase are slowly varying functions: �t = O(α1), Ut = O(α2),
|α1,2| � 1. We will assume that the small rates αi are of the
order of ε.

Starting from Ref. [21], a similar problem was actively
studying for a damped and driven case with constant frequen-
cies (α1 = α2 = 0) [22–25]. It was found that the soliton can
be phase locked only if the dissipation coefficient was small
enough in comparison with the amplitude of the driving ε.
The phase locking without dissipation was studied in detail
in Ref. [26] for solitons in asymmetric twin-core optical
fibers. The problem is to preserve the phase locking while
the frequency of the driving varies. If the phase locking is
preserved, the frequency of the soliton (and, accordingly, its
amplitude) should follow the frequency of the driving, which
allows one to control the soliton amplitude by the drive. To find
allowable variations of the driving frequency (i.e., threshold
conditions on the rates α1,α2 in our case) when the phase
locking occurs is the subject of the theory of autoresonance. In
this paper we restrict ourselves with a dissipationless case
because it is known that a small dissipation will preserve
the main features of the autoresonance [27–29] (the linear
dissipation coefficient should be less than ε/2 [16]).

An alternative method to excite NLS solitons was proposed
in Ref. [30]. The approach did not associate with the phase
locking and occurred when the varying driving frequency
crossed the resonance frequency. A similar approach for a
nonlinear pendulum was also discussed in Ref. [10] and was
associated with the general nonlinear resonant phenomena
[31], which allowed one to excite solitons up to amplitudes
O(

√
ε) only. In contrast, autoresonance is a much more
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efficient method which allows one to excite solitons with high
amplitudes O(1) [6,16].

If ε = 0, the NLS equation has the soliton solution

u = ϕs(x,t) = A

cosh z
ei�, � = V

A
z + θ, z = A(x − ξ ),

(3)

where

ξ = V t + ξ0, θ = ωt + θ0, ω = A2 + V 2

2
. (4)

Here A and V are the amplitude and the velocity of the
soliton. They are free parameters, which completely define
the shape and the frequency ω of the soliton. The objective
of the control is to vary the soliton parameters according to
a given scenario by means of a driving. This problem was
partially solved in Ref. [20], where it was shown that one of
the soliton parameters, the frequency ω, could be controlled
by a one-phase driving. In this paper we show that both soliton
parameters A and V can be effectively controlled separately
by a small two-phase driving of the form (2). Variations of
�(t),U (t) allow us to control the soliton parameters A and V

via the autoresonant effect. The simplest dependence that will
be used in the following is

� = �0 + α1t, U = U0 + α2t. (5)

The paper is organized as follows. In Sec. II we find
equations for variations of the soliton parameters by the small
two-phase driving of the form (2) with varying frequencies.
In Sec. III we reduce the problem to a model of coupled
pendulums and find the threshold conditions on parameters
of the driving when the phase locking of the solitons occurs.
Section IV deals with the numerical simulation of the au-
toresonance in the initial model (1). We show that the phase
locking can be preserved for a long time, which allows us to
considerably modify the soliton parameters by varying driving
frequencies according to a given scenario.

II. EQUATIONS FOR SOLITON PARAMETERS

An external perturbation in Eq. (1) generates a background
wave χ (x,t) ∼ ε. Since its amplitude is small, it may be
described by the linear equation

iχt + 1
2χxx = ε f (x,t). (6)

Studying soliton dynamics, it is convenient to separate the
localized and nonlocalized background parts of the solution:

u(x,t) = ϕ(x,t) + χ (x,t), (7)

where ϕ(x,t) → 0 (|x| → ∞). For a small perturbation, the
localized component represents a slightly distorted soliton
profile ϕ(x,t) ∼ ϕs(x,t) + O(ε) and satisfies the perturbed
NLS equation [20]

iϕt + 1
2 ϕxx + |ϕ|2 ϕ = −χ∗ϕ2 − 2χ |ϕ|2, (8)

where the perturbation in the right-hand side is localized
spatially on the soliton.

Equation (8) can be written in the variational form

δ

∫∫
L(x,t) dx dt = 0, (9)

with the Lagrangian density

L = 1
2 [i(ϕϕ∗

t − ϕ∗ϕt ) + |ϕx |2 − |ϕ|4] − |ϕ|2(ϕχ∗ + ϕ∗χ ).

(10)

We will assume that the effect of the wave χ (x,t) on the
soliton is reduced to a slow variation of the soliton parameters
with time. This approximation is usually called adiabatic. In
this approximation we can use the soliton profile ϕs , instead
of ϕ, where A, V, ξ , and θ are now functions of time to be
determined [32]. After the substitution, one obtains

L = A2

ch2 z

[
θt − V ξt + Vt

A
z − A2

ch2 z
+ 1

2
(A2 + V 2)

]

− A3

ch3 z
(χ∗ei� + χe−i�). (11)

Below, we will make sure that the above assumption is valid
by comparing the theoretical conclusions with the results of
our numerical simulation of Eq. (1).

With the Lagrangian (11), the integral over x in Eq. (9) can
be calculated explicitly. One finds

δ

∫
Ldt = 0,

where

L = A
(
2θt − 2V ξt + V 2 − 1

3A2
) − A3(Ieiθ + I ∗e−iθ ),

(12)

I =
∫ ∞

−∞

ei(V/A)z

ch3 z
χ∗(x,t) dx. (13)

For the driving (2), the solution of Eq. (6) can be taken
approximately [with an error of order [O(εα1 + εα2)] as

χ (x,t) = − ε

�
eiψ (1 + Geik(x−X)), (14)

where

G = g �

� − kU + k2/2
. (15)

Using the formula

F (μ) = 2
∫ ∞

−∞

eiμz

cosh3 z
dz = π (1 + μ2)

cosh πμ

2

, (16)

we can calculate the integral (13):

I = − ε

2A�
e−iψ

{
F

(
V

A

)
+ Ge−ik(ξ−X)F

(
V − k

A

)}
.

Thus, the Lagrangian takes the final form

L = 2A

(
δt + � − V

k
φt − V U + V 2 − 1

6
A2

)

+ εA2

�

{
F

(
V

A

)
cos δ + GF

(
V − k

A

)
cos(δ − φ)

}
,

(17)
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where we introduced differences of phases of the soliton and
the driving

δ = θ − ψ, φ = k(ξ − X). (18)

As a result, the Euler-Lagrange equations for variations of the
soliton parameters take the form

δt = �ω − εA

�

{ [
F1 − V

A
F ′

1

]
cos δ

+G

[
F2 − V − k

2

A
F ′

2

]
cos(δ − φ)

}
, (19)

φt = k(V − U ) + εk

2�
{F ′

1 cos δ + GF ′
2 cos(δ − φ)}, (20)

At = −εA2

2�
{F1 sin δ + GF2 sin(δ − φ)} , (21)

Vt = εA

2�
{V F1 sin δ + G(V − k)F2 sin(δ − φ)}, (22)

where we introduce

�ω = ω − �, F1 = F

(
V

A

)
, F2 = F

(
V − k

A

)
, (23)

and the prime denotes the derivative of the function with
respect to its argument. The system (19)–(22) describes the
evolution of the soliton parameters under the action of the
small perturbation (2).

III. A MODEL OF TWO COUPLED
NONLINEAR PENDULUMS

It is convenient to rewrite the system (19)–(22) in the vector
form

xt = �� + εF , (24)

where

x = (δ,φ,A,V )T , �� = [�ω,k(V − U ),0,0]T ,

F(�,U,x) = (F δ,Fφ,FA,FV )T . (25)

In the vicinity of the resonance �� ∼ O(
√

ε) the soliton
parameters should be slow functions of time. We introduce the
“slow” time

τ = √
εt

and consider the special asymptotic solution

x = x0 + √
εx1 + εx2 + · · · , xi = xi(τ ). (26)

The slow parameters of the driving � and U will also be
functions of τ . Supposing the linear dependence (5), one writes

� = �0 + √
ε β1τ, (27)

U = U0 + √
ε β2τ, (28)

where we introduced

β1 = α1/ε, β2 = α2/ε. (29)

Because the rates αi were assumed to be small values of the
order of ε, then βi ∼ O(1).

The vector �� will be the power series

�� = ��0 + √
ε��1 + ε��2 + · · · , (30)

where components of the coefficients can be found using
Eqs. (26)–(28):

��δ
0 = A2

0 + V 2
0

2
− �0, ��

φ

0 = k(V0 − U0), (31)

��δ
1 = A0A1 + V0V1 − β1τ, ��

φ

1 = k (V1 − β2τ ) , (32)

��δ
2 = A0A2 + V0V2 + A2

1 + V 2
1

2
, ��

φ

2 = kV2. (33)

Here, the superscripts indicate the vector components in
accordance with components of the vector x, Eq. (25): ��i =
(��δ

i ,��
φ

i ,��A
i ,��V

i )T . One notes that the components
��A and ��V equal to zero by definition (25).

Substituting the series (26) and (30) into Eq. (24), one finds
a set of vector equations for every power of

√
ε:

0 = ��0, (34)

x0,τ = ��1, (35)

x1,τ = ��2 + F(�0,U0,x0) . . . . (36)

Equation (34) gives

A2
0 + V 2

0

2
= �0, V0 = U0. (37)

It means that, in the main order, the velocity and the
amplitude of the soliton satisfy the resonant condition, when
the frequency of the soliton coincides with the driving
frequency and the soliton velocity equals the velocity of the
driving.

To find equations for the phase differences δ0(τ ) and φ0(τ )
we differentiate Eq. (35) with respect to τ and eliminate A1,τ

and V1,τ using Eq. (36). One finds

δ0,ττ = A0FA(x0) + V0FV (x0) − β1, (38)

φ0,ττ = kFV (x0) − kβ2. (39)

Using the explicit form of F , we rewrite the last equations in
the final form:

δ0,ττ = a sin δ0 + b sin(δ0 − φ0) − β1, (40)

φ0,ττ = c sin δ0 + d sin(δ0 − φ0) − kβ2, (41)

where

a = A0

2�0
F1 (V 2

0 − A2
0), (42)

b = A0G

2�0
F2 (V 2

0 − A2
0 − kV0), (43)

c = kA0V0

2�0
F1, (44)

d = kA0G

2�0
F2 (V0 − k). (45)
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Here the functions F1,2 are taken at V0,A0 and G at �0,U0.
A phase locking means that the phase differences δ0 and
φ0 oscillate in a finite region around some mean values. It
follows that the dynamical system (40), (41) should have stable
stationary points (δ∗,φ∗).

At first, let us consider the special case. If k = 0 (and/or
g = 0), the system (40),(41) reduces to the equation for the
only phase δ0:

δ0,ττ = a(1 + g) sin δ0 − β1, (46)

It is a one-phase limit close to that which was studied in
Ref. [20]. Equation (46) describes the dynamics of a “quasi-
particle” in the potential V (δ0) = a(1 + g) cos δ0 + β1δ0. The
stationary point δ∗ is defined by the equation

sin δ∗ = −β1/a(1 + g), (47)

which has solutions only at

|β1| � |a(1 + g)|. (48)

This condition is the crucial point in the theory of autoreso-
nance. Returning to the definition (29) we conclude that the
phase locking of a soliton by the slowly varying driving occurs
if the rate of variation of the frequency |α1| is less than some
threshold value proportional to the amplitude of the driving:

|α1| � αcr = ε|a(1 + g)|. (49)

The condition differs from the case of the autoresonance of
small amplitude waves [6,7,11] when αcr ∼ ε3/4. One notes
also that studying the stability of the stationary points δ∗ is
trivial for the one-phase case. The stable points are located in
the minima of the potential V (δ0), which always exist under
the condition (48).

Let us return to the two-phase driving when k 	= 0 and g 	=
0. Equations for the stationary points follow from Eqs. (40)
and (41):

sin δ∗ = 2�0

kA3
0F1

{
β1(V0 − k) − β2

(
V 2

0 − A2
0 − kV0

)}
, (50)

sin(δ∗ − φ∗) = 2�0

kA3
0F2G

{
β2

(
V 2

0 − A2
0

) − β1V0
}
. (51)

It is obvious that they have solutions only if the absolute values
of the right-hand sides of Eqs. (50) and (51) are less than a unit.
For the given parameters of the soliton A0,V0 and the driving
k,g, these conditions define a rhombus in the plane (β1,β2).
The phase locking can occur only for the values (β1,β2)
located inside the rhombus (see Fig. 1). These conditions
extend the restriction (48) to the rates α1,α2 of the two-phase
driving.

It is convenient to note another point of view to the threshold
conditions. Let us fix β1,β2 and find the structure parameters
of the driving k,g when Eqs. (50) and (51) have solutions,
i.e., when the phase locking of a given soliton with A0,V0 can
occur. The equation | sin δ∗| = 1 with respect to k has two
roots,

k1,2 = β1V0 − β2
(
V 2

0 − A2
0

)
±A3

0F1

2�0
+ β1 − β2V0

.
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0.4
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β2

β1
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FIG. 1. The regions of the phase locking (gray domains): (a) –
g = 0.7, (b) – g = 0.8; g(1) = 0.728, g(2) = 1.325; A0 = 1, V0 = 0.1,
k = 0.15.

Sorting the roots so that k1 < k2, one finds that Eq. (50) has a
solution for special values of the wave number k:

k1 < k < k2, if
∣∣2�0(β2V0 − β1)/A3

0F1

∣∣ > 1, (52)

k < k1,k > k2, if
∣∣2�0(β2V0 − β1)/A3

0F1

∣∣ � 1. (53)

The solvability of Eq. (51) gives

|g| � gcr = 2
∣∣�0 − kV0 + k2

2

∣∣
kA3

0F (V0−k

A0
)

∣∣β2
(
V 2

0 − A2
0

) − β1V0

∣∣. (54)

Now we will study the stability of the stationary points.
The standard linear analyses in the vicinity of the point
(δ∗, φ∗) give the following characteristic equation:

λ4 − p λ2 + q = 0, (55)

where

p = a cos δ∗ + (b − d) cos(δ∗ − φ∗), (56)

q = (bc − ad) cos δ∗ cos(δ∗ − φ∗) . (57)
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If all four roots are pure imaginary λ = i ν, ν ∈ R, a stationary
point will be stable. The conditions for that are

p < 0, 0 < q <
p2

4
. (58)

These conditions restrict the region of the phase locking in
the (β1,β2) plane inside the rhombus (gray regions in Fig. 1).
One notes that the line q = 0 coincides with the boundaries
of the rhombus because cos δ∗ cos(δ∗ − φ∗) = 0 just in the
boundaries. There are two qualitatively different types of
behavior of the stability region depending on the parameter
g [see Figs. 1(a) and 1(b)]. In the second case, which is always
observed in a finite range g(1) < g < g(2), the soliton cannot
be phase locked by the steady drive with β1 = β2 = 0. This
gap disappears when |k| � |V0|. For any parameters, the phase
locking always exists in the vicinity of the rhombus boundaries
(see Fig. 1).

IV. NUMERICAL SIMULATION

In this section we present a detailed numerical simulation of
the control of solitons in Eq. (1) by the autoresonant effect. The
initial soliton was specified by its amplitude A0 and velocity
V0. The driving at t = 0 was in resonance with the soliton
according to Eq. (37). The phases θ0, ξ0 were consistent with
initial phases of the driving ψ(0), X(0) so that the relevant
phase differences (18) resided in the vicinity of the stationary
point (δ∗,φ∗) defined in Eqs. (50) and (51). We have used the
standard Fourier transform method (see, e.g., [33]) to solve
Eq. (1) in an interval with the length much greater than the
width of the initial soliton (∼1/A0) to prevent the effects of
boundaries on the dynamics of the soliton.

 0.0

 0.4

 0.8

 1.2

-6

-4

-2

 0

 2

 0  2  4  6  8  10  12
10

-3t

φ,δ

φ

δ

ΔAV,

V

ΔA

FIG. 2. Numerical simulation of NLS equation (1) for
g = 0.25 > gcr , where gcr = 0.08. Other parameters: ε = 10−3,
β1 = 0.25,β2 = 0.1, k = 1, δ(0) = 0.5 (δ∗ = −0.05), φ(0) = −2.8
(φ∗ = −2.77), A(0) = 1, and V (0) = 0. The value �A is a deviation
of the soliton amplitude from the initial value: �A = A − A(0).

Figure 2 shows a typical behavior of the soliton when
driving parameters satisfy conditions of the phase locking
obtained in Sec. III. It is clearly seen that the amplitude A(t)
and the velocity V (t) of the soliton grow when parameters
of the driving vary according to Eq. (5). At the same time,
the phase differences δ(t),φ(t) oscillate in restricted ranges
displaying phase locking of both phases.

One notes that the theory of Sec. III gives conditions for
phase locking of the soliton in the initial time interval only
(t � ε−1). Numerical calculations demonstrate that, actually,
the soliton being phase locked initially will preserve the phase
locking during a long period and thus, sustain approximately
the resonant conditions (37) locally in time. It allows one to
considerably modify the soliton parameters according to the
scenario V ≈ U (t) and A ≈√

2�(t)−U 2(t), which is shown in
Fig. 2 by dashed lines for the linear dependence of Eq. (5).
The soliton amplitude and velocity grow until the threshold
conditions for the phase locking are fulfilled. We observed
destruction of the phase locking when the inequality (58)
was broken at t ≈ 9.5 × 103. After the destruction, the soliton
amplitude and velocity tend to steady levels forming a soliton
which later does not depend on the small nonresonant driving.

We also observed no radiation from the soliton in the
stage of phase locking if the amplitude of the soliton is large
enough and the driving is far from the resonance with small
amplitude background waves. The sufficient conditions follow
from |χ | � A. Using Eq. (14) we found

A � ε1/3, |� − kU + k2/2| � gε2/3. (59)

If these conditions are fulfilled, we observed that the back-
ground perturbations remain of the order of ε during the whole
process, which confirmed that the adiabatic approximation was
an appropriate supposition.

To verify the conditions of the phase locking in the initial
model (1) we have performed simulations with different
parameters of solitons and the driving. Varying the amplitude
of the soliton A0 and the driving parameter g we test the
threshold condition (58). A comparison of the numerical and

-1

0

1

2

3

4

5

6

7

-6 -5 -4 -3 -2 -1  0

q

p

1

2

FIG. 3. The region of stability of the stationary points in the (p,q)
plane is confined by lines 1 and 2. Circles mark the boundaries of the
phase-locking region found numerically in NLS equation (1). V0 = 1,
k = 0.1, β1 = 1, β2 = 0.2, δ(0) = δ∗, and φ(0) = φ∗.
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0

1.0

2.0

3.0

0  1.0  2.0  3.0  4.0

AV, A

V

10
-3t

FIG. 4. Control of the amplitude A of the soliton, preserving its
velocity V in NLS equation (1); β1 = 0.1, β2 = 0, ε = 10−3, g = 0.1,
k = 1, δ(0) = 0.5, φ(0) = −2.82, A(0) = 1, and V (0) = 0.

theoretical results is given in Fig. 3. The region of stability
of the stationary points in the (p,q) plane is confined by
lines 1 and 2 according to Eq. (58). It turned out that the
region of phase locking of the solitons found numerically

 0.8

 0.9

 1

 1.1

 1.2

 0  0.1  0.2  0.3  0.4

 0.2

 0.4

 0.6

 0.8

 0  0.5  1  1.5  2

Ω

U

V

A

Ω ,U

10
-4t

FIG. 5. A behavior of the velocity V and the amplitude A of the
soliton in NLS equation (1) for the evolution of the driving parameters
�(t),U (t) shown in the lower figure; ε = 2 × 10−4, g = 0.1, k = 1,
δ(0) = −0.033, φ(0) = −π − 0.033, A(0) = 1, and V (0) = 0.

in NLS equation (1) was rather close to the theoretical
values.

An important case of the control is shown in Fig. 4 when
we amplify the soliton preserving its velocity. It occurs when
the soliton is phase locked by the drive with α2 = 0. After
switching off the driving at t = 3 × 103 we observe a new
steady soliton with increased amplitude and the same velocity.
In contrast, the one-phase driving [20] does not allow one to
control the amplitude and the velocity independently and thus,
cannot preserve the velocity if V (0) 	= 0.

The autoresonance allows one to control the soliton when
its parameters, the amplitude, and the velocity, can be varied
as desired according to arbitrary variations of the driving
parameters �(t),U (t), different from the linear dependence
(5). It is needed for the control that the rates α1 = d�/dt and
α2 = dU/dt were sufficiently small at any stage of the process,
i.e., conditions for the phase locking were satisfied locally in
time. The control of the soliton for a complex dependence
�(t),U (t) is demonstrated in Fig. 5. Starting from A = 1 and
V = 0, the soliton parameters are varying along the circle in
the (A,V ) plane returning to the initial position at t = 2 × 104.
In our simulations we use periodic functions �(t),U (t) and,
continuing the process, we can pass the circle several times.
This behavior confirms stability of the control.

V. CONCLUSIONS

In this paper we have shown that the envelope solitons can
be controlled by the resonant two-phase driving. We control
both parameters of the soliton (3), the amplitude A and the
velocity V , independently. Moreover, because of the phase
locking of the soliton by the drive, the soliton phase θ and its
coordinate ξ are adjusted to phases of the driving and thus,
they are also controlled.

Let us rewrite the driving (2) in the form

f (x,t) = eiψ(t) + g eikx+iψ ′(t), (60)

where ψ ′(t) = ψ(t) − X(t). It is clearly seen that the drive
is a superposition of two waves with different frequencies,
� = ψt , �′ = � − Xt and wave numbers. One notes that the
wave number k cannot be zero if we need to phase lock both
phases of the soliton. The control occurs when the frequencies
of the drive slowly vary with time and the rates of these
variations are limited by some thresholds defined in Sec. III.
In this case the soliton will be phase locked by the drive and
soliton parameters will follow after the variations of the driving
frequencies to sustain the resonant conditions (37). This
phenomenon is known as autoresonance. The phase locking
was preserved for a long time while the threshold conditions
were fulfilled, which allowed us to vary considerably the
soliton parameters according to a given scenario defined by
the driving parameters �(t) and U (t).
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