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Diffusion in Coulomb crystals
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Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion
constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-
core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions.
Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike
configurations. Here ions “hop” in unison without the formation of long lived vacancies. Diffusion, for imperfect
crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched
from Coulomb parameter � = 175 to Coulomb parameters up to � = 1750, is fast enough that the system starts
to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf
stars, and the crust of neutron stars, will be crystalline and not amorphous.

DOI: 10.1103/PhysRevE.84.016401 PACS number(s): 52.27.Lw, 66.30.−h, 97.60.Jd

I. INTRODUCTION

Diffusion in Coulomb plasma liquids has been well studied
[1] and is important for sedimentation of impurities in white
dwarf (WD) stars [2–4] and neutron stars (NSs) [5,6]. Here
ions, with a larger than average mass to charge ratio, sink in
a strong gravitational field. This releases gravitational energy
that can delay the cooling of metal rich WD [7]. However,
we are not aware of numerical results for diffusion constants
of Coulomb crystals under astrophysical conditions. Often the
diffusion constant is simply assumed to be zero. This diffusion
could be important for sedimentation in solid WD interiors,
over long time scales, and for the structure of NS crusts.

Solid diffusion can depend dramatically on the form of the
interaction between particles and may be very slow for hard-
core systems. For example, the binary Lennard-Jones system
with a hard-core ∝ r−12 interaction forms a glass because of
very slow diffusion [8]. In contrast, the Coulomb plasma with
a soft 1/r core should have much faster diffusion. Therefore,
the Coulomb crystal may provide an important model system
where diffusion is fast enough to be more easily studied by
molecular dynamics (MD) simulations.

In the laboratory, one can observe diffusion in complex
(or dusty) plasma crystals. Complex plasmas (CPs) are low
temperature plasmas containing charged microparticles (for
a review see Fortov et al. [9]). Often the microparticles are
micron sized spheres that acquire large electric charges and the
strong Coulomb interactions between microparticles can lead
to crystallization. Indeed plasma crystals were first observed in
the laboratory in 1994 [10]. Complex plasmas typically differ
from white dwarf interiors and neutron star crusts in a number
of ways. First, the microparticles feel additional fluctuating and
friction forces because of interactions with the background gas.
Note that, in stars, electron-ion interactions are small because
of the large electron degeneracy. Second, the Debye screening
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length λ [see Eq. (1) below] is often smaller in the CP than
in a star (when measured in units of the lattice spacing). This
changes the lattice type from bcc, as expected in stars, to fcc
or other types in a CP. Finally, in a CP there is an overall
confining potential, and because of gravitational gradients it is
often easier to study two-dimensional CP crystals.

In two dimensions, one can have liquid, crystalline, and
semicrystalline states. Anomalous diffusion in semicrystalline
CP states has been observed at intermediate times [11,12].
In anomalous diffusion the square of the displacement does
not grow linearly with time. Langevin-dynamics simulations
[13] find that microparticle–background gas interactions are
important for this diffusion.

The melting of colloidal crystal films has recently been
studied [14]. Thick films (more than four layers) were observed
to melt at grain boundaries, while films two to four layers thick
melted from both grain boundaries and from within crystalline
domains. We study diffusion at grain boundaries in Sec. III B.

Three-dimensional CP crystals have been formed on board
the International Space Station under microgravity conditions.
Details of the experiment are presented in Ref. [15]. The
structural properties of the crystal were analyzed with bond
angle metrics q4 and q6 (see Sec. III C). Microparticles
were found in regions with fcc and hcp order [16,17], in
agreement with MD simulations [16]. Khrapak et al. [18]
studied freezing and melting of these CP crystals and found
diffusion to be relatively fast so that the system remained in
equilibrium. Melting criteria for CP systems were presented by
Klumov [19].

We now focus on simple plasmas in three dimensions.
The diffusion mechanism is interesting. Astrophysical systems
are under great pressure that suppresses the formation of
vacancies. Therefore diffusion, in a nearly perfect crystal,
should involve the exchange of neighboring ions. These
exchanges, while common in some quantum systems, may be
less common in classical systems. More complicated Coulomb
solids can involve a variety of dislocations, grain boundaries,
and other imperfections. Diffusion in these systems probably
involves motion of the imperfections, since this may be

016401-11539-3755/2011/84(1)/016401(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.016401


HUGHTO, SCHNEIDER, HOROWITZ, AND BERRY PHYSICAL REVIEW E 84, 016401 (2011)

faster than particle exchanges. Determining the diffusion
constant for a system may help characterize the kinds and
numbers of imperfections. Note that the Coulomb plasma has
especially simple interactions. Therefore, it may be a very
useful model system to study diffusion in the presence of
complex imperfections.

We emphasize that the Coulomb plasma has no hard-core
interaction between ions, but only a relatively weak 1/r

repulsion. Therefore, it may be possible for ions to come
relatively close to one another, if necessary for the motion of
defects. This may be different from conventional condensed
matter with hard cores. For example, MD simulations of defect
motion in magnesium focused on paths that involved only very
small displacements of magnesium atoms [20]. Imperfections
may move much faster in a Coulomb plasma.

The motion of imperfections is important for equilibration.
For example, a Coulomb liquid may freeze into an imperfect
crystal state involving an excess of defects. There has been
some work on nucleation in Coulomb plasmas (see, for
example, Ref. [21]). However, present MD simulations of
nucleation may have limitations from important finite size
effects [22]. In this paper, we also study diffusion in amorphous
systems to see if it is fast enough to allow crystallization.

We focus on one-component plasmas (OCPs). We plan
to study diffusion in multicomponent plasmas (MCPs) in
the future. As we discuss below, this may help address an
important unsolved problem, the structure of MCP crystals.
This is important for the thermal and electrical conductivity
of NS crust [23]. Indeed x-ray observations of rapid NS
crust cooling, after extended periods of accretion, strongly
favor the formation of a crystalline rather than an amorphous
crust and may set limits on impurities [24–27]. In addition,
pycnonuclear reactions, which are driven by quantum zero
point motion at high densities, are exponentially sensitive
to the structure of MCP crystals and the spatial locations
of reactants [28]. These reactions may provide an important
heat source in the crust of accreting NSs [29]. Finally, the
distribution of dislocations, grain boundaries, impurities, and
other imperfections are important for mechanical properties
of NS crust such as its breaking strain [30,31]. The breaking
strain helps determine the maximum sized mountains that
are possible on a NS, which are important for gravitational
wave radiation [30,32]. The breaking strain also determines the
maximum sized “star quake” that is possible. Sudden changes,
or glitches, in the rotational period of pulsars [33] may involve
crust breaking that could trigger the motion of superfluid
vortices. In addition, magnetar giant flares, extremely intense
γ -ray flares from very strongly magnetized NSs [34], may
involve the catastrophic breaking of the crust because of very
large magnetic stresses [35].

In previous work we determined liquid-solid phase equi-
librium for a MCP system involving many ion species
[36] (see also Ref. [37]). We performed a large scale MD
simulation where both liquid and solid phases were present.
The solid phase in this simulation may have had a number
of imperfections. A knowledge of diffusion constants D

may help determine the simulation time necessary for these
imperfections to come into equilibrium.

There have been previous calculations of D for Coulomb
liquids, starting with the MD simulations of Hansen et al. for

the OCP [1]. The one-component plasma consists of ions,
with pure Coulomb interactions, and an inert neutralizing
background charge density. Diffusion in the OCP in a strong
magnetic field was considered by Bernu [38]. Hansen et al.
also calculated diffusion for binary mixtures [39].

Diffusion for a Yukawa fluid was simulated by Robbins
et al. [40] and Ohta et al. [41]. In a Yukawa fluid, ions interact
via a screened Coulomb potential vij (r),

vij (r) = ZiZje
2

r
e−r/λ, (1)

for two ions with charges Zi and Zj , that are separated by a
distance r . The OCP is equivalent to a Yukawa fluid, where all
of the ions have the same charge and the screening length λ is
very large.

The motion of ions in a WD or NS is largely classical
because of their large mass. However, at great densities, there
could be quantum corrections that might increase D. These
were estimated for a liquid by Daligault and Murillo [42] and
found to be very small.

In this paper, we present classical MD simulations of
one-component crystals with Yukawa interactions in order to
determine diffusion coefficients D. In Sec. II we describe our
MD formalism and we present results for diffusion coefficients
in Sec. III. We conclude in Sec. IV.

II. FORMALISM

We describe our MD simulation formalism. This is similar
to what we used earlier to calculate D for liquid mixtures of
carbon, oxygen, and neon [4]. We consider a one-component
system of oxygen ions where the ions are assumed to interact
via screened Yukawa interactions [see Eq. (1)]. The Fermi
screening length λ, for cold relativistic electrons, is

λ−1 = 2α1/2kF /π1/2, (2)

where the electron Fermi momentum kF is kF = (3π2ne)1/3

and α is the fine structure constant. The electron density ne is
equal to the ion charge density, ne = Zn, where n is the ion
density and Z is the ion charge. Our simulations are classical
and we have neglected the electron mass (extreme relativistic
limit). This is to be consistent with our previous work on
neutron stars. However, the electron mass is important at lower
densities in WDs and this will decrease λ. For relativistic
electrons, the ratio of λ to the ion sphere radius a,

a =
(

3

4πn

)1/3

, (3)

depends only on the charge Z and is independent of density.
For nonrelativistic electrons, λ/a can be somewhat smaller. In
Sec. III, we perform simulations for two values of λ/a.

The simulations can be characterized by a Coulomb
parameter �,

� = Z2e2

aT
, (4)

where T is the temperature. The system freezes near � = 175
[43]. Note that this value of � may depend slightly on λ [43,44].

Time can be measured in our simulations in units of one
over the plasma frequency ωp. Long wavelength fluctuations
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in the charge density can undergo oscillations at the plasma
frequency. This depends on the ion charge Z and mass M ,

ωp =
[

4πe2Z2n

M

]1/2

. (5)

The diffusion constant D can be calculated from the
velocity autocorrelation function Z(t),

Z(t) = 〈vj (t0 + t) · vj (t0)〉
〈vj (t0) · vj (t0)〉 , (6)

where the average is over all ions j and over initial times t0.
The velocity of the j th ion at time t is vj (t). The diffusion
constant is the time integral of Z(t),

D = T

M

∫ tmax

0
dtZ(t). (7)

This equation works well to calculate D for liquids. However,
for crystals, D is smaller and the integral in Eq. (7) involves
sensitive cancelations between regions where Z(t) is positive
and negative. This makes Eq. (7) very difficult to use.

Instead D can also be calculated from

D(t) = 〈|rj (t + t0) − rj (t0)|2〉
6t

, (8)

where the diffusion constant D is the large time limit of D(t),

D = limt→∞D(t). (9)

Here rj (t) is the position of the j th ion at time t and the average
in Eq. (8) is over all ions j and initial times t0. In principle,
Eqs. (8) and (9) will have errors at large times t from the
effects of periodic boundary conditions as |rj (t + t0) − rj (t0)|
becomes comparable to the size of the simulation volume.
However, diffusion is relatively slow so this is often not a
problem until very large t .

Note that D(t) can differ significantly from D for small t .
For example, an ion undergoing thermal oscillations about an
equilibrium lattice site will have rj (t) − rj (0) nonzero even
though the ion remains near its original lattice site and there
is no net contribution to diffusion. Therefore, we define an
alternative quantity D′(t) that has no contribution from ions
that remain near their original lattice site,

D′(t) = 〈�[|rj (t ′) − rj (t0)| − Rc]|rj (t ′) − rj (t0)|2〉
6t

, (10)

with t ′ = t + t0. The cutoff radius Rc is of the order of the
lattice spacing and is discussed in Sec. III. In the limit of very
large times all ions move significantly so that D′(t) → D(t) as
t → ∞. We observe that D′(t) is approximately independent
of t , even for moderate t , so that

D ≈ D′(t). (11)

We use this equation, at finite t , to calculate D in Sec. III.
The initial conditions are very important for determining

D because the system may contain different distributions of
defects and these distributions may take a very long time to
equilibrate. We consider three classes of initial conditions.
The first class we call bcc and it starts the ions with positions
on a perfect bcc lattice and random thermal velocities.
This may underestimate the role of defects if there is not

enough simulation time for thermal excitations to introduce an
equilibrium distribution of defects. The second class of initial
conditions we call imperfect crystal and it starts the system
from a liquid configuration that is cooled by rescaling the
velocities until the system freezes. This may overestimate the
role of defects if the system freezes into a very imperfect
state with more defects than would be present in thermal
equilibrium. Note that imperfect crystal initial conditions may
contain two or more microcrystals with different orientations.
Finally, we consider amorphous initial conditions where a
liquid configuration is rapidly quenched to a much lower
temperature.

We evolve the system in time using the simple velocity
Verlet algorithm [45]. We approximately maintain the system
at constant temperature by simply rescaling the velocities every
10 time steps. In Sec. III we present results for D.

III. RESULTS

We now present results for our MD simulations. We begin
with a few results insensitive to initial conditions and then
we discuss simulations with perfect lattice initial conditions
in Sec. III A, imperfect crystal initial conditions in Sec. III B,
and amorphous initial conditions in Sec. III C. We start with
the velocity autocorrelation function Z(t) [see Eq. (6)] that
is shown in Fig. 1. There are only subtle differences in
Z(t) between liquid and solid phases. For the solid, Z(t) is
slightly more negative for 4 < tωp < 14. However, this slight
difference leads to a much smaller D from the integral in
Eq. (7).

Next, Fig. 2 shows histograms of displacements |rj (t +
t0) − rj (t0)| after a time t = 21000/ωp. These are computed
by simply counting the number of ions that have moved a given
distance. Figure 2 shows a large peak at small distances that
corresponds to ions which remain near their original lattice site.
The width of this peak corresponds to thermal oscillations. The
amplitudes of these oscillations are relatively large because
the system is warm and near the melting temperature. Figure 2
also shows smaller peaks at larger distances that correspond to
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FIG. 1. (Color online) Velocity autocorrelation function Z(t) vs
time t in units of one over the plasma frequency ωp for N = 8192
ions at � = 176 for both a liquid configuration (red dashed line) and
a solid configuration (black solid line).
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FIG. 2. (Color online) Histogram of displacements |rj (t + t0) −
rj (t0)| in units of the ion sphere radius a after a time t = 21000/ωp .
The simulations use N = 8192 ions and are at � = 176. The black
solid line is the average of 800 configurations (initial times t0) for
a system that started from a perfect bcc lattice initial configuration
while the dashed (red) line is the average of 8000 configurations for
a system that started from an imperfect crystal initial configuration.

ions which have hopped one lattice site, two lattice sites, etc.
Diffusion is seen to be larger for a system that started from
an imperfect crystal initial condition compared to a system
that started from a perfect bcc lattice initial condition. We
start by presenting additional results for perfect body-centered-
cubic lattice initial conditions and then we present results for
imperfect crystal and amorphous initial conditions.

A. Body-centered-cubic lattice initial conditions

How do the ions actually move (hop) from one lattice site
to the next? This is nontrivial because the system is under high
pressure and vacancy formation is suppressed. Thus, there are
very few empty sites for the ions to hop into. Instead the
ions can exchange with their neighbors. In Figure 3 we show
the final configuration for a small 3456-ion system that was
prepared from perfect bcc lattice initial conditions. Most ions
remain near their original lattice site and are shown as small
brown dots. These ions show oscillations about the lattice sites.
However, for this example, there were 24 ions that moved more
than 1.34a during the final simulation time of t = 236/ωp.
These ions are shown as larger black disks and are seen to be
in a ring configuration where ions hop to lattice sites vacated
by other hopping ions.

We now present results for the diffusion constant D using
Eq. (10) with a cutoff parameter Rc chosen as the location of
the minimum in the histograms in Fig. 2,

Rc = 1.07a. (12)

Small changes in this value only lead to slight changes in D.
To minimize finite size effects we also introduce a cutoff range
Rcut in the Yukawa interaction so that Eq. (1) becomes

vij = ZiZje
2

[
e−r/λ

r
− e−Rcut/λ

Rcut

]
�(Rcut − r) (13)

and the potential is zero for r > Rcut.

FIG. 3. (Color online) Sample configuration of 3456 ions at � =
175. Ions that have moved less than 1.34a in a time t = 236/ωp are
small (brown) dots. Ions that have moved more than 1.34a are shown
as larger black disks and are seen to be in a ring configuration where
ions “hop” to lattice sites vacated by other hopping ions. This system
started from a perfect bcc lattice. Figure plotted with VMD [46].

We first consider bcc lattice initial conditions. Table I
presents results for D for different values of λ, molecular
dynamics time step 	t , number of ions N , and elapsed time t

used in Eq. (10). We express D in units of ωpa2. We find
that D increases with decreasing λ. For a large value of
λ = 2.70a there are large finite size effects and D increases
with increasing N . However, the increase in D in going from
N = 27 648 to the largest system size, 93 312, is small.

Finite size effects are smaller for the smaller λ = 1.82a

value. Now there is good agreement for N = 27 648 and
93 312 and D is only slightly smaller for N = 8192. We do
not find strong sensitivity to 	t or t . Furthermore, imposing
a cutoff on the interaction at large distances Rcut = 8.91λ has
only a very small effect on D. For λ = 1.82a and large systems,
we find D/ωpa2 = 1.0 × 10−5. As we discuss below, this
value, for the solid near the melting point � = 175, is about
200 times smaller than D for the liquid phase at the same �.

Diffusion in the solid may involve an energy barrier 	E

since it may be necessary for an ion to pass close to its
neighbors. This would lead to a temperature dependance D ∝
exp(−	E/T ) = exp(−d �) with d a constant. In Table II we
present results for D as a function of �. For � � 185, Table II
results are approximately

D

ωpa2
≈ 6100 exp(−0.115 �) (14)

for λ = 1.82a and

D

ωpa2
≈ 1400 exp(−0.112 �) (15)
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TABLE I. Diffusion constant D for MD simulations start-
ing from perfect body-centered-cubic lattice initial conditions at
� = 175.a

N λ/a Rcut/λ 	tωp tωp Nconfig D/ωpa2

3 456 1.82 ∞ 0.047 35 000 700 6.2 × 10−7

3 456 2.70 ∞ 0.047 47 200 200 0
8 192 1.82 8.91 0.12 170 000 800 7.7 × 10−6

8 192 2.70 ∞ 0.12 106 000 800 3.4 × 10−7

27 648 1.82 8.91 0.12 59 000 500 1.0 × 10−5

27 648 1.82 ∞ 0.12 59 000 1200 1.0 × 10−5

27 648 2.70 ∞ 0.06 23 600 89 4.9 × 10−6

27 648 2.70 ∞ 0.06 668 500 396 4.5 × 10−6

27 648 2.70 ∞ 0.06 23 600 300 5.1 × 10−6

27 648 2.70 ∞ 0.12 59 000 500 4.2 × 10−6

27 648 2.70 ∞ 0.12 23 600 800 4.5 × 10−6

27 648b 2.70 ∞ 0.12 23 600 800 4.8 × 10−6

27 648 2.70 ∞ 0.24 23 600 300 4.9 × 10−6

93 312 1.82 8.91 0.12 59 000 350 1.0 × 10−5

93 312 2.70 ∞ 0.12 59 000 350 5.6 × 10−6

aHere D is in units of ωpa2 with ωp the plasma frequency and a the
ion sphere radius, N is the number of ions, λ the screening length,
Rcut the cutoff radius in the interaction, 	t the MD time step, t the
elapsed time, and Nconf the number of configurations used to average
over the initial time t0.
bThis is a continuation of the run described in the line above.
However, it is at constant energy instead of being at (approximately)
constant temperature.

for λ = 2.70a. Note that 	E (or d ≈ 0.11) appears to
be almost independent of λ. This would follow if 	E is
dominated by particle interactions at short distances.

In Fig. 4 we plot D as a function of � for both the liquid
and solid phases. We see that D drops by a large factor as the
system crystallizes and that D decreases much more rapidly,
with increasing �, in the solid phase compared to the behavior
of D in the liquid phase.

Most of our simulations are at (approximately) constant
temperature where velocities are rescaled every 10 time steps
to keep the kinetic energy fixed. To test the sensitivity of
our results to this procedure, we also performed a few runs
at constant energy, instead of at constant temperature (see,

TABLE II. Diffusion constant D vs � for MD simulations using
N = 27 648 ions and starting from perfect body-centered-cubic
lattice initial conditions.a

� λ/a Rcut/λ D/ωpa2

165 1.82 8.91 3.3 × 10−5

175 1.82 8.91 1.05 × 10−5

185 1.82 8.91 3.3 × 10−6

200 1.82 8.91 3.9 × 10−7

165 2.70 ∞ 1.3 × 10−5

175 2.70 ∞ 4.1 × 10−6

185 2.70 ∞ 1.6 × 10−6

200 2.70 ∞ 1.5 × 10−7

aThe screening length is λ, Rcut is the cutoff radius for the interaction,
the MD time step is 	tωp = 0.12 and t = 59 000/ωp .
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FIG. 4. (Color online) Diffusion constant D vs � for both the
liquid and solid phases. Liquid results are from Ref. [4] while the solid
results are for λ = 1.82a and assume perfect bcc lattice initial con-
ditions. The dotted (red) line shows metastable (supercooled) liquid
results while the (blue) dashed line shows metastable (superheated)
solid results. The system is assumed to melt at � = 175.

for example, Table I). We find that D is unchanged within
statistics.

B. Imperfect crystal initial conditions

We now consider imperfect crystal initial conditions. We
prepare a liquid initial condition by starting the ions off at
random positions, with a Maxwell velocity distribution, and
evolving the system at a series of increasing � values. The
system is observed to equilibrate in a liquid phase. However,
as � is increased further the system is observed to supercool
for � > 175 and then eventually freeze. However, often the
system freezes into an imperfect crystal with many defects.
For example, there can be two microcrystals of different
orientations. Once the system has frozen, � is decreased back
to � = 175 and the system is evolved for a long time at this �

value and the diffusion constant is calculated from Eq. (10).
Figure 5 shows a configuration of 27 648 ions with

imperfect crystal initial conditions. Here ions that have moved
fewer than three lattice spacings during the simulation are
plotted as small (gray) points while ions that have moved
more than three lattice spacings are plotted as large (blue)
spheres. The system froze into two microcrystals of different
orientation and the diffusing ions are seen to be clustered near
the grain boundaries. This suggests that diffusion in imperfect
crystals may be dominated by motion of the defects rather than
by hopping of ion chains, such as that shown in Fig. 3.

In Table III we present results for D for imperfect crystal
initial conditions. Note that rows 3 and 4 in Table III and rows 5
and 6 correspond to independently prepared initial conditions.
There is some variation in results for different simulations.
This may reflect differences in the number and kind of defects
present in the initial conditions. We see that D for imperfect
crystal initial conditions is two to four times larger than D for
perfect bcc lattice initial conditions. We also see that D may
be less sensitive to the screening length for imperfect crystal
initial conditions.
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FIG. 5. (Color online) Configuration of 27 648 ions starting from
imperfect crystal initial conditions. Ions that move only a small
distance are small (gray) points. Ions that have moved over three
lattice spacings, during the simulation time of t = 59 000/ωp , are
shown as large (blue) spheres. These are seen to be clustered at the
grain boundaries. The initial conditions included two microcrystals
of different orientation. Figure plotted using VMD [46].

It is possible that D will evolve slowly with simulation
time t0 for these imperfect crystal simulations. Note that we
do not find rapid variation of D with t0. However, we have not
attempted to determine how D might evolve over long times
by continuing an imperfect crystal simulation for very long
times.

The final simulation listed in Table III was prepared by very
slowly cooling a liquid configuration that started at � = 175,
at a rate of d�/dt = 2.1 × 10−4ωp, until the configuration

TABLE III. Diffusion constant D for MD simulations starting
from imperfect crystal initial conditions at � = 175.a

N λ/a Rcut/λ 	tωp tωp Nconfig D/ωpa2

3 456 2.70 ∞ 0.047 4 700 380 4.9 × 10−5

8 192 2.70 ∞ 0.12 9 600 8000 1.4 × 10−5

27 648 2.70 ∞ 0.12 59 000 400 8.9 × 10−6

27 648b 2.70 ∞ 0.12 59 000 400 8.8 × 10−6

27 648 2.70 ∞ 0.12 59 000 800 1.9 × 10−5

27 648 1.82 8.91 0.12 59 000 500 2.3 × 10−5

27 648 1.82 ∞ 0.06 472 000 401 1.1 × 10−5

aHere D is in units of ωpa2 with ωp the plasma frequency and a the
ion sphere radius, N is the number of ions, λ the screening length,
Rcut the cutoff radius in the interaction, 	t the MD time step, t

the elapsed time, and Nconfig the number of configurations used to
average over the initial time t0.
bThis is a continuation of the run described in the line above.
However, it is at constant energy instead of being at (approximately)
constant temperature.

TABLE IV. Diffusion constant D vs � for MD simulations using
N = 27 648 ions and starting from a single imperfect crystal initial
condition.a

� λ/a Rcut/λ D/ωpa2

175 1.82 8.91 2.3 × 10−5

185 1.82 8.91 7.2 × 10−6

200 1.82 8.91 2.1 × 10−6

225 1.82 8.91 3.5 × 10−7

250 1.82 8.91 5.8 × 10−7

aThe screening length is λ, Rcut is the cutoff radius for the interaction,
the MD time step is 	tωp = 0.12, and t = 59 000ωp .

froze at � = 283. The resulting solid configuration was then
heated back up to � = 175. Finally, the system was evolved
at � = 175 for a time t0 = 59 000/ωp before taking D data.
This system was observed to be a nearly perfect bcc lattice,
and the value for D in Table III agrees with our results for
nearly perfect bcc lattices in Sec. III A. This strongly suggests
that white dwarf and neutron star plasmas will freeze into
nearly perfect bcc crystals, since any astrophysical cooling
time scale is likely very much longer than this MD cooling
time scale. This is also consistent with our results in Sec. III C
for amorphous systems (see below).

In Table IV we present results for D versus � for a single
imperfect crystal initial condition. Here D was calculated at
� = 175. Next the velocities of the final � = 175 configura-
tion were rescaled to � = 185 and the system was equilibrated
at � = 185 and D was determined. This process was repeated
for larger �. We see that D decreases with increasing � far
more slowly than does D for a bcc lattice. This suggests that
D is dominated by the motion of defects and that these defects
continue to move even at low temperatures where the ion
hopping shown in Fig. 3 is very unlikely. Note that we expect
some variation in these results for D depending on the number
and kinds of defects present in the initial conditions.

C. Amorphous initial conditions

In this section, we present results for amorphous initial
conditions. The imperfect crystal initial conditions in Sec. III B
involved a small amount of supercooling, until a configuration
froze. We now consider much greater supercooling. We
start with a liquid configuration of N = 8192 ions that is
equilibrated at � = 175. The screening length is λ = 1.82a,
Rcut = 8.91λ, and the time step is 	tωp = 0.12. We quench
the system instantaneously to a large � value by rescaling the
velocities, and then we evolve the resulting amorphous system
at (approximately) constant temperature until the system
largely crystalizes. Note that quenched initial configurations
for different � values were prepared by rescaling the velocities
of the same � = 175 liquid configuration. Table V lists
the time needed to crystalize for different � values. This
time increases with increasing � (amount of supercooling).
However, this time only increases approximately linearly with
� for � < 1500. This suggests that diffusion is relatively fast
in the amorphous system and that the amorphous-to-crystal
transition does not involve a large energy barrier. We find that
the system is able to crystalize, even at � = 1500 where the
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TABLE V. Approximate time t0 for amorphous systems to
crystalize, after the systems have been instantaneously quenched
from � = 175 to different � values (see text).a

N � t0ωp

8 192 500 24 000
8 192 600 47 000
8 192 700 142 000
8 192 1000 240 000
8 192 1500 390 000
8 192 1750 >25 000 000
27 648 500 400 000
27 648 1000 >6 000 000

aThe number of ions is N .

temperature is 8.6 times lower than the melting temperature.
However, a final run that was quenched to � = 1750 was
not observed to crystalize before a time 25 000 000/ωp . We
refer to these quenched systems as amorphous. However, it
may be more appropriate to call them polycrystalline because
they are observed to have many small crystal domains of
different orientation. These polycrystalline states are observed
to undergo rapid transitions to single crystals except at the
largest � (see below).

To study finite size effects we now consider larger systems
with N = 27 648 ions. We start with a liquid configuration
equilibrated at � = 175 and quench the system instanta-
neously to � = 500. Figure 6 shows D versus simulation time
t0. The diffusion constant D first decreases rapidly with time
as the quenched system anneals. Next D remains more or less
constant for a long time. Suddenly near t0 = 400 000/ωp there
is a large spike in D. We calculate D with both t = 59 000/ωp

and t = 4720/ωp. The larger t gives D with less statistical
noise, while the smaller t gives better time resolution and
shows that the event near t0 = 400 000/ωp is very rapid.

The configuration of the system just before the event is
shown in Fig. 7. The system is seen to be in a polycrystalline
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FIG. 6. (Color online) Diffusion constant D vs simulation time t0
[see Eq. (10)] for an amorphous system of N = 27 648 ions at � =
500. The diffusion constant D is calculated using a time difference of
t = 59 000/ωp (solid black line) and t = 4720/ωp (dotted red line)
in Eq. (10). The sample was prepared by instantaneously quenching
a liquid from � = 175 to � = 500.

FIG. 7. (Color online) Configuration of 27 648 ions at � = 500
after a simulation time t0 = 350 000/ωp . The sample was prepared
by instantaneously quenching a liquid from � = 175 to � = 500.
Figure plotted using VMD [46].

state with many small crystal domains. Figure 8 shows the
configuration of the system just after the event. Now the system
is an imperfect single crystal. This demonstrates that diffusion
is fast enough, at least at � = 500, for the system to crystalize.
Finally, in Fig. 9, we show D as a function of simulation
time t0 for an N = 27 648 ion system quenched to � = 1000.
Again D starts off large and decreases rapidly as the system
starts to equilibrate. Three large peaks are observed in D near
t0 = 150 000, 400 000, and 5 × 106/ωp. These correspond to
events where small microcrystals rearrange and grow and the
bond angle metric Q6 increases, as we discuss below (see
Fig. 10). However, the system is still polycrystalline after the
events.

To quantify the crystalline order in these simulations, we
consider a metric based on bond angles [47–49] (see also
Ref. [50]). Ion i is said to be bonded to ion j if it is within a
distance b = 2.44a that corresponds to a minimum in the radial
distribution function g(r). This distance is chosen to include
the eight nearest neighbors and six next nearest neighbors in
a perfect body-centered-cubic lattice. Let θij and φij be the
polar and azimuthal angles of the radius from ion i to ion j .
We calculate the spherical harmonic,

Qlm(r̂ij ) = Ylm(θij ,φij ), (16)

and average over all ≈14N bounds for a given configuration,

Q̄lm = 〈Qlm(r̂ij )〉. (17)
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FIG. 8. (Color online) Configuration of 27 648 ions at � = 500
after a simulation time t0 = 450 000/ωp . The sample was prepared
by instantaneously quenching a liquid from � = 175 to � = 500.
Figure plotted using VMD [46].

This quantity depends on the orientation of a crystal lattice
with respect to the simulation volume. Therefore, we calculate
the rotationally invariant quantity Ql [47,49],

Ql =
[

4π

2l + 1

l∑
m=−l

|Q̄lm|2
]1/2

. (18)

10
3

10
4

10
5

10
6

10
7

t
0
ω

p

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

D
/ω

pa2

FIG. 9. Diffusion constant D vs simulation time t0 for a 27 648-
ion system at � = 1000, using t = 59 000/ωp . The vertical lines
mark diffusion features that are also indicated in Fig. 10. The system
was prepared by instantaneously quenching a liquid from � = 175 to
� = 1000.
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FIG. 10. (Color online) Bond angle metric Q6 [see Eqs. (16)–
(18)] vs simulation time t0 for amorphous systems that were
instantaneously quenched from a � = 175 liquid at t0 = 0. The
number of ions in the simulation, N , and Coulomb parameter �

are indicated. The vertical (red) lines, for � = 1000 and N = 27 648,
indicate diffusion features that are seen in Fig. 9.

This provides a measure of the crystalline order of a config-
uration. In general, Ql is small for a liquid or amorphous
configuration and Ql is large for a perfect crystal. Our
calculations of Ql , for a range of even l, show that Q6 is
most sensitive to crystalline order. We find that

Q6 = 0.51069 (19)

for a perfect bcc lattice and Q6 = 0.57452 for a perfect
face-centered-cubic lattice (see also Ref. [49]). Note that Ql

is small for odd l. In Fig. 10 we show Q6 versus simulation
time t0. In general, Q6 grows with t0. However, the amount
of time necessary for Q6 to grow can increase strongly with
increasing system size N or �. A plateau near Q6 ≈ 0.17
is seen for all four systems in Fig. 10. This suggests a
possible metastable intermediate state. The simulations with
N = 27 648 at � = 500 and N = 8192 at � = 1500 show a
rapid rise in Q6, near t0 = 4 × 105/ωp, during transitions to
single crystals. For N = 27 648 at � = 1000 and N = 8192 at
� = 1750, Q6 is increasing with time. These systems have not
yet evolved to single crystals. However, the continued rise of
Q6 with time strongly suggests that these systems will evolve
to single crystals at later times. In summary, the continued
rise of Q6 with time, as shown in Fig. 10, demonstrates that
these quenched systems are evolving with time toward single
crystals and that they are unlikely to remain amorphous.

We conclude that an amorphous solid will not form even
with large amounts of supercooling, where the temperature is
rapidly quenched by up to a factor of 10 below the melting
temperature. Instead, diffusion is fast enough that the system
will form a regular crystal. Our results strongly suggest that
Coulomb solids in the interior of cold white dwarf stars and
the crust of neutron stars are crystalline and not amorphous.
This is consistent with observations of rapid crust cooling of
neutron stars following extended periods of accretion [24–27].
This rapid cooling implies a high crust thermal conductivity,
which agrees with the conductivity of a regular crystal and is
larger than the conductivity expected for an amorphous solid.
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IV. CONCLUSIONS

Diffusion in Coulomb crystals can be important for the
structure of the crust of neutron stars. In this paper, we perform
molecular dynamics simulations of one-component Coulomb
crystals to study the diffusion constant D. We find that D is
nonzero, at least near the melting temperature, and that D for
Coulomb crystals with relatively soft-core 1/r interactions is
in general larger than D for Lennard-Jones or other solids with
harder-core (more singular) interactions.

We find that diffusion, for simulations that start from a
perfect body-centered-cubic lattice, involves the exchange of
ions in ringlike configurations. Here ions “hop” in unison
with one ion replacing another without the formation of long
lived vacancies. This may be true because vacancy formation
is strongly suppressed because of the large pressure. The
diffusion constant D decreases rapidly, for temperatures below
the melting point, suggesting that these ringlike configurations
have a high activation energy.

We also calculate diffusion for simulations that start from
imperfect crystal initial conditions. Here a liquid configura-
tion, at a temperature somewhat below the melting point,
spontaneously freezes to an (in general) imperfect crystal
that may contain defects such as dislocations and grain
boundaries. Note that these configurations involve one or more
microcrystals and are not amorphous. For these systems, D

is larger than D for perfect bcc lattice configurations and
decreases more slowly with decreasing temperature. This
suggests that D for imperfect crystals is dominated by the
motion of the crystal defects rather than the hopping of ions
in a perfect crystal. Therefore, observations of D may help
characterize the imperfections in a Coulomb crystal.

Finally, we studied diffusion in “amorphous” systems
where the temperature was instantaneously quenched to much

lower values. We find that D is large. Indeed most of
our amorphous simulations are observed to spontaneously
transform to either a single crystal or a small number of
crystal domains. This strongly suggests that Coulomb solids
in white dwarf and neutron stars are crystalline rather than
amorphous. This is in agreement with x-ray observations of
rapid neutron star crust cooling that imply a large thermal
conductivity.

It is an important open problem to determine the equilib-
rium distribution of defects in a Coulomb crystal. It may be
difficult to determine this directly from molecular dynamics
simulations because it can take a very long time for defects to
equilibrate. However, we find that diffusion is relatively fast.
This suggests that astrophysical Coulomb solids will have
had plenty of time to anneal to nearly perfect crystals with
relatively few defects. Finally, the diffusion constant that we
find for a pure bcc lattice may provide a lower limit on D for
an equilibrated system. This is because the presence of defects
is only expected to increase D over that for a perfect crystal. In
future work we plan to study D for multicomponent Coulomb
solids. For a given species i, we expect a rich behavior for the
diffusion constant Di depending on how the charge of an ion,
Zi , compares to the average charge of the ions that make up
the crystal lattice.
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