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Wrinkled flames and geometrical stretch
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Localized wrinkles of thin premixed flames subject to hydrodynamic instability and geometrical stretch
of uniform intensity (S) are studied. A stretch-affected nonlinear and nonlocal equation, derived from an
inhomogeneous Michelson-Sivashinsky equation, is used as a starting point, and pole decompositions are used
as a tool. Analytical and numerical descriptions of isolated (centered or multicrested) wrinkles with steady
shapes (in a frame) and various amplitudes are provided; their number increases rapidly with 1/S > 0. A large
constant S > 0 weakens or suppresses all localized wrinkles (the larger the wrinkles, the easier the suppression),
whereas S < 0 strengthens them; oscillations of S further restrict their existence domain. Self-similar evolutions
of unstable many-crested patterns are obtained. A link between stretch, nonlinearity, and instability with the
cutoff size of the wrinkles in turbulent flames is suggested. Open problems are evoked.
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I. INTRODUCTION

Being of chemical and diffusive origins, flame fronts
propagating in premixed gases are markedly subsonic. Thus,
because the fresh (ρu) and the burnt (ρb < ρu) gas densi-
ties differ, flame deformations almost instantly modify the
piecewise-incompressible surrounding flow, and vice versa.
This nonlocal hydrodynamic flame-flow feedback brings
about the Darrieus-Landau (DL) [1,2] wrinkling instability,
and greatly complicates the free-boundary (hence nonlinear)
dynamical flame-front problems, especially from a theoretical
viewpoint.

In the limit of small Attwood numbers 0 <A = (ρu − ρb)/
(ρu + ρb) �1, the DL instability is weak, though. Sivashin-
sky’s seminal work [3] showed how flat-on-average flames
propagating into a quiescent premixture then evolve according
to a nonlocal nonlinear partial differential equation (PDE);
subsequent works [4] essentially improved A-dependent coef-
ficients therein.

Michelson’s numerical early study [5] of the PDE showed
that unforced flame fronts soon acquire the shape of parabola-
like arches joined by sharper crests pointing toward the burnt
gas; at late times, a single steady arch (or half-one) with a
maximum wavelength compatible with periodic (or Neumann)
boundary conditions generically survives in (not-too-wide)
channels.

Further numerical investigations [6] of this (Michelson-)
Sivashinsky (MS) PDE, exploiting the pole-decomposition
method [7], evidenced a much richer manifold of steady
solutions whose number increases with available lateral size
noticeably faster than linearly. Most of those happen to
be unstable and cannot be evidenced by more conventional
time-marching procedures.

It would be nice to understand whether a simple mechanism
underlies such a proliferation of steady solutions, which has
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so far not been done. The present analyses suggest that a
geometrical stretch (S) induced at large enough scale by a
front curvature of the proper sign can noticeably contribute: it
indeed generates new couplings with the mechanisms already
at work in the MS equation, and generates novel solutions that
are steady in a suitable frame. Though unstable, these may play
a nontrivial role, like the long-lived weakly unstable states of
flat-on-average flames forced by weak noise [6]; or as building
blocks of the traveling bursts that are randomly “emitted” near
troughs of wide flames [8]. Hence a side question is as follows:
is it a spontaneous emission?

A related problem of great practical importance is to
understand how velocity modulations or fluctuations in the
incoming flow of fresh gas, e.g., time-dependent or even
turbulent ones, affect the front dynamics. The problem is
unfortunately much too difficult for a frontal theoretical attack.
Flames could conceivably be passively deformed at high
intensities of forcing, but even the statistics of this is not yet
fully understood theoretically [9]. Moreover, the inner cutoff
length of front wrinkles in turbulent flows is experimentally
known [10] to coincide with the neutral wavelength at
which DL instability and curvature effects balance, strongly
indicating that the smallest detectable flame wrinkles are not
passive.

This hint of forcing-instability interaction at the cutoff
length motivates another question: how do incoming velocity
modulations affect instability-driven patterns at or about such
scales?

The point is conceptually different from that of implan-
tations of incipient wrinkles by the small-scale components
of a forcing; these are indeed often present, purposely or
because most numerical integration methods are noisy. Despite
early attempts about passive forced propagations [11,12], the
related mechanism of complex singularity implantation is not
understood; unfortunately, it ultimately has a strong impact on
flame dynamics [13]. Pole-sprinkling [14] mimics implanta-
tions and somehow bypasses the problem, but, although tried
for expanding flames [15], this trick is still hampered by its
computational cost. To study space- or angle-periodic forced
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fronts, pseudospectral integration remains more flexible and
faster [16].

The present work has a more modest scope: it focuses
on already implanted patterns and examines their long-term
viability in the presence of a geometrical stretch caused
by an underlying curved front, itself possibly influenced by
large-scale incoming velocity modulations.

The paper is organized as follows. An extended MS
equation accounting for geometrical stretch is introduced in
Sec. II. Pole-decomposed steady solutions (in an a frame) are
presented in Sec. III, and specialized to a simple centered
crest and then to ones with larger amplitudes. The predictions
are compared to numerical results in Sec. IV. Multicrested
“steady” wrinkles are identified and analyzed in Sec. V,
and their self-similar unsteady counterparts are discussed
in Sec. VI. Section VII takes up varying S ′s. Section VIII
tentatively relates the cutoff scale of wrinkling to stretch,
and Sec. IX gathers final remarks and open problems.
Appendixes A and B detail technical points.

II. NONLINEAR EQUATION FOR STRETCHED
ISOLATED WRINKLES

The starting point adopted here to take up the afore-
mentioned topics is a nondimensional forced version of the
(Michelson-)Sivashinsky [3] PDE:

ϕt + 1
2ϕx

2 = νϕxx + I (ϕ,x) + u(t,x). (2.1)

It governs the shape y = ϕ(t,x) of a flame observed in the
frame (x,y) of a flat one (ϕ ≡ 0) propagating toward the fresh
gases (y < 0) at the laminar flame speed uL. The subscripts
t (time) and x (abscissa) stand for partial derivatives, and the
linear nonlocal operator I (ϕ,x), defined by I (eikx,x) = |k|eikx ,
accounts for the hydrodynamic DL instability that affects
premixed flames at long wavelengths. The scaled Markstein
length [17] ν > 0, proportional to the actual flame-front
thickness � based on uL and the fresh-gas heat diffusivity,
measures how the local burning speed un of a flame element
relative to fresh gases responds to curvature, un − uL ∼ νϕxx .

With u(t,x) = 0, the linearized Eq. (2.1) admits normal
modes ϕ ∼ exp(ikx + �t) whose growth or decay rate is
� (k) = |k|(1 − ν|k|). In the present units [∼A−2�/uL for
time, ∼�/A for abscissa and Markstein length, ∼� for wrinkle
amplitude, and ∼A2uL for speed variations], the range of
unstable wave numbers and the shortest growth time are
0 � |k| � kn = 1/ν and 1/� (kn/2) = 4ν, respectively. The
“eikonal” term ϕx

2/2 in (2.1) results from the secant of the
small angle α(t,x) between local (normal to the front) and
mean (y-axis) directions of propagation, (1 + s2)1/2 − 1 =
s2/2 + · · ·, s = tan(α) ∼Aϕx . The stabilizing effect of ϕx

2/2
can saturate the DL instability [5], soon leading to parabola-
like arches when u(t,x) = 0.

The forcing term u in Eq. (2.1) represents the y-wise
component of a shear-flow type of modulation in the fresh-gas
flow; u(t,x) �= 0 may also result from an inhomogeneous
and/or fluctuating fresh gas composition that makes un change
[18]. Without its DL contribution I (ϕ,x), Eq. (2.1) would
be an inhomogeneous Burgers equation modeling passive
propagations.

Let �(t,x) represent a solution of Eq. (2.1). Another
one, ϕ(t,x), is sought in the form ϕ = � + φ, where φ(t,x)
represents extra wrinkles grown on top of the base flame shape
�. The “excess” function φ(t,x) satisfies the homogeneous
equation

φt + �xφx + 1
2φx

2 = νφxx + I (φ,x), (2.2)

where the multiplicative �x accounts for the geometry of the
base solution of Eq. (2.1), and hence is partly tributary to
the forcing function in (2.1), especially if it is large. In fact,
the structure of (2.1) indicates how to select u(t,x) to yield
(almost) any presumed �(t,x).

We next assume that, possibly helped by a proper choice
of the forcing function, one may approximate the base pattern
�(x,t) by a parabola over the region where a localized φx

“lives.” With �x ≈ Sx + U , Eq. (2.2) acquires the simpler,
yet still nonlocal and nonlinear, form

φt + (Sx + U )φx + 1
2φx

2 = νφxx + I (φ,x), (2.3)

first proposed as a model with U = 0 and briefly studied in
[19]. Whatever the value of U is, Eq. (2.3) admits infinitesimal
solutions φ = A(t) exp{iq(t)[x − χ (t)]}, provided the wave-
number q(t), amplitude A(t) �λ(t) = 2π/q, and shift χ (t)
satisfy dq/dt = −Sq, dA/dt = A� (q), dχ/dt = U . So,
while the disturbance drifts, a positive S > 0 stretches its
wavelength, λ(t) ∼ exp[∫t

0 S(t ′)dt ′]; S < 0 is often termed
“compression.”U (t) can be formally removed by a change
of coordinate [x − χ (t) used instead of x] and is henceforth
omitted. Yet it must be kept in mind that the “steady”
patterns encountered later will only be so in a specific frame
drifting at the uniform lateral speed U . A locally uniform
x-wise gas velocity v(t,0) and the associated v(t,0)φx could
have been accounted for in Eq. (2.3) and then lumped in
U and “eliminated,” but the S-dependent term cannot. The
curvature S of the base pattern � is here termed “stretch
intensity.” Incidentally, an Sxφx term appears when studying
self-similar rational solutions to the Burgers equation [20];
x = X/E is then an abscissa measured in a t-dependent unit of
length E(t).

III. CENTERED STEADY PATTERNS

Attention will be focused hereafter on finite-amplitude
solutions to Eq. (2.3), namely localized patterns φ that are
peaked near the origin and have φx

2 and I (φ,x) decaying
like (ν/x)2 at large distances; the DL term I (φ,x) is then∫
–+∞
−∞ φx ′/(x − x ′)πdx ′. Time-independent S ′s, as exist about

the troughs (wide local minima) of steady base-flame profiles
� when unforced [21], are considered first (t-dependent ones
will be touched upon in Sec. VII). Localized solutions to the
nonlinear (2.3), e.g., the steady ones (in a suitable frame)
considered below, bring about a continuum of Fourier modes,
which makes them difficult to handle numerically by spectral
methods. The pole-decomposition technique recalled below
bypasses the difficulty.
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A. Pole equations

As first shown in [7,22], the MS PDE [Eq. (2.3) with
U = 0 = S] admits exact nonperiodic solutions φ representing
localized patterns that are “steady” and have

φx =
N∑

n=−N

−2ν

x − iBn

. (3.1)

The iBn
′s, with Bn > 0 for n =1,2, . . . , N and B−n = −Bn

(φ is real when x is), are poles of the flame slope φx

continued in the complex z plane, z = x + iB. These carry the
same “charge” (residue) −2ν, fixed by the dominant balance
φx

2/2 ∼ νφxx near each z = iBn. Equation (3.1) was shown
in [19] to also hold when S �= 0. When t-independent, such
Bn

′s, |n| = 1, . . . ,N , obey

N∑
n�=m=−N

2ν

Bn − Bm

− sgn(Bn) + SBn = 0, (3.2)

where the sgn(·) function results from the DL instability
[1/(x − iB) has −isgn(B)/(x − iB) as a Hilbert transform];
the sum comes from nonlinearity and SBn from stretch.
Since B−n = −Bn, summing Eq. (3.2) over n � 1 yields
Bbar − SB2

rms ≡ ν(2N − 1); this “sum rule” exactly relates the
barycenter (or center of mass) Bbar ≡ (B1 + · · · + BN )/N of
the positive B ′s to their variance B2

rms ≡ (B2
1 + · · · + B2

N )/N ,
a useful check of accuracy for numerical resolutions.

B. Elementary centered steady crest

The case of one pole pair [N = 1,φx − iI (φ,x) = −4ν/

(x − iB1),B1 > 0], corresponding to an elementary steady
wrinkle centered at x = 0, is particularly simple as (3.2) gives
a quadratic:

ν/B1 − 1 + SB1 = 0. (3.3)

A single real solution B1 � ν is found for S � 0 (compres-
sion), but two of them exist if 0 � S < Sc ≡ 1/4ν, ν � B− �
B+, with B− (or B+) going to ν (or +∞) as Sν → 0+. Two
“steady” elementary crests are then admissible, that with B1 =
B− being sharper and narrower. If 0 < Sν � 1, the B− root
essentially results from a balance between DL instability
and nonlinearity, 1 ≈ ν/B−; B+ is then of a different type
mainly governed by the DL effect and stretch, 1 ≈ SB+.
Both branches B±(ν,S) merge at Bc = 2B−(ν,0) = 2ν when
S coincides with the dimensionless maximum growth rate,
Sc = � (kn/2) (see Sec. II); 2ScBc = 1 then holds. No steady
solution with a single pair of poles ±iB1 is allowed if S > Sc.
The generalization of Eq. (3.3) to t−dependent B ′s (Sec. IV)
reveals that the B+ root is unstable, and that S > Sc leads to
B1(t/ν → ∞)/ν = ∞, i.e., wrinkle suppression.

Importantly, the DL instability is a necessity of this stretch-
induced crest suppression, needed as it is to balance two
stabilizing effects [see (3.3)]: one is only intense at short scale
(nonlinearity) and the other at large distance (stretch), and the
balance is impossible if S > Sc.

C. Large centered steady crests

In the stretch-free case, the uppermost pole altitude in-
creases with the number N of pole pairs, and the typical

difference Bn − Bn−1 becomes small compared to Bmax =
max(Bn) if N � 1; one may then replace the discrete sum
featured in Eq. (3.2) by an integral over a continuous measure
[7], such that P (B)dB is the number of imaginary poles iB

with ”altitudes” between B and B + dB. When applied to
Eq. (3.2), the continuous approximation leads to an integral
equation for the density P (B) = P (−B):∫

–
+Bmax

−Bmax

2νP (B ′)dB ′

B − B ′ = sgn(B) − SB, (3.4)

where the principal-part integral complies with the constraint
m �= n in Eq. (3.2). Although (3.4) formally is the difference
between its S = 0 version and a Wigner equation [no sgn(B)
on the right-hand side [23]], one may not subtract partial
solutions: (3.4) does not hold for |B| > Bmax, where no pole
lies, and Bmax itself must be found as part of the complete
solution, thanks to the overall normalization ∫Bmax

0 P (B ′)
dB ′ = N .

Equation (3.4) is solved by a Fourier method as in [21]
(see Appendix A). In terms of an angle, −π/2 � θ � +π/2
defined by B = Bmax sin θ , P (B) reads

2π2νP (|B| � Bmax) = ln[cot2(θ/2)] − πSBmax cos θ, (3.5)

and P (|B| � Bmax) = 0. With sin θ = B/Bmax and 2νP (B)
fixed by Eq. (3.5), a contour integration in the θ plane (or p. 591
of [24]) expresses φx = −∫+Bmax

−Bmax
2νP (B ′)dB ′/(x − iB ′)

in terms of sinh ξ ≡ x/Bmax as sgn(−x)πφx =
ln[coth2(ξ/2)] − SBmax cosh ξ . The ensuing crest profile
reads sgn(x)πφ(x)/Bmax = − sinh ξ ln[coth2(ξ/2)] − 2ξ

+ SBmax(ξ + sinh ξ cosh ξ )/2, up to an additive constant.
The large steady crest thus has [φ(x) − φ(0)]/Bmax

= F (|x|/Bmax,SBmax), and is ν-independent. The cumulative
pole distribution R(B) ≡ ∫B

0 P (B ′)dB ′ deduced from (3.5) is

2π2νR(B)/Bmax = sin θ ln[cot2(θ/2)] + 2θ

− SBmax(θ + sin θ cos θ )/2, (3.6)

to be compared with iπφ(ix). The corresponding center
of mass of positive B ′s, Bbar ≈ ∫Bmax

0 P (B ′)B ′dB ′/N , has
πBbar/Bmax = (1 − w/3)/(1 − w/4), w ≡ πSBmax, and can
be notably less than the yet unknown Bmax; the “shape factor”
Brms/Bbar also varies weakly with w.

Finally, the normalization of P (B) rewritten as R(θ =
π/2) = N completes the resolution of Eq. (3.4). It relates Bmax

and νN to the stretch intensity S by an analog of (3.3):

(2πNν)/Bmax − 1 + (πS/4)Bmax = 0, (3.7)

the structure of which again parallels (3.2) and the “sum rule”
[expressed as (2N − 1)ν/Bbar − 1 +(B2

rms/B
2
bar)SBbar = 0].

A single large crest again exists at fixed Nν regardless
of S � 0, and has Bmax � 2πνN . Just like with (3.3), two
values B± of Bmax [hence two densities P −(B), P +(B)] are
obtained for 0 � S � S∗, namely 2πνN � B−(νN,S) � B∗
and B+(νN,S) � B∗ with

S∗ ≡ 1/(2π2Nν), B∗ ≡ 4πNν. (3.8)

Similar to the two-pole case, both branches merge at B∗ =
2B−(νN,0) when S = S∗. No real Bmax exists if S > S∗, and
the DL mechanism [middle term of (3.7)] again is needed for
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crest suppression. And larger wrinkles are easier to suppress:
νS∗ ∼ 1/N .

Put differently, a given stretch intensity 0 < Sν � 1 al-
lows for a large centered steady crest iff 1 � N � N∗ ≡
| 1/2π2νS | (| · | ≡ integer-part). In case the number of pole
pairs exceeds N∗ initially, at least N − N∗ of them will
ultimately be expelled to |B| � Nν as time elapses (see
below for the pole dynamics): the stretch intensity selects the
width and amplitude of the surviving crest; both scale like
the radius of curvature 1/S of the base flame in any case:
2S∗B∗ = 4/π ≈ 1.27 for N � 1, 2ScBc = 1.00 for N = 1.

IV. NUMERICAL VERSUS ANALYTICAL

Two numerical approaches were employed to study
Eq. (3.2): (i) use Newton-type iterations, which are delicate
to initiate in case of multiple solutions yet give access to
stable and unstable ones, and can benefit from analytically
determined seeds; (ii) acknowledge that Eq. (3.2) are the
restriction to steady and pure imaginary poles iBn of more
general equations [7,19] for the poles zj (t) = xj (t) + iBj (t)
of φx in unsteady situations, viz.

dzj

dt
=

+N∑
−N,q �=j

2ν

zq − zj

− i sgn[Im(zj )] + Szj , (4.1)

where Im(·) denotes an imaginary part; the front slope φx(t,x)
then is a sum, similar to Eq. (3.1), of −2ν/[x − zj (t)]
contributions. Each pole pair constitutes a soliton and, as
the dynamics (4.1) conserves their number N (if finite),
the pole-decomposition method is noise-free. Numerically
integrating Eq. (4.1) only yields stable equilibria at large times,
but gives access to stability properties of any steady solution
already at hand (t may be run backward).

When restricted to zj = iBj , the numerical procedure(s)
always led to an equilibrium if N < N∗ and the pole imaginary
parts initially have |B| < B+. The numerical pole density
Pnum, defined by Pnum[(Bj + Bj−1)/2] ≡ 1/(Bj − Bj−1) and
linear interpolation in between, is compared with the pre-
dictions (3.5) and (3.7) in Fig. 1 for 1/ν = 199.5, N =
100, S = 0.05 ≈ S∗/2, showing excellent agreement up to
B = (BN + BN−1)/2; this also holds for the corresponding
cumulative density R(B) along the lower branch [i.e., with
Bmax = B−(νN,S) in Eq. (3.5)], again not too close to |B| =
Bmax, a point that will be commented on at the end of this
section.

Still, in no way could one obtain a density Pnum(B)
resembling Eq. (3.5) if used with Bmax = B+(νN,S), even
when B+(νN,S) and B−(νN,S) have comparable magnitudes.
This relates to an additional constraint, not visible in (3.4)
and (3.7): pole densities must be non-negative. For |B| ≈
Bmax, the analytical prediction (3.5) has 2π2νP (B) ≈ (2 −
πSBmax) cos θ , which gets negative indeed at |B| <∼ Bmax if
SBmax > 2/π = S∗B∗; see Eq. (3.7). Thus, even though our
starting assumptions N � 1 and S < S∗ are fulfilled, the upper
branch Bmax = B+(νN,S) > S∗B∗/S and the corresponding
profile φ(x) are spurious.

Instead of P +(B), the density Pnum(B) obtained by Newton-
Raphson iterations with N pole pairs and S < S∗ approached
the prediction (3.5) if used with Bmax = B−(νN,S); or, de-
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FIG. 1. (Color online) Numerical pole density Pnum(B) vs pole
altitude B (solid black) compared to the analytical prediction P −(B),
Eqs. (3.5) and (3.7), with Bmax = B−(νN,S) (dashed red). Both
curves have 1/ν = 199.5, N = 100 (S∗ = 0.102 . . .), and S = 0.05.

pending on the initial B ′s used as iteration seeds, the converged
density Pnum(B) happened to be close to that corresponding to
B−(ν(N − 1),S) but supplemented with a single pair of remote
poles ±ih, with h ≈ 1/S − ν(4N − 3) + · · · for 0 < SNν �
1. The latter estimate results from a balance (at B = h)
between stretch, the DL effect, and the combined vertical
repulsions from the complex conjugate (located at B = −h)
and from the 2(N − 1)other poles considered positioned at
their barycenter (B = 0):

1 − Sh ≈ ν/h + 4ν(N − 1)/h, 0 < SNν � 1, (4.2)

to be compared with (3.3). A more complete determination
of h accounts for the full pole distribution with density
P −(B) spread over [−Bmax, + Bmax], instead of a mere global
charge 4ν(N − 1) positioned atB = 0. Once the integrals
over P −(B)dB are analytically evaluated (see pp. 591 and
393 of [24]), the equation for h looks like (4.2), except for
its last term, which is replaced by (2/π ) arcsin(Bmax/h) −
SB2

max/(h + (h2 − B2
max)1/2), with Bmax = B−(ν(N − 1),S).

This resumes the form (4.2) when SNν � 1 and provides
one with a useful test of the numerical method and convenient
seeds for iterations: for S = 0.01, ν = 0.1, and N = 4, the
more complete expression gives h = 98.682 569 while the
exact (numerical) value is 98.682 595. The “center of charge”
estimate (4.2) gives 98.682 645 and is still a few percent
accurate up to nearly S = S∗; this accuracy is to be used in
Sec. VI.

Interestingly, the existence of a detached pole pair in
equilibrium signals the appearance of a new type of crest
structures that bifurcate from |B| = ∞ at S = 0+, in a sense
generalizing the B+ root of Sec. III [Eqs. (4.2) and (3.3)
coincide if N = 1]. More general arrangements involving
several remote poles will be encountered in Secs. V B and
VI B.

Solving Eq. (3.2) iteratively for different stretch intensities
with a fairly large N (=100) and ν ≈ 1/2N gives the
relationship between S and the upper barycenter Bbar shown
in Fig. 2; the modification of Bbar(νN,S) caused by the
existence of a detached pair of remote poles ±ih is also
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FIG. 2. (Color online) Barycenters of N = 100 pole pairs aligned
along the imaginary axis vs stretch intensity S for 1/ν = 199.5 [S∗ =
0.102 . . . , Eq. (3.8)], without detached poles (lower curves) or with
them (upper curves). Solid (black) and dash-dotted (violet) lines:
Newton-Raphson iterations from the steady Eq. (4.1); dashed (red)
and dash-double-dotted (green) lines: analytical predictions; see text.

plotted and compared to the theoretical estimate B+
bar =

(1 − 1/N )Bbar(ν(N − 1),S) + h/N . As expected from
Eq. (3.7), the existence of a maximum admissible stretch
intensity S∗ [hence of a maximum admissible number N∗
of aligned poles at fixed S > 0] is numerically confirmed
for large centered crests as well. However, while displaying
similar trends to the corresponding numerical Bbar and B+

bar,
both analytical predictions systematically exceed them by a
visible amount that slowly increases with S (and N ). This, in
fact, results from a failure of the continuous approximation
wherever the density P −(B) gets too small, i.e., at |B| � Bmax.
As shown in [7,21], good estimates of the discrete pole
locations Bj > 0 can be retrieved from the continuous
cumulative distribution R(B) on solving R(Bj ) = j − 1/2,
j = 1, . . . ,N , but this deteriorates at |Bj | � Bmax. As
for the extreme zeros of Hermite polynomials at large
degrees [25], the region where R(B) ceases to correctly
count the pole labels has a size that may be estimated by
0 < R(Bmax) − R(BN ) ∼ 1. With N − R(B � Bmax) deduced
from (3.6), this results in BN = Bmax{1 − [g(πSBmax)/N]2/3},
g(w) ∼ (1 − w/4)/(1 − w/2) > 0. Thus, Bmax/BN − 1 > 0
decays with 1/N and increases with S (yet rather slowly), but
Bmax − BN ∼ ν[g(w)N ]1/3 grows with N and S: there is no
numerical flaw in Figs. 1 and 2. Overestimating BN as Bmax in
turn shifts Bbar and B+

bar by about the same fractional amount.

V. A VARIETY OF STEADY LOCALIZED PATTERNS

The previous centered isolated crests are unstable to lateral
shifts. Writing the pole locations as zj (t) = D(t) + Zj (t)
leaves Eq. (4.1) invariant if D(t) = D(0) exp(St), whereby
a steady crest pattern can be dragged as a whole by a
geometry-induced tangential velocity �x ≈ Sx, away from
the base flame trough x = 0. Besides, [7] identified the reason
why a population of nearby poles tends to align along parallels
to the imaginary z axis (see also [20]) and to build up a crest.

This results from a “horizontal” attraction encoded in the
pairwise interaction terms of Eq. (4.1), combined with the
“vertical” repulsion featured in Eq. (3.2). If |zq − zj | � Bmax,
d(zq − zj )/dt ≈ −4ν/(zq − zj ), whereby Im(zq − zj )
Re(zq − zj ) ≈ const: |Re(zq − zj )| decays during the near
collision, while |Im(zq − zj )| grows; this short-range
alignment mechanism still operates with a nonzero S

[incidentally, it would still act at short distance in the presence
of an extra damping in (2.2), say ∼ φ, but not at large scale].

A. Nearly real crests or poles

One may thus conceive that steady twin crests might stay
in equilibrium “at” x = ±X1(X1 > 0) under two antagonistic
actions: “repulsive” lateral convection SX (S > 0) and the
horizontal attraction felt by each crest’s pole, +X1 + ibn say,
caused by the 2N1 poles−X1 + ibm belonging to the crest’s
twin. Balancing the two effects gives X1 ∼ (2N1ν/S)1/2:
if SνN1 � 1, the pole-pile height Bmax ∼ 2N1ν is small
compared to crest spacing 2X1 (as presumed), a situation
henceforth referred to as “nearly real” crests (or pole)
arrangements.

For N1 � 1, νN1 = O(1), and any S, the poles of a steady
symmetric two-crest pattern are not exactly aligned vertically
but actually reside along two disjoint curves, z(b) = x(b) + ib

and −x(b) + ib, with 0 < x(b) = x(−b) and |b| < bmax. Both
curves share the pole density p(b) = p(−b) per unit length
along the b axis, with ∫bmax

0 p(b)db = N1 for normalization,
and the real unknowns x(b) and p(b) obey a complex-valued
generalization of (3.4) deduced from (3.2):

∫
–

+bmax

−bmax

2νp(b′)db′

z(b) − z(b′)
= Sz(b) − isgn(b)

−
∫ +bmax

−bmax

2νp(b′)db′

z(b) + z(b′)
. (5.1)

Only for small stretch intensities,0 < SνN1 � 1, could we
solve (5.1) analytically for z(b): to two orders in S all the poles
are found to remain aligned at ±X1 ± ib + o(1), with X1 �
b = O(νN1) now defined by SX1 ≡ (2N1 × 2ν)/(2X1). Their
density p(b) still obeys (3.4) with {p(b),N1} in lieu of
{P (B),N}, but with S replaced by S + S/2 as the z(b) are
not exactly real. The large-scale influence they feel from
the other distant crest is not quite uniform, yet it may be
Taylor-expanded for |b| � 2X1 to produce a linear term
(z − X1)(2N1)(2ν)/(2X1)2 = (z − X1)S/2 that ultimately
contributes the extra S/2. As a net consequence, the results
for isolated crests, e.g., those encoded in Eqs. (3.5) and (3.7)
for N � 1, still hold for twin crests once 0 < S � 1/νN1 is
replaced by 3S/2; this replacement is required whatever the
value of N1 is. If 0 < SνN1 takes on O(1) values, the vertical
pole alignments deform, with |x(b)| decreasing faster at
smaller |b|.

Multicrested steady solutions also are unstable against
shifts [∼exp(St)] as a whole. They then provide one with
localized burstlike disturbances, akin to those invoked by
Zel’dovich et al. [26] but here of finite amplitudes, traveling
along the nearly parabolic base flame front Sx2/2; Fig. 3
shows a sample traveling burst comprising eight poles.
These bursts admittedly are also unstable with respect to
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x

FIG. 3. (Color online) Solid (blue) line: Snapshot of a finite-
amplitude, four-pole-pair lateral “burst” φ(t,x) superimposed to the
base shape Sx2/2 (S = 1,ν = 1/10,N = 4). The four pole locations
in the upper x + iB plane are shown as open circles above the xaxis.
The scale is identical in all directions.

modifications of the crest mutual distances, yet the presence
of several nearby crests may help some survive longer as a
result of the ”horizontal” interactions: to wit, a many-crested
pattern may be steady if properly centered [in the frame evoked
below (2.3)].

One might indeed have assumed that the previously
considered isolated crest centered at x = X0 = 0, with its
N0 pairs of poles iB0,n, still is present: a steady three-crest
pattern is thus conceivable, with the lateral ones (again with
N1 pole pairs each) staying at a distance ±X1 given by
SX1 = (2N0)(2ν)/X1 + (2N1)(2ν)/(2X1) if 0 < νSN0,1 �
1. The construction may be pursued with five crests peaked
at the abscissas 0 = X0, ± X1, ± X2, or four crests at ±X1,

± X2, etc.
More generally, let M be the number of crests involved

in a steady arrangement and Nk the number of pole pairs
belonging to the kth crest. This kind of configuration will
henceforth be referred to as an (N1, . . . ,Nk, . . . ,NM ) solution,
and, whenever needed, the superscript “+” (e.g., N+

k ) will
indicate that a pair of poles is separated from the considered
pole pile as SνNk → 0+. For S > 0 small enough that the
typical crest spacing [anticipated to be ∼(NkνS)1/2] noticeably
exceeds (Bmax)k∼νNk , the crest abscissas Xk must satisfy
the conditions of equilibrium of M “charges” 4νNk , k =
1, . . . ,M , subject to attractive horizontal 1/X interactions,
and all sit on a common quadratic potential barrier −SX2/2,

−
j=M∑

1=j �=k

4νNj

Xk − Xj

+ SXk = 0. (5.2)

Apart from the condition N1X1 + · · · + NMXM = 0,

which necessarily holds, the above crest number M and
weights Nk are only constrained by 1 � M � Ntot ≡

N1 + · · · + NM . As a result, the combinatorial explosion
makes the number N (Ntot) of such conceivable “stretch
versus nonlinearity” nearly real equilibria rapidly grow with
Ntot. The function N (Ntot) grows faster than the number
(∼exp[π (2Ntot/3)1/2]/Ntot for Ntot � 1 [27]) of unordered
integer partitions of Ntot because unequal weights Nk may
be permutated; yet N grows less rapidly than that (= 2(Ntot−1)

[28]) of ordered partitions because x ↔ −x mirror images
of admissible asymmetric patterns also exist, which leads
to double-counting: since most patterns are asymmetric, we
conjecture that N (Ntot) ≈ 2(Ntot−2) � Ntot different patterns
with near-real poles exist for Ntot � 1. At any rate, the above
combinatorial reasoning suggests that weak positive stretch
allows for a proliferation of steady solutions.

Only in the two particular instances evoked as follows
could Eq. (5.2) be solved analytically with unequal weights
Nk . The first situation has only two crests of arbitrary weights
N− and N+ located at X− < 0 < X+. Equation (5.2) readily
yields X± = ±2N∓[ν/S(N+ + N−)]1/2. A Taylor expansion
like below (5.1), here for |z − X±| � X+ − X−, shows
that the poles belonging to either crest again receive an
extra contribution from their neighbor, besides the imposed
0 < νS � 1. Here, this entails the replacements S → S± ≡
S[1 + N±/(N+ + N−) + · · ·] for the stretch intensity effec-
tively felt by either crest, all poles of which are aligned
vertically within o(νN±) errors if 0 < νSN± � 1 and could
thus be analyzed via (3.2) or (3.4); N+ = N− clearly yields
S+ = 3S/2 = S− as below (5.1). The more populated crest
feels a greater effective influence of stretch and will be the
first to lose remote poles if SνN± > 0 gets too high.

The second situation amenable to some analysis corre-
sponds to a centered crest composed of N0 vertically aligned
pole pairs, symmetrically flanked by N + N lateral crests
that have N|k|�1 = N1 pole pairs each. The (horizontal)
equilibrium of the central crest at X0 = 0 is then guaranteed by
symmetry. In the limit 0 < SνN1 � 1, the N + N lateral crest
locations Xk = −Xk , with |k| = 1, . . . ,N , obey a particular
form of (5.2):

j=N∑
−N=j �=k,0

4νN1

Xk − Xj

+ 4ν
N0

Xk

= SXk. (5.3)

Its solutions can be expressed as Xk = sgn(k)
(4νN1η|k|/S)1/2 in terms of the zeros η|k| > 0 of the associated
Laguerre polynomial L(α)

N (η) of degree N and order α =
N0/N1 − 1/2; this follows from Stieltjes’ classical analysis
of electrostatic problems [29] (see Appendix B).

For N0 = 0 or N0 = N1, the Xk
′s are actually zeros of

the Mth-order Hermite polynomial, HM [Xk(S/4N1ν)1/2] =
0, with M = 2N or 2N + 1, since H2N (ξ 2)∼ L(−1/2)

N (ξ ) and
H2N+1(ξ ) ∼ ξL(+1/2)

N (ξ 2) ([24], p. 1001). Numerical res-
olutions of (4.1) in this case reveal that the “Hermite”
approximation is excellent if SνN1 � 1, but Table I shows it
still works fairly well even for stretch intensities S comparable
to the value (again noted S∗) at the turning point.

Table II shows similar results corresponding to 2N + 1 =
7, with N0 = 3 pairs for the central crest and N1 = 1 for
the lateral ones: the fuller “Laguerre” approximation, still
excellent at small Sν > 0, again locates the crests fairly
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TABLE I. Numerically determined abscissas Xk > 0 of crests
with “near-real” poles versus those estimated from the Hermite
polynomial, HM [Xk(S/4N1ν)1/2] = 0, for Nk = N1 = 1, M = 7,
ν = 1/10 (this solution’s turning point is at S∗ ≈ 0.55), and S = 0.25.
As when SνN1 � 1, all numerical poles have |Im(zk)| ≈ ν.

|k| Numerical Xk’s Hermite Xk’s

1 1.0281177 1.03253157
2 2.1081804 2.11689397
3 3.3416002 3.35449526

accurately for S ′s comparable to the value S∗ at the turning
point. Increasing the stretch intensity beyond S∗ makes a pole
pair separate from the central pile, reducing its weight. For 0 <

νSN0,1 � 1, the effective stretch intensity felt by the central
crest is S0 = S(1 + 1/η1 + · · · + 1/ηN + · · ·); as shown in
Appendix B, S0 also reads S[1 + 2N/(N0/N1 + 1/2) + · · ·]
and may exceed the maximum stretch intensity that an isolated
crest of weight N0 can resist, S∗ ≈ 1/(2π2N0ν) for N0 � 1,
even if νN1S � 1.

Thus, the antagonistic actions of horizontal attraction
between nearby crests and geometry-induced positive stretch
near any flame trough (e.g., that of the base solution � we
started from) generates new equilibrium positions: other poles
may sit there if the effective stretch intensity they feel is
compatible with a vertical equilibrium, making secondary
troughs appear on the flame profile, and so forth. This gives
hints on how the stretch-nonlinearity competition is sufficient
to contribute a complicated web of steady solutions to the MS
equation [6]. As shown below, still more exotic configurations
exist for almost the same reason.

B. Remote poles

In the above equilibria, between “almost real” pole pairs
in the presence of a weak enough stretch effect, Eq. (5.2), the
DL instability mechanism has only a slight direct influence
on the crest spacing, merely ensuring that nearly real poles
remain so. Similar configurations could conceivably exist
when the members of N poles pairs are markedly off the
real axis, provided these lie at nearly the same altitudes ±ih;
an elementary configuration of this type (a single detached
pair) was encountered in Sec. IV. The height h > 0 has to
significantly exceed xmax for this to be viable: the repulsive
influence that each of the N poles ≈ xk ± ih inside one single
row feels from the complex conjugates (now at a distance
of 2h) must indeed be nearly uniform and weak enough not

TABLE II. Comparison between the numerically determined
abscissas Xk of 2N = 6 crests with “near-real” poles (N1 = 1 pole
pair each) in the presence of a central crest comprising N0 = 3 pole
pairs and those [Xk = sgn(k)(4νN1η|k|/S)1/2] estimated from the
roots of the Laguerre polynomial L(α=5/2)

N (η) for ν = 1/10 (turning
point at S∗ ≈ 0.12) and S = 0.06.

|k| Numerical Xk’s Laguerre Xk’s

1 3.4237352 3.48790272
2 5.6222914 5.6649485
3 8.0750858 8.10819913

to destroy the possibility of a “DL versus stretch” balance
with0 < SNν � 1. For h � xmax, the “vertical” equilibrium
requires

1 − Sh = 2νN/2h + · · · (5.4)

at the two leading orders [compare to Eqs. (3.3) and (4.2)],
whereby h = 1/S − νN + · · · will self-consistently exceed
xmax∼ (νN/S)1/2 when 0 < SνN � 1. As for the “horizontal”
equilibria among the remote poles located at z ≈ xk ± ih, one
can show that their abscissas xk

′s satisfy

−
j=N∑

0=j �=k

2ν

xk − xj

+ Sxk = 0, k = 1, . . . ,N (5.5)

to leading order for small positive S ′s. The Stieltjes analysis
[29,30] implies the xk

′s are again given by roots of a Hermite
polynomial in first approximation, yet with a scale different
from the nearly real cases: HN [xk(S/2ν)1/2] = 0; since the
largest zero of HN is O(N1/2) regardless of N � 1, xmax ∼
(νN/S)1/2 � 1/S if N � 1/νS, as guessed. Though a priori
limited to small stretch intensities (it is then excellent), this
calculation evidences that steady remote pole arrangements
of a novel type exist when 0 < Sν � 1. Used with Bk =
±i(1/S − νN ) and HN [xk(S/2ν)1/2] = 0 as seeds for the
pole locations, Newton-Raphson numerical resolutions of the
steady Eq. (4.1) reveal that such remote arrangements survive
for noninfinitesimal stretch intensities in a range, and show
that the numerical xk lie near the roots of Hermite polynomials
even when their altitudes |Im(zk)| ≈ h are not large compared
to xmax any longer; see Table III.

Comparisons of the above near-horizontal remote pole
arrangements with Refs. [6,31] suggest that a similar stretch-
based mechanism underlies the “interpolating solutions” of the
MS equation evidenced there, where approximately horizontal
arrangements of poles are found to lie at a distance above and
between the vertically aligned ones pertaining to the main
crests; the stretch is then due to the main crest curvature �xx

and, ultimately, results from the attraction by the array of
vertically aligned poles belonging to the space-periodic base
front slope �x (instead of the pole-at-infinity of Sz in the
present situation).

As if that is not enough, for some given sets {S,ν,Ntot}
either type of pole arrangement (all close to the real axis or
near the altitudes ±h � νNk) can be obtained, depending on
the initial seed chosen in Newton iterations; each type may
have its own turning point, at least when N is moderate.

TABLE III. Comparison between the numerically determined ab-
scissas xk > 0 of horizontally aligned “remote” poles ±xk ± ih with
those estimated from the Hermite polynomial HN [xk(S/2ν)1/2] = 0
for N1 = 7, ν = 1/10, and S = 0.30; the turning point is at S∗ ≈ 0.69,
and numerics gives |Im(zk)| ≈ 2.53 only.

|k| Numerical xk’s Hermite xk’s

1 0.71748382 0.66649627
2 1.4684599 1.36644918
3 2.3196838 2.16531738
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FIG. 4. (Color online) A fewcurves giving Bbar (barycenter of
positive pole altitudes Bk) vs S (stretch intensity) at fixed ν = 1/10
for pole arrangements with N � 3. The label arguments encode the
number of near-vertical pole alignments (at small Sν) and the number
of pole pairs in each; the superscript “+” indicates the presence of a
pair of remote poles, |Im(z)| → ∞ as Sν → 0+, e.g., (1+, 1, 1+).

The two types can even coexist in some instances, which
contributes to a further proliferation of solutions. As shown in
Fig. 4, six different patterns are already allowed for the same
stretch intensity (e.g., S = 1) when N = 3, not to mention
those belonging to N = 1,2 only. The situation does not
simplify as Sν > 0 gets smaller, since larger N ′s are allowed
for. It is not excluded that the arrangements obtained so
far are only the first members of an endless family, with a
backbone combining nearly vertical and nearly horizontal pole
arrangements in a hierarchical manner at larger and larger
scales as 0 < Sν � 1 decreases. Two features complicate
the matter (see Fig. 9 for solutions with N up to 8): (i) the
couplings between the x- and the B-wise interactions (e.g.,
see Fig. 4 at S ≈ 0.4); (ii) the existence of pole detachments
from the main pile(s), which typically corresponds to the
upper branches belonging to a given total pole number: e.g., a
near-real (1,1,1) Hermite type of solution becomes a (1,1+,1)
solution as 0 < Sν decreases along the upper branch with the
same turning point, or (1,1,1,1) becomes (1+,1,1,1+) . . . .

To summarize Sec. V, a weak positive stretch allows for
very numerous novel steady solutions.

VI. SELF-SIMILAR EVOLUTIONS

A. Nearly real poles

The steady patterns analyzed in Sec. V are now shown to
be special cases of analytically accessible evolutions. We first
consider the situation of near-real pole arrangements analyzed
in the paragraphs below (5.2), yet with sufficiently separated
crest locations Xk(t) that are now off the steady situations
described therein, and hence obey unsteady “attraction-
expansion” balances

dXk

dt
= −

j=M∑
1=j �=k

4Njν

Xk − Xj

+ SXk, (6.1)

when 0 < SνNk � 1, k = 1, . . . ,M: the typical time scale
involved in (6.1) is t = O(1/S) and hence largely exceeds
that, O(νNk), needed for the 2Nk poles “inside” the kth crest
to align nearly vertically at Re(z) ≈ Xk , Im(z) = O(νNk). We
next invoke a polynomial �M (ξ ), the M zeros of which ξ = ξk ,
k = 1, . . . ,M , are all assumed real and satisfy

0 = −
j=M∑

1=j �=k

Nj

ξk − ξj

+ N1ξk. (6.2)

For example, �M (ξ ) relates to Laguerre polynomials of ξ 2

in the most complicated example evoked in Sec. V; �2(ξ ) with
N1 �= N2 also is available there. A direct substitution shows
that

Xk(t) = L(t)ξk + D(t), k = 1, . . . ,M (6.3)

are solutions of (6.1), provided L(t) and D(t) follow uncoupled
differential equations:

dD/dt = SD, (6.4)

dL/dt = −4νN1/L + SL. (6.5)

While D(t) accounts for the already mentioned “recession”
of any pattern as a whole, the scale factor L(t) controls all
mutual x-wise distances between crests. For a constant S, (6.5)
gives

L2(t) = (
L0

eq

)2 + [
L2(0) − (

L0
eq

)2]
exp(2St), (6.6)

with L0
eq ≡ (4νN1/S)1/2. By Eq. (6.6), multicrest nearly real

equilibrium configurations are unstable, since |L(0)| > L0
eq

ultimately leads to |L| ∼ exp(St) and a uniform exponential
stretching of all mutual distances between crests: “expansion”
ultimately wins over attraction. On the contrary, |L(0)| < L0

eq
leads to the simultaneous collapse of all crests into a single one
located at the abscissa D(tmerger) = D(0){1 − [L(0)/L0

eq]2}1/2,
{1 − [L(0)/L0

eq]2}1/2 exp(Stmerger) ≡ 1; actually, the 1-D ap-
proximate dynamics (6.1) ceases to be valid for t <∼ tmerger

because the crests are not sufficiently separated any longer,
and later. Numerical integrations of Eq. (4.1) were performed
with M = 7, Nk = 1 for all crests, S = 1/100, ν = 1/10, and
initial locations zk(0) = L(0)ξk ± iν, L(0) �= L0

eq, D(0) = 0.
An agreement with (6.3) and (6.6) was obtained, except for
a slight discrepancy near the time tmerger if L(0) < L0

eq, when
the dynamics of L(t) ceases to be slow [max(|Xk|/ν) gets
too small] and the cumulated numerical errors are enough to
break the self-similarity of the final collapse. Repeating the
simulation with zk(0)′s that are randomly displaced by a few
percent from L(0)ξk ± iν also led to fair agreement with (6.3)
and (6.6) when L(0) > L0

eq; see Fig. 5. Although with L(0) <

L0
eq premature pairwise coalescences occur instead of a single

seven-pair crest being formed at once, see Fig. 6, a single crest
will form soon after, however, by the alignment mechanism
recalled at the beginning of Sec. V.

B. Remote poles

The above analysis can be adapted to the case of N

remote pole pairs that are initially nearly aligned horizontally
at zk = xk(0) ± ih(0), h(0) = O(1/S) � νN . To satisfy the
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FIG. 5. (Color online) Dotted (blue) lines: Evolutions of the
scaled abscissas Xk(t)/L0

eqξk > 0 of 3 (out of M = 7) nearly real
crests initially at about Xk(0)/L0

eqξk = 2 (twice the equilibrium
values), for S = 1/100, ν = 1/10, Nk�1 = N1 = 1, and purposely
disturbed initial poles locations (see text). Solid (red) line: analytical
prediction, Eq. (6.3).

imaginary part of (4.1), their current common altitude h(t) �
O[(Nν/S)1/2] must obey

dh/dt = Nν/h − 1 + Sh + · · · (6.7)

instead of (5.4), whereas the unsteady version of (5.5) (dxk/dt

is added to the right-hand side) has solutions xk(t) = L(t)ξk +
D(t) still given by (6.2), (6.3), and (6.6), up to a few
differences.

(i) First, one must set Nk = N1 = 1 in (6.2) and (6.5),
whereby the equilibrium scale factor is now L∞

eq ≡
(2νN/S)1/2. Yet like previously, steady nearly horizontal
remote pole arrangements are unstable: |L| ∼ exp(St) for
St � 1 if |L(0)| > L∞

eq , whereas |L(0)| < L∞
eq leads to the

collapse of all (simple) poles into a single one (of order
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FIG. 6. (Color online) Dotted (blue) lines: Evolution of the
scaled abscissas Xk(t)/L0

eqξk > 0 of 3 (out of M = 7) near-real
crests initially at Xk(0)/L0

eqξk = 1/2 (half the equilibrium values) for
S = 1/100, ν = 1/10, Nk�1 = N1 = 1. Solid (red) curves: analytical
prediction, Eq. (6.3). Inset: as previously, with the same intentional
“noise” on initial conditions as in Fig. 5.

N ) at the finite t = tmerger, Stmerger ≡ − ln{1 − [L(0)/L∞
eq ]2}.

(ii) Another difference with near-real poles is that the dynam-
ics (6.5) does not stop at t = tmerger. L2(t), as is now defined
by (6.6), may get negative and L(t) itself imaginary: the N

poles then become vertically aligned, and will remain nearly
so for t > tmerger.

The latter scenario of course assumes that the altitude
h(t) has not shrunk to zero in the interim: whereas h(0) >

heq = 1/S − νN + · · · eventually leads to h ∼ exp(St) and
poles that head for ±i∞, any h(0) < heq will drive the
solution of (6.7) to h(t0) = O[(Nν/S)1/2] � 1/S for t ≈ t0,
St0 ≡ − ln[1 − h(0)/heq]; after t0 the poles in question will
shortly become nearly real, h(t > t0) = O(ν) � (Nν/S)1/2.
The analysis just given then ceases to be valid, but the previous
one pertaining to nearly real pole pairs becomes applicable:
at t ≈ t0 the poles are indeed separated by O[(Nν/S)1/2]
horizontal distances, and in a first approximation for 0 <

SNν � 1 their abscissas are still proportional to the zeros ξk of
a Hermite polynomial, HN (ξ ). If t0 < tmerger, i.e., h(0)/heq <

[L(0)/L∞
eq ]2, and such that L(t0) < L0

eq [or L(t0) > L0
eq], an

N -crest pattern will be seen to crop on top of the base flame
before collapsing into a single one (or an N−crest pattern
expanding laterally); on the contrary, if t0 > tmerger, only an
isolated crest will be observed when acquiring a significant
amplitude.

Thus, depending on the values of the initial altitude h(0)
and scale factor L(0), a variety of behaviors caused by
nonlinear interactions may take place among initially remote
pole arrangements, even though this can hardly be noticed
from the real axis because the poles involved are too far from
it when these “off-stage” processes occur. Moreover, slight
differences in the initial conditions may result in completely
different patterns as time elapses: the unstable equilibria [e.g.,
remote poles at ξkL

∞
eq ± iheq, or near-real ones at ξkL

0
eq ±

iO(νNk)] play the part of “shunting” or “saddle” points
for the system trajectories. Since the poles are indiscernible
(identical residues), the existence of unstable equilibriums,
whose number quickly increases as 1/Sν → +∞, almost
precludes one from tracing back the origin of subwrinkles
of a weakly curved flame front from the sole observation of
their shape, location, and amplitude when they become visible.
This likely contributes to the nearly random manner in which
subwrinkles crop up on top of weakly curved flame troughs [8],
like in a Galton box.

VII. TIME-DEPENDENT STRETCH

A too intense constant stretch S > 0, for example induced
by a too strong steady u(x) in Eq. (2.1), can moderate or inhibit
the phenomenon of trough-splitting (i.e., crest formation) that
the DL instability mechanism tends to induce. On the contrary,
a constant compression, S < 0, tends to pull the poles of
φx and to make them crowd near the origin z = 0. What
happens when S oscillates and possibly changes sign with
time has so far not been investigated, even though this relates
to the subwrinkles of flames subjected to a time-dependent,
nonuniform u(t,x) in Eq. (2.1). Oscillating stretch intensities
S(t) = 〈S〉 + σ sin(ωt) of various mean values 〈S〉, amplitudes
σ , and frequencies ω are considered below.
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At frequencies ω � 1/ν, the quasisteady approximation
applies, whereby a slowly evolving two-pole centered crest
may not be durably viable whenever max(S) = 〈S〉 + σ

exceeds Sc = 1/4ν; see Sec. III A. Its quasisteady structure
will cease to exist when S(t) crosses Sc for the first time: even if
S(t) may later cross Sc from above, B1(t) will have meanwhile
moved high enough above the unstable B+(ν,S(t)) not to again
be attracted near the lower branch B−(ν,S(t)) of quasisteady
solutions. Likewise, centered crests with 2N � 1 vertically
aligned poles are ruled out whenever 〈S〉 + σ exceeds S∗ for
long enough, Eq. (3.8), but can nevertheless survive with a
smaller number of pole pairs, N � | 1/2π2ν(〈S〉 + σ ) | (see
Sec. III B). In other words, at least when it is slow, the S(t)
history selects N in the long-time limit.

To study the opposite, high-frequency, case ω � 1/ν, one
first sets Bn = βnE(T ), E ≡ exp[−(σ/ω) cos T ], T = ωt , and
next invokes a two-time (t and T ) asymptotic method, formally
replacing d/dt by ω∂T + ∂t . Provided they remain O(Nν) to
leading order for ω � 1/ν, the βn(t,T ) functions may actually
only depend on the “slow” time t ; taking an average (noted
〈·〉) of (4.1) over T shows they obey the “slow dynamics,”

∂βn

∂t
=

m=N∑
−N=m�=n

2νK

βn − βm

− J sgn(βn) + 〈S〉βn. (7.1)

Here a ≡ σ/ω, J ≡ 〈exp[±a cos(ωt)]〉 = I0(a), with I0(·)
being the modified Bessel function of the first kind and zeroth
order, and K ≡ I0(2a). This averaged dynamics for the βn

′s
thus has the same structure as the restriction of (4.1) to
aligned poles zn = iBn, up to coefficients that only depend
on (σ/ω), i.e., on the power spectrum of the integrated stretch
fluctuations.

In particular, the late time state of a two-pole (N = 1)
oscillating crest must satisfy νK/β1 − J + 〈S〉β1 = 0 instead
of (3.3), and will be allowed only if 〈S〉 is less than 〈S〉c, with

〈S〉c = ScJ
2/K < Sc, (7.2)

where Sc = 1/4ν is the same as in the nonoscillating, two-pole
case; see (3.3). The corresponding value of β1 is 2νK/J >

Bc = 2ν, and that of 〈B1〉 is even larger, 〈B1〉 = 2νK ,
not to mention max[B1(t)] = β±

1 exp(a) > νK exp(a). In
other words, an intense enough high-frequency oscillating
component of the stretch intensity tends to flatten a two-
pole crest [〈β1〉 > B− along the lower branch β−

1 of steady
solutions to (7.1)]: more importantly, fast enough oscillations
in stretch intensity make subwrinkle suppression easier than
by the mean stretch alone, Sc � 〈S〉c, yet moderately so since
J 2/K only slowly decays from 1 − a2/2 + · · · at |a| � 1 to
≈ 1/(π |a|)1/2 at |a| � 1. One may also note that 2〈S〉c〈B〉c =
J > 1, indicating a weaker and wider crest profile at the
turning point than without fluctuations of stretch intensity.

The numerical integration of (4.1) with N = 2, ν = 1/10,
ω = 20, and a = 3/2 (J 2/K = 0.555 . . .) shows that a suc-
cessful two-time analysis does not require ω to largely exceed
the reciprocal relaxation time t1 of β1(t) to the steady root β1:
in Fig. 7, ωt1 ≈ 3.5. The large-ω predictions tend to be more
accurate for the highest poles.

Likewise, crests with N � 1 aligned pole pairs subjected to
high-frequency stretch are ultimately described by an equation
similar to (3.4), yet with {ν,S} replaced by{νK/J,〈S〉/J }.
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FIG. 7. (Color online) Black solid line: oscillating solution B−
1 (t)

obtained from numerical integration of Eq. (4.1) for N = 2(zk =
iBk,|k| = 1,2) for ν = 1/10, S(t) = 0.2 + 30 sin(20t). Dashed (blue)
line: analytical curveβ1 exp[−(σ/ω) cos T ], β1,2 being the positive
steady solutions of (7.1).

They may therefore exist only if 2π2Nν〈S〉 < J 2/K < 1:
again, the condition for stretch-induced crest suppression is
more restrictive than (3.8). In the large-ω limit, the instanta-
neous crest slope has E(T )φx = − ∫ +βmax

0 4νXp(β)dβ/(X2 +
β2), with X ≡ x/E(t), and the equations that determine the
p(β) have the same structure as (3.4) provided {ν,S,B,Bmax}
are replaced therein by {νK/J,〈S〉/J,β,βmax = 〈Bmax〉/J };
the corresponding instantaneous crest shape is ultimately
self-similar, φ(t,x) = F (X).

Before closing this section, a few remarks are in order. The
large-ω analysis can be easily adapted when the fluctuation
S ′(t) of stretch intensity contains R widely separated frequen-
cies 1/ν � ω1 � ω2 � · · · � ωR , with partial amplitudes
σr : the influence of each frequency can be accounted for in turn,
starting from ωR . As a result, the J coefficient involved in the
slowest dynamics (7.1) becomes J = I0(a1)I0(a2) · · · I0(aR),
ar ≡ σr/ωr , and K acquires a similar expression. Because
ln[I0(|a| � 1)] = a2/4 + · · ·, such products converge for R =
∞ whenever the power spectrum of the integrated stretch
fluctuation satisfies the comparatively mild condition σr/ωr =
o(1/r1/2). Whereas also allowing 〈S〉 to depend on slow time t

is a harmless additional generalization, it is not known whether
the above elementary “cascade renormalization” [32] can be
extended to a continuous spectrum ω � ω1 � 1 (replacing
the series for ln J and ln K by integrals over ω � ω1), and
to turbulent-like fluctuations of S; the analogs of J and K

could even be tabulated numerically if S ′(t) = S(t) − 〈S〉 is
available and contains no beat with ων = O(1).

At any rate, the convexity of exponential functions guaran-
tees that 〈E〉 � 1, 〈E2〉 � 1 for any d(ln E)/dt = S ′(t) such
that the latter time averages exist. The Cauchy-Schwartz in-
equality implies J 2/K = 〈E〉2/〈E2〉 � 1, whereby the trends
revealed with harmonic variations of stretch intensity are fairly
general. They actually extend to fronts that are 2πE(t)/κ-
periodic (κ > 0) in x, in which case S ′(t) = d(ln E)/dt .
This pertains to x → −x invariant flame fronts propagat-
ing along the center line (y-axis) of left-right symmetric
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two-dimensional channels with a variable width �(y) >

0 [33]. The scale factor is then E(t) = �(t̂uL)/〈�〉, t̂ ∼
t�/uLA2 being a dimensioned time, whereby 〈S〉 = 0 and
〈E〉 = 1; the analog of J/K again is less than 1. One can show
that the number N of pole pairs present “in” the channel must
be less than | (1 + J/νκK)/2 | if a cellular pattern is to survive;
this is more stringent than when �(y) ≡ 〈�〉 (i.e.,J = K),
and no wrinkle is allowed durably in the wavy channel if
J/K � κν.

VIII. STRETCH VERSUS SPECTRAL CUTOFF

To put the findings obtained so far in a more physical
perspective, and relate them to the second problem evoked
in Sec. I, it is useful to restore dimensions in the “stretched”
MS equation (2.3). This gives

φ̂t̂ + a(A)uL

[
�x̂φ̂x̂ + 1

2 (φ̂x̂)2
]= uL�(A)[φ̂x̂x̂/kn + I (φ̂,x̂)],

(8.1)

where the overhats of x̂,t̂ ,... denote dimensioned variables,
and the uniform drift velocity Û (t̂) ∼ U (t) is again omitted:
�̂ ≡ �x̂2/2 represents the parabolic background front, on top
of which subwrinkles of local amplitude φ̂(t̂ ,x̂) grow. The
dimensionless grouping a(A) ≈ (1 + A) and the DL coeffi-
cient 0 � �(A) ≈ [(1 + A)/(1 − A)]1/2 − 1 only depend on
the Attwood number 0 < A = (ρu − ρb)/(ρu + ρb) < 1, and
are known from separate analyses [1–4].

The “ultimate” steady subwrinkle (in the proper frame) that
can survive as the stretch intensity uL� (now a reciprocal time)
increases is the two-pole solution at its turning point [the same
as at S = Sc = 1/4ν in (3.3)]; see Figs 5 and 9. It corresponds
to a total (i.e., base-flame + subwrinkle) dimensioned flame
profile ϕ̂ ≡ �̂ + φ̂ of the form

ϕ̂c = �(A)

a(A)kn

ψ(x̂kn), ψ(ξ ) ≡ ξ 2

8
− 2 ln

(
1 + ξ 2

4

)
.

(8.2)

The function (3/4 − ln 4)[1 − cos(πξ/
√

12)] accurately
osculates ψ(ξ ) at and between its min or max, located at
ξ = 0, ± √

12; see Fig. 8. This suggests that, as a result of
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FIG. 8. (Color online) Solid (blue) curve: total flame-front shape
at turning point � = �cutoff of the two-pole crest, ψ(ξ ) ≡ ξ 2/8 −
2 ln(1 + ξ 2/4), vs ξ = x̂k̂n. Dashed (black) line: osculating cosine
[see below Eq. (8.2)].

the geometrical stretch caused by distortions at larger scale,
it is unlikely that visible wrinkles with wave numbers |k| �
kcutoff = (π/2

√
3)kn ≈ 0.9kn exist, provided the local wrinkle

structure is considered to be quasisteady. Since the crest radii
of curvature essentially scales like 1/kn regardless of their
amplitude [7], this result is compatible with the experimentally
known near-equality between neutral and cutoff wave numbers
for the wrinkle spectrum of flames propagating in turbulent
flows.

This result kcutoff ≈ kn is not a mere dimensional con-
sequence of having the Markstein length L as a reference
in problems of flame dynamics, since knL depends on the
Attwood number: to wit, knL ≈ �(A) ∼ A for A � 1. Next,
the condition for suppression of all steady subwrinkles by
geometrical stretch (S > Sc in the notation of Sec. III) can be
rewritten as D > Dc ≡ 1/a, where D is a Damköhler number
[34]. It is defined as the ratio of the rate-of-strain uL� based
on flat-flame speed uL and the background flame curvature �

[a tributary of the forcing function in (2.1)] to the maximum
DL growth rate �(A)uLkn; this suggests a dynamical origin.
That a balance of nonlinearity, DL instability, and stretch is
a necessity of wrinkle suppression [see (3.3)] confirms the
genuine flame-dynamical origin of the D > Dc criterion, and
the presence of a(A) [weight of nonlinearity in (8.1)] in Dc

further substantiates this.
The unsteadiness caused by a time-dependent � will

admittedly bring about numerical factors [e.g., the grouping
J 2/K in (7.2)] in the above criterion; yet those will stay O(1)
unless uL�(t̂) and the frequencies ω it involves are much
higher than, O[uL�(A)kn]. That, however, is unlikely for
turbulent flames propagating through actual reactive gaseous
premixtures in conditions when a thin front of O(�) thickness
can be identified as such, because this requires uL�(t̂) and
ω to be much smaller than uL/� [34], and �(A) = O(1) in
practice: the estimate kcutoff = O(kn) is then expected to still
hold true in such regimes, which it does [10,35].

As shown in Sec. III, the approximate result 2S max(B) ≈
1 was obtained at turning points regardless of the number
N of pole pairs involved, thereby suggesting that O(1/�)
typical wrinkle size (amplitude and width) could be selected by
the fluctuating stretch intensity uL�(t̂), when � � �cutoff ≡
�kn/4a. This militates in favor of a (mean-) power spectrum
of wrinkling tied to that of stretch intensity at moderately
small wave-number ratios k/kn: the estimate B̂ ≈ 1/2� for
the typical subwrinkle amplitude B̂ prevailing at larger scales
than 1/kcutoff might then form the basis of a scaling law of
the form �−1(k)f (k/kcutoff) for the (mean-) power spectrum
of wrinkling, with a nearly constant (or very small) f (·) at
k/kn � 1 (or k/kn � 1).

IX. FINAL REMARKS, OPEN PROBLEMS

Combining analytical and numerical approaches based on
the pole decomposition, the present work revealed that inclu-
sion of geometrical stretch markedly modifies the otherwise
simple [7,19] isolated solutions of the classical (Michelson-)
Sivashinsky PDE for (weakly) unstable flames.

First, it was demonstrated that accounting for a uniform
stretch intensity S is enough to generate novel types of isolated
solutions. New steady (unstable) solutions with arrays of
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FIG. 9. Compiled Bbar (upper-pole barycenter) vs S � 0 (dimen-
sionless stretch intensity) curves obtained in the present work for
ν = 1/10, up to N = 8 for some of them. Curves with N � 3 already
appeared in Fig. 4, e.g., the rightmost solution (3.3) (N = 1).

horizontally aligned near-real or remote poles (or both) were
evidenced; when S = 0, only one centered isolated solution,
involving a single vertical pole alignment, existed regardless
of N � 1 [21].

The net result is a proliferation of equilibrium front shapes,
especially at small S ′s; see Fig. 9.

Part of the complexity of MS-type equations (even if S = 0)
boils down to the fact, caused by a nonlinearity and a curvature
term already present in the Burgers equation, that the spatial
poles of φx are indiscernible and interact pairwise via a 1/z

law: midway between two such singularities, another one can
stay in equilibrium. A specificity of this nonlinearity-induced
phenomenon is the anisotropy (horizontal attraction versus
vertical repulsion) of the 1/z = z̄/|z|2 law. In contrast, stretch
effects act on front singularities (hence on their shape) in
an isotropic way. Their presence brings about the possibility
of new “stretch versus horizontal attraction” and/or “stretch
versus Darrieus-Landau instability” partial equilibria, thereby
noticeably contributing to the quick proliferation of (unstable)
steady solutions when S > 0 decreases. A similar mechanism
operates in periodic solutions of the stretch-free MS equation:
S is then effectively provided by the curvature of the main
cell trough, and the many poles associated with its crests
provide the means to pull extra wrinkles or poles away from
the trough in a nearly isotropic way. The analogy is further
substantiated by the fact that the new stretch-induced “steady”
states found above are unstable, as are those evidenced in
[6,31]; their self-similar evolution, described analytically, will
likely help handle those bursts traveling along wide front
troughs.

It has also been shown that too intense stretch suppresses
all isolated “steady” wrinkles (Fig. 9); the larger and wider
the wrinkles, the easier the suppression: this is not caused by
a local quenching of combustion processes inside the front
structure [34], but results from an untenable balance between
stretch, geometrical nonlinearity, and nonlocal hydrodynamics
(and curvature). As the above analyses showed, this effect
is only quantitatively modified when the stretch intensity
oscillates, crest suppression being just made somewhat easier.

These findings have been used to suggest this mechanism as the
reason why the wrinkle upper cutoff wave number in turbulent
flames coincides experimentally [10] with the neutral wave
number identified by linear stability analyses.

Classical (orthogonal) polynomials were encountered when
studying stretch-induced horizontal pole and crest equilibria.
This is not unduly surprising because these are not directly
affected by the Darrieus-Landau mechanism, and hence they
are electrostatic-like. The needed polynomials obey differ-
ential local equations, yet the classical ones do not cover
all “horizontal” equilibria at weak stretch; some available
generalizations (e.g., Heine-Stieltjes polynomials [30]) will
hopefully do.

But concerning the “vertical” equilibria, the situation is
much less clear. The nonlocal DL instability mechanism
indeed acts on the pole population in a way that is explicitly
“vertical,” encoded as it is in an irremovable Hilbert transform.
Further studies of the “stretched Sivashinsky polynomials,”
whose roots obey the steady pole equations, seem warranted,
e.g., to theoretically elucidate the very nature of the miracle
that allows the MS equation to have pole-decomposed solu-
tions (hidden symmetries or mere good fortune?) and because
the Darrieus-Landau mechanism is an indispensable ingredient
of stretch-induced wrinkle suppression.

Yet another important theoretical point is dangling. Implicit
in the discussion about the influence of stretch on the wrinkle
wave number (Sec. VIII) was the assumption that the maxi-
mum admissible number of front-slope poles, corresponding
to turning-point conditions, is the relevant one: since the pole
dynamics conserves their number (when finite), how can noise
supply ”enough of” them as the stretch intensity varies? This
brings one back to a nonlinear problem already evoked in
Sec. I: how does noise, even if weak when seen on the real
axis, implant complex poles (incipient wrinkles)? Answering
this question is one of the most challenging open theoretical
issues about flame dynamics, not to mention its statistical
aspects.

APPENDIX A: THEORETICAL POLE DENSITY

Setting B = Bmax sin θ , sgn(B) = sgn(θ ) and P (B) =
P (−B) are expanded as Fourier series:

πsgn(B) =
∞∑

j=0

4 sin [(2j + 1)θ ]/(2j + 1), (A1)

P (B) =
∞∑

j=0

Pj cos [(2j + 1)θ] . (A2)

Employing them and the identity [21]:

∫
–

+π/2

−π/2

cos[(2j + 1)θ ′] cos θ ′

sin θ − sin θ ′ dθ ′ = π sin [(2j + 1)θ ] ,

j = 0,1, . . . (A3)

in (3.4) then yields 2πνPj = 4/(2j + 1) − πSBmaxδ0j (δ0j =
the Kronecker delta); summing the series for P (B) gives
Eq. (3.5) of the main text.
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APPENDIX B: STIELTJES TRICK FOR CREST LOCATIONS

Multiplying each of Eq. (5.3) by Xk = −X−k and setting
Xk = sgn(k)(4νN1η|k|/S)1/2 leads to

2ηk

N∑
1=j �=k

1

ηk − ηj

+ α + 1 − ηk = 0, (B1)

with α = N0/N1 − 1/2. As first realized by Stieltjes [29,30],
the above sum over j �= k can also be written as
limη→ηk

{p′(η)/p(η) − 1/(η − ηk)} = p′′(ηk)/2p′(ηk), where

p(η) ≡�N
k=1(η − ηk) and (·)′ = d(·)/dη. Next, the polynomial

ηp′′(η) + (α + 1 − η)p′(η) has −NηN as the term of highest
degree; according to the equations above, it vanishes when
η = ηk,k = 1, . . . ,N , and thus it is −Np(η). As the only
polynomial solution of ηp′′ + (α + 1 − η)p′ + Np = 0 is an
associated Laguerre polynomial, one has p(η) = L(α)

N (η) [24],
and its accessible roots ηk > 0 give the crest locations; see
Sec. V. The sum 1/η1 + · · · + 1/ηN of the roots 1/ηk of
L(α)

N (η)/ηN is deducible from the known coefficients [24] of
L(α)

N (·), and reads 2N/(α + 1) = 2N/(N0/N1 + 1/2).
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(1985).
[8] D. M. Michelson and G. I. Sivashinsky, Combust. Flame 48, 211

(1982).
[9] T. Sasamoto and H. Spohn, J. Stat. Mech. 11, 11013 (2010).

[10] H. Kobayashi, Exp. Therm. Fluid Sci. 26, 375 (2002).
[11] U. Frisch, in Chaos and Statistical Methods, edited by

Y. Kuramoto (Springer, Berlin, 1984), p. 211.
[12] D. Bessis and J. D. Fournier, J. Phys. Lett. 45, L-833 (1984).
[13] Z. Olami, B. Galanti, O. Kupervasser, and I. Procaccia, Phys.

Rev. E 55, 2649 (1997).
[14] G. Joulin, Combust. Sci. Technol. 60, 1 (1988).
[15] R. V. Fursenko, K. L. Pan, and S. S. Minaev, Phys. Rev. E 78,

056301 (2008).
[16] V. Karlin, Phys. Rev. E 73, 016305 (2006).
[17] G. H. Markstein, Nonsteady Flame Propagation (Pergamon,

Oxford, 1964).
[18] A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface

Growth (Cambridge University Press, Cambridge, UK, 1995).
[19] G. Joulin, J. Phys. (France) 50, 1069 (1989).

[20] B. Deconinck, Y. Kimura, and H. Segur, J. Phys. A 40, 5459
(2007).

[21] G. Joulin and B. Denet, Phys. Rev. E 78, 016315 (2008).
[22] Y. C. Lee and H. H. Chen, Phys. Scr. T 2, 41 (1982).
[23] M. L. Mehta, Random Matrices, 2nd ed. (Academic, Boston,

1991).
[24] S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and

Products, 7th ed. (Elsevier, Amsterdam, 2007).
[25] Y. Chen and M. E. H. Ismail, J. Phys. A 31, 5525 (1998).
[26] Ya. B. Zel’dovich, A. G. Istratov, N. I. Kidin, and V. B. Librovich,

Combust. Sci. Technol. 24, 1 (1980).
[27] G. E. Andrews, The Theory of Partitions (Cambridge University

Press, Cambridge, 1984).
[28] E. W. Weisstein, “Composition,” From MathWorld, A Wolfram

Web Resource [http://mathworld.wolfram.com/Composition.
html].

[29] M. E. H. Ismail, Pacific J. Maths. 193, 355 (2000).
[30] G. E. Andrews, R. Askey, and R. Roy, Special Functions

(Cambridge University Press, Cambridge, 2000).
[31] L. Guidi and D. Marchetti, Phys. Lett. A 308, 162 (2003).
[32] G. I. Sivashinsky, Combust. Sci. Technol. 62, 77 (1988).
[33] H. El-Rabii, G. Joulin, and K. A. Kazakov, SIAM J. Appl. Math.

70, 3287 (2010).
[34] F. A. Williams, in Combustion Theory, 2nd ed. (Benjamin/

Cummings, Menlo Park, 1998), p. 389.
[35] H. Kobayashi et al., in XXVIth International Symposium

on Combustion (The Combustion Institute, Pittsburgh, 1996),
p. 389.

016315-13

http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://dx.doi.org/10.1051/jphys:01987004802019300
http://dx.doi.org/10.1016/0094-5765(77)90097-2
http://dx.doi.org/10.1016/0094-5765(77)90097-2
http://dx.doi.org/10.1103/PhysRevE.74.036303
http://dx.doi.org/10.1051/jphys:019850046090148500
http://dx.doi.org/10.1051/jphys:019850046090148500
http://dx.doi.org/10.1016/0010-2180(82)90128-6
http://dx.doi.org/10.1016/0010-2180(82)90128-6
http://dx.doi.org/10.1088/1742-5468/2010/11/P11013
http://dx.doi.org/10.1016/S0894-1777(02)00149-8
http://dx.doi.org/10.1051/jphyslet:019840045017083300
http://dx.doi.org/10.1103/PhysRevE.55.2649
http://dx.doi.org/10.1103/PhysRevE.55.2649
http://dx.doi.org/10.1080/00102208808923972
http://dx.doi.org/10.1103/PhysRevE.78.056301
http://dx.doi.org/10.1103/PhysRevE.78.056301
http://dx.doi.org/10.1103/PhysRevE.73.016305
http://dx.doi.org/10.1051/jphys:019890050090106900
http://dx.doi.org/10.1088/1751-8113/40/20/014
http://dx.doi.org/10.1088/1751-8113/40/20/014
http://dx.doi.org/10.1103/PhysRevE.78.016315
http://dx.doi.org/10.1088/0031-8949/1982/T2A/005
http://dx.doi.org/10.1088/0305-4470/31/25/005
http://dx.doi.org/10.1080/00102208008952419
http://mathworld.wolfram.com/Composition.html
http://mathworld.wolfram.com/Composition.html
http://dx.doi.org/10.2140/pjm.2000.193.355
http://dx.doi.org/10.1016/S0375-9601(03)00007-0
http://dx.doi.org/10.1080/00102208808924003
http://dx.doi.org/10.1137/100790252
http://dx.doi.org/10.1137/100790252

