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Simplifying the complexity of pipe flow
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Transitional pipe flow is modeled as a one-dimensional excitable and bistable medium. Models are presented in
two variables, turbulence intensity and mean shear, that evolve according to established properties of transitional
turbulence. A continuous model captures the essence of the puff-slug transition as a change from excitability to
bistability. A discrete model, which additionally incorporates turbulence locally as a chaotic repeller, reproduces
almost all large-scale features of transitional pipe flow. In particular, it captures metastable localized puffs,
puff splitting, slugs, localized edge states, a continuous transition to sustained turbulence via spatiotemporal
intermittency (directed percolation), and a subsequent increase in turbulence fraction toward uniform, featureless
turbulence.
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I. INTRODUCTION

The transition to turbulence in pipe flow has been the
subject of study for over 100 years [1], both because of
its fundamental role in fluid mechanics and because of the
detrimental consequences of turbulent transition in many
practical situations. There are at least two features of the
problem that make it fascinating but also difficult to analyze.
The first is that when turbulence appears, it appears abruptly [1]
and not through a sequence of transitions each increasing the
dynamical complexity of the flow. Turbulence is triggered by
finite-sized disturbances to linearly stable laminar flow [2–4].
This hysteretic, or subcritical, aspect of the problem limits
the applicability of linear and weakly nonlinear theories.
The second complicating feature is the intermittent form
turbulence takes in the transitional regime near the minimum
Reynolds number (nondimensional flow rate) for which turbu-
lence is observed [1,5–7]. In sufficiently long pipes, localized
patches of turbulence (puffs) may persist for extremely long
times before abruptly reverting to laminar flow [8–15]. In
other cases, turbulent patches may spread by contaminating
nearby laminar flow (puff splitting and slugs) [6,7,16–19].
While minimal models have been very useful in understanding
generic features of intermittency in subcritical shear flows
[20–24], such models do not capture the puffs, puff splitting,
and slugs that are essential to the character of pipe flow.
In this paper I argue that transitional pipe flow should be
viewed in the context of excitable and bistable media. With
this perspective I present models, based on the interaction
between turbulence and the mean shear, that both capture and
organize most large-scale features of transitional pipe flow.

Figure 1 summarizes the three important dynamical regimes
of transitional pipe flow. The left column shows results from
direct numerical simulations (DNSs) [7,25]. Quantities are
nondimensionalized by the pipe diameter D and the mean
(bulk) velocity Ū . The Reynolds numbers is Re = DŪ/ν,
where ν is kinematic viscosity. Flows are well represented
by two quantities, the turbulence intensity q and the axial
(streamwise) velocity u, sampled on the pipe axis. Specifically,
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FIG. 1. (Color online) Regimes of transitional pipe flow. Left
column is from full DNS with 4 × 107 degrees of freedom in a
periodic pipe 200D long. Flow is from left to right. Shown are
instantaneous values of turbulence intensity q and axial velocity u

along the pipe axis. (a) Equilibrium puff at Re = 2000. (b) Puff
splitting at Re = 2275. The downstream (right) puff split from
the upstream one at an earlier time. (c) Expanding slug flow at
Re = 3200. Right column shows corresponding states from the
simple one-dimensional model (3)–(6) (d) R = 2000, (e) R = 2100,
and (f) R = 3200.

q is the magnitude of transverse fluid velocity (scaled up
by a factor of 6). The centerline velocity u is relative to
the mean velocity and is a proxy for the state of the mean
shear that conveniently lies between 0 and 1. At low Re, as in
Fig. 1(a), turbulence occurs in localized patches propagating
downstream with nearly constant shape and speed. These are
called equilibrium puffs [2,16,17], a misnomer since at low
Re puffs are only metastable and eventually revert to laminar
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flow, that is, decay [8–15]. Asymptotically, the flow will be
laminar parabolic flow (q = 0,u = 1) throughout the pipe.
For intermediate Re, as in Fig. 1(b), puff splitting frequently
occurs [7,16,17,19]. New puffs are spontaneously generated
downstream from existing ones and the resulting pairs move
downstream with approximately fixed separation. Further
splittings will occur and interactions will lead asymptotically
to a highly intermittent mixture of turbulent and laminar
flow [5,7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6,17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1)
edge of turbulent patches, laminar flow abruptly becomes
turbulent. Energy from the laminar shear is rapidly converted
into turbulent motion and this results in a rapid change to the
mean shear profile [6,26]. In the case of puffs, the turbulent
profile is not able to sustain turbulence and thus there is
a reverse transition [6,27] from turbulent to laminar flow
on the downstream side of a puff. In the case of slugs, the
turbulent shear profile can sustain turbulence indefinitely;
there is no reverse transition and slugs grow to arbitrary
streamwise length [6,17]. On the downstream side of turbulent
patches the mean shear profile recovers slowly [27], seen in
the behavior of u in Fig. 1. Crucially, the degree of recovery
dictates how susceptible the flow is to reexcitation into
turbulence [26].

These are the characteristics of excitable and bistable media
[28,29]. In fact, the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation.

II. MODELS

I propose to model pipe flow as a generic excitable and
bistable medium incorporating the minimum requisite features
of pipe turbulence. The models are expressed in variables q

and u depending on distance along the pipe.
Consider first the continuous model,

qt + Uqx = q[u + r − 1 − (r + δ)(q − 1)2] + qxx, (1)

ut + Uux = ε1(1 − u) − ε2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux ,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in Fig. 2.
The trajectories are organized by the nullclines: curve where
u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx = ux = 0).
For all r the nullclines intersect in a stable, but excitable, fixed
point corresponding to laminar parabolic flow. The u dynamics
with ε2 > ε1 captures in the simplest way the behavior of the
mean shear. In the absence of turbulence (q = 0), u relaxes
to u = 1 at rate ε1, while in response to turbulence (q > 0),
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FIG. 2. (Color online) The distinction between puffs and slugs
seen as the difference between excitability and bistablilty in Eqs. (1)
and (2). Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The
fixed point (1,0) corresponds to parabolic flow. In (b) the additional
stable fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions are
plotted in the phase planes with arrows indicating increasing x.

u decreases at a faster rate dominated by ε2. Values ε1 =
0.04 and ε2 = 0.2 give reasonable agreement with pipe flow
(see Appendix Sec. 1A). The q-nullcline consists of q = 0
(turbulence is not spontaneously generated from laminar flow)
together with a quadratic curve whose nose varies with r ,
while maintaining a fixed intersection with q = 0 at u = 1 + δ

(δ = 0.1 is used here). The upper branch is attractive, while
the lower branch is repelling and sets the nonlinear stability
threshold for laminar flow. If laminar flow is perturbed beyond
the threshold (which decreases with r like r−1), q is nonlinearly
amplified and u decreases in response.

The (excitable) puff regime occurs for r < rc � ε2/(ε1 +
ε2) [Figs. 2(a) and 2(c)]. The upstream side of a puff is a
trigger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained locally
following the drop in the mean shear. The system relaminarizes
(reverse transition) on the downstream side in a phase front [28]
whose speed is set by the upstream front. Following relami-
narization, u relaxes and laminar flow regains susceptibility
to turbulent perturbations. The slug regime occurs for r > rc

[Figs. 2(b) and 2(d)]. The nullclines intersect in additional
fixed points. The system is bistable and turbulence can be
maintained indefinitely in the presence of modified shear. Both
the upstream and the downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of
turbulence. A full analysis will be presented elsewhere.

While Eqs. (1) and (2) capture the basic properties of puffs
and slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence, a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is

qn+1
i+1 = F

[
qn

i + d
(
qn

i−1 − 2qn
i + qn

i+1

)
,un

i

]
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FIG. 3. (Color online) Illustration of the discrete model. (a) Local
dynamics in the u-q phase plane. Within a wedge-shaped region q

undergoes transient chaos, while outside it decays monotonically to
q = 0. The region varies with R as indicated. (b) Map used to produce
transient chaos. Parameter α (which depends on u and R), is the lower
boundary separating monotonic and chaotic dynamics.

where qn
i and un

i denote values at spatial location i and time
n. This model is essentially a discrete version of Eqs. (1) and
(2), except with chaotic q dynamics generated by the map F .

The map F is based on models of chaotic repellers in shear
flows [23,32]. Consider the tent map f given by

f (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ q if q < Q1,

2q − α if Q1 � q < 1,

4 + β − α − (2 + β)q if 1 � q < Q2,

γQ1 if Q2 � q,

(5)

with Q1 = α/(2 − γ ) and Q2 = (4 + β − α − γQ1)/(2 +
β). Parameter α marks the lower boundary separating chaotic
and monotonic dynamics [Fig. 3(b)], while γ sets the decay
rate to the fixed point q = 0. For β > 0 (β < 0) the map
generates transient (persistent) chaos within the tent region.
The map is incorporated into the pipe model by having the
threshold α depend on u as well as on a control parameter R, via

α = 2000(1 − 0.8u)R−1. (6)

The factor (1 − 0.8u) generates the desired wedged-shaped
region, while 2000 sets the scale of R to that of Re. Finally,
the map F is given by k iterates of f , that is, F = f k; with
k = 2 used here (see Appendix Sec. 1B). This has the effect of
increasing the Lyapunov exponent within the chaotic region.

The only important new parameter introduced in the dis-
crete model is β since it quantifies a new effect—spontaneous
decay of local turbulence for β > 0. Suitable values for others
are ε1 = 0.04 and ε2 = 0.2 as before, γ = 0.95, c = 0.45,
and d = 0.15 (see Appendix Sec. 1B). As shown in Fig. 1,
for β = 0.4 the model shows puffs, puff splitting, and slugs
remarkably like those from full DNS. The model parameter R

nearly corresponds to Reynolds number Re.
While positive β is ultimately of interest, to better connect

the two models consider first β negative, for example, β =
−0.4. A transition from puffs to slugs occurs as R increases
and the wedge of chaos crosses the u nullcline. One finds a
noisy version of the continuous model in Fig. 2 (see Appendix,
Fig. 8). If splittings of turbulent patches occur, they are
exceedingly rare. At β ≈ 0 (including even β = −0.1), chaotic
fluctuations in q cause occasional splitting of expanding
turbulence. Puffs at lower R are clearly metastable, persisting
for long times before decaying. However, splitting and decay

are unrealistically infrequent if β is too small. Setting β � 0.1
gives realistic behavior, as seen in Fig. 1, where β = 0.4 (see
also Appendix, Fig. 9). Note that the splitting of expanding
turbulent patches and the decay of localized puffs are caused
by the same process, the collective escape from the chaotic
region of a sufficiently large streamwise interval to bring about
local relaminarization. This is precisely the scenario described
by extreme fluctuations [33]. In the case of puffs, this results
in puff decay, while in the case of splitting, laminar gaps open
whose sizes are then set by the recovery of the slow u field.

Figure 4 further illustrates how well the discrete model
captures the three regimes of transitional pipe flow. Space-
time plots show puff decay, puff splitting, and slug flow. In
Fig. 4(a), a puff persist for only a finite time before abruptly
decaying [8–15]. In Fig. 4(b), puff splitting dominates the
dynamics [7,16,17,19]. New puffs are generated downstream
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FIG. 4. (Color online) Three regimes of pipe flow from simu-
lations of the discrete model (3)–(6). Space-time diagrams (time
upward) illustrate (a) decaying puff at R = 1900, (b) puff splitting at
R = 2200, and (c) slug formation from an edge state at R = 3000.
For ease of comparison with published work on pipe flow, solutions
are shown in a frame comoving with structures. Turbulence intensity
q is plotted with q = 1.8 in white. In (a) and (b) the scale is linear with
q = 0 in black, while in (c) the scale is logarithmic with q � 10−3 in
black. Dimension bars indicate space and time scales. The top space
scale applies also to (b).
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FIG. 5. (Color online) Main figure is a bifurcation diagram for
model turbulence in the thermodynamic limit. The turbulence fraction
Ft is plotted throughout the transitional regime. The onset of sustained
turbulence, via spatiotemporal intermittency, occurs continuously at
Rc � 2046.2. Ft increases with R and saturates near R = 2800.
Asymptotic regimes (laminar, intermittent, featureless) are labeled,
along with corresponding transient dynamics (decaying puffs, puff
splitting, slugs). The onset of featureless turbulence is not sharp, as
indicated by gray shading. Space-time plots illustrate the dynamics
near the ends of the transitional regime (R = 2058, R = 2720,
R = 2880) with q plotted in frames comoving with structures (color
map indicated, dark is laminar). (a) Mean lifetimes for decaying
(circles) and splitting (squares) puffs crossing at R× � 2040. (b)
log-log plot of Ft versus R − Rc. Best fit to the solid (red) points
determines Rc and the slope.

from existing ones such that intermittent turbulent regions
fill space. Compare especially with Refs. [7,19]. Finally, in
Fig. 4(c), a slug arises from a localized edge state (a low-
amplitude state on the boundary separating initial conditions
which evolve to turbulence from those which decay to laminar
flow [18,34–36]). Compare especially with Ref. [18].

The remainder of the paper provides a global perspective
of the transitional regime, obtained from extensive numerical
simulation of Eqs. (3) and (4) and summarized in Fig. 5.
Turbulence fraction Ft serves as the order parameter, tracking
the dynamics from the onset of intermittency through the
approach to uniform, featureless turbulence. A point is defined
to be turbulent if q > 0.5α and Ft is the mean fraction of
turbulent points.

There is a continuous transition to sustained turbulence,
via spatiotemporal intermittency [19–24], at a critical value
Rc � 2046.2. Below Rc, the flow is asymptotically laminar
and Ft = 0. Above Rc turbulence persists indefinitely and
Ft > 0. This transition is associated with the crossing of mean

lifetimes for puff decay and splitting shown in Fig. 5(a). Both
decay and splitting are memoryless processes with exponential
survival distributions P ∼ exp[−n/τ (R)], where τ (R) is the
R-dependent mean time until decay or split (see Appendix
Sec. 2a and Fig. 12). The mean lifetimes vary approximately
superexponentially with R [13,14,19], but neither is exactly of
this form. Mean lifetimes cross at R× � 2040. Above R× an
isolated puff is more likely to split than decay. As expected,
even though individual turbulent domains may still decay,
others may split, as seen in the space-time plot at R = 2058.
Due to correlations between splitting and decay events, the
critical value Rc is not identical to R×, but is very close to
it (a difference of 0.3%). Figure 5(b) shows that just above
criticality, Ft ∼ (R − Rc)0.28, supporting that the transition
falls into the universality class of directed percolation [37].

The ratio of turbulence to laminar flow increases through
the intermittent region and at the upper end only small laminar
flashes are seen within a turbulent background. Beyond
R � 2800 laminar regions essentially disappear and Ft � 1.
This occurs in pipe flow at Re � 2600 [7]. The transition
to featureless turbulence is not sharp, however, nor is the
transition from puff splitting to slugs. This upper transition
will be addressed elsewhere, but the basic effect, common
for bistable media, is already contained in Eqs. (1) and (2).
For a range of r above the slug transition, (rc < r � 0.91),
turbulence does not expand to fill the domain in the presence of
other slugs. Small laminar regions remain due to the recovery
of the slow u- field and this sets the scale for the laminar flashes
at the upper end of the transition region in Fig. 5.

III. CONCLUSION

I have sought to understand key elements of transitional
pipe flow—puffs, puff splitting, and slugs—without appealing
in detail to the underlying structures within shear turbulence.
This approach is similar to that expounded by Pomeau [20].
The important insight here is the close connection between
subcritical shear flows and excitable systems. The view is
that a great many features of intermittent pipe flow can
be understood as a generic consequence of the transition
from excitability to bistability where the turbulent branch is
itself locally a chaotic repeller. I have introduced particular
model equations to express these ideas in simple form. While
phenomena have been demonstrated with specific parameters,
the phenomena are robust. The challenge for future work
is to obtain more quantitatively accurate models, perhaps
utilizing full simulations of pipe flow, since ultimately the
fluid mechanics of shear turbulence (streaks and streamwise
vortices) is important for the details of the process. More
challenging is to extend this effort to other subcritical shear
flows, such as plane channel, plane Couette, and boundary-
layer flows. These require nontrivial extensions of the current
work because, unlike here, the mean shear profile cannot
obviously be well captured by a simple scalar field.
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APPENDIX: SUPPLEMENTAL INFORMATION

1. Parameters selection

Here the parameter selection used in this study is discussed.
No attempt has been made to determine precisely values such
for the best fit to pipe flow. The models are not sufficiently
quantitative that exact comparisons are called for at this time.
Moreover, the phenomena presented in the paper are very
robust and for some parameters there simply is no strong
criterion which selects precise values. The goal is to provide
justification for the values used in the paper as well as insight
into how the parameters control the dynamics of the models.

a. Parameters for continuous model

Only the two rates ε1 and ε2 need to be determined. The
value of δ has little impact on the dynamics and has simply
been fixed at 0.1. These parameters are determined by fitting
to a typical puff from DNS as shown in Fig. 6.

The left plot shows the spatial profile of model puffs for
three values of ε1, the parameter controlling the final relaxation
to parabolic flow. It is straightforward to select a reasonable
value of ε1 from such a plot. Note, however, that a scaling
of model length scale has been performed to plot model and
DNS profiles on the same graph (model lengths have been
multiplied by 0.225). This scaling of length is such that the
sharp upstream edge of the model puff occurs over the same
distance as in DNS. The upstream edge is largely set by ε2.
(If the scaling of space units between model and DNS were
known for other reasons, then the spatial profile alone could
be used to determine both ε1 and ε2.)

The right plot is then used to complete the determination.
Here model puffs for different values of ε2 are plotted in the
u-q plane. The sharp upstream edge of a puff is the trajectory
rising from parabolic flow at u = 1, q = 0 and this is strongly
affected by the value of ε2. If ε2 is too small then the trajectory
is too steep (u does not respond quickly enough). If ε2 is too
large, then q does not reach a sufficiently large value.

The values of ε1 = 0.04 and ε2 = 0.2 chosen for the
simulations presented in the paper were arrived at by varying
the two values to get the best overall agreement in the spatial
profile and phase portrait.

FIG. 6. (Color online) Parameters ε1 and ε2 chosen to match a
typical puff from DNS at Re = 2000. In the left plot ε2 = 0.2, while
ε1 has values 0.02 (red), 0.04 (blue), and 0.06 (green). In the right
plot ε1 = 0.04 and ε2 has values 0.1 (red), 0.2 (blue), and 0.4 (green).
r = 0.7. DNS is the irregular black curve. The unlabeled (blue) curves
in the two plots correspond to the values of ε1 and ε2 used in the paper.

b. Parameters for discrete model

As stated in the paper, the two rates ε1 and ε2 are taken
to have the same values as in the continuous model. This
is quite reasonable given the relationship between Eqs. (2)
and (4). This leaves choosing the parameters k, β, and γ of
the map F , and the parameters c and d. The role of each of
these is discussed below. As each parameter is varied in the
following, the remaining parameters take the fixed values used
in the paper: ε1 = 0.04, ε2 = 0.2, k = 2, β = 0.4, γ = 0.95,
c = 0.45, and d = 0.15.

Parameter k. The parameter k effectively dictates how many
iterates of the map f are used per time step of the model. The
effect of the parameter k is shown in Fig. 7 where puff solutions
are shown in the u-q phase plane for k = 1 and k = 2. Model
turbulence is more erratic for k = 2 than k = 1. When k = 1,
puff splitting and the transition to sustained turbulence occurs
at a smaller value of R, but the fact that R is smaller on the
top row of Fig. 7 only partially accounts for the difference
between the top and bottom rows of Fig. 7.

In addition to this visual comparison, there is the fact that the
average slope for a unimodal map with stable chaos is limited
to λ = 2 and this is an artificial constraint on the dynamics that
comes about from considering one-dimensional dynamics. (In
the case of transient chaos the mean slope can exceed 2, but
there is still a constraint relating the escape rate to the mean
slope.) Taking k > 1 is equivalent to considering multimodal
maps and removes the artificial constraint.

Note that the model shows puffs, puff splitting, and
slugs even for k = 1. These features are robust. However,
the additional freedom in the chaotic dynamics by allowing
k = 2 permits the model to achieve a better representation
of turbulent flow. I have not found that using k > 2 offers
noticeable further improvement.

Parameter β. This parameter controls the leakage rate from
the chaotic region of the map. Figure 8 shows examples of

FIG. 7. Effect of parameter k. Top row, k = 1; bottom row, k = 2.
In each case snapshots are plotted in the u-q phase plane. The left
two plots show randomly chosen snapshots of solutions with three
closely spaced puffs. The rightmost plots are of solutions following a
quench from high R and contain a large number of puffs. Top row is
at R = 1760 and the bottom row is at R = 2000. Both values of R are
close to the transition to sustained turbulence for the corresponding
value of k.
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FIG. 8. (Color online) Effect of parameter β. Top row, β = −0.4;
bottom row, β = 0. In each case snapshots of solutions are shown
on either side on the transition from localized puffs to expanding
turbulence. (Top left) R = 1750; (top right) R = 1780; (bottom left)
R = 1760; (bottom right) R = 1800.

states for β = −0.4 and β = 0. With β sufficiently negative,
as for β = −0.4 in the top row of Fig. 8, a transition from puffs
to slugs occurs that is essentially just a noisy version of the
continuous models shown in Fig. 2 of the paper. Note that the
chaotic wedge first touches the u nullcline at R = 1733 and
the transition from puffs to slugs occurs near, but not exactly
at, this value. If there are any splitting events they are very
rare.

With β ≈ 0, as for β = 0 in the bottom row of Fig. 8, the
transition from puffs to slugs is mediated by splitting events.
However, the splitting events are too rare for the model to
realistically correspond to pipe flow.

As illustrated in Fig. 9, with β � 0.1, model puff splitting
is similar to pipe flow. There appears to be no strong basis to
select any particular value of β based on a visual examination
of the onset of splitting. The value β = 0.4 used in the paper
is simply a representative value.

Parameter γ . This parameter controls the monotone decay
of turbulence q following exit from the chaotic region.
Figure 10 shows puffs plotted in the u-q phase plane for two
values of γ . For comparison, the puff at Re = 2000 from Fig. 6
is repeated here. The smaller γ , the more quickly q decays
and the less rounded the phase-space dynamics is in the lower
left corner of the phase portraits. The best match of turbulent
decay in the model will be at the largest possible value for γ .
However, as γ approaches 1, laminar flow becomes marginally

FIG. 9. (Color online) Further effect of parameter β. (Left)
β = 0.3 (R = 1980); (right) β = 0.5 (R = 2180). In each case
snapshots of solutions are shown just after a puff split. There is
little to distinguish the cases.

FIG. 10. (Color online) Effect of parameter γ . (Left) γ = 0.80,
with R = 2400; (middle) γ = 0.95, with R = 2000, and is the same
plot as bottom middle of Fig. 7. Arrows indicate the relevant region
of the u-q phase plane. (Right) DNS of a puff at Re = 2000, exactly
the same as in Fig. 6.

stable to q perturbations and this is clearly unphysical. The
value γ = 0.95 was chosen as a compromise between the
competing requirements of having γ large but not too close to
1. An improvement could be likely be obtained by having γ

be a function of u and R, but this introduces additional fitting
parameters and is not done here.

Parameters c and d. These parameters are naturally thought
of as arising from the discretization of the terms ux and qxx

in the continuous model. At present I am not aware of any
compelling reasons to select c and d to particular values
other than that they should be small (d must satisfy d � 1/2
for stability reasons). The value of c was chosen to be less
slightly less than 1/2. The value of d is then to be fixed.
Based on the analogy with the continuous model, and the value
chosen for c, it could be taken to be d = c2. This is because
discretizing the continuous model with a time step of �t = 1
means that c = 1/�x, from an upwind discretization of the
advection term. Then d will be 1/(�x)2 from discretization
of the diffusion term. This would give d = 0.452 = 0.2025.
However, adjusting d downward from this value to d = 0.15
places the transition to sustained turbulence in the model at
the critical Reynolds number for pipe flow. Having the model
match this transition point seems preferable to setting it to the

FIG. 11. (Color online) Effect of parameters c and d . In each case
snapshots of solutions are shown just after puff splitting. Splitting is
not very sensitive to c and d around values used in the paper. (Top left)
c = 0.45, d = 0.1, R = 2480; (top right) c = 0.45, d = 0.2025, R =
1960; (bottom left) c = 0.35, d = 0.15, R = 2120; (bottom right)
c = 0.55, d = 0.15, R = 2080.
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FIG. 12. Lifetime statistics for decaying and splitting model
puffs. (a) Time series of total energy E for three puffs illustrat-
ing abrupt decay at unpredictable times (R = 1800). Bottom row
shows exponential (memoryless) probabilities P for (b) decaying
puffs (R = 1800,1850,1900,1950,2000) and (c) splitting puffs (R =
2060,2090,2120,2150,2180).

particular value 0.2025. Moreover, it is common to vary the
diffusive coupling constant in studies of coupled-map lattices.

To emphasize that qualitative features of the model are not
strongly dependent on the parameters c and d (as long as they
are reasonably small), Fig. 11 shows some splitting puffs for
different values of c and d. The reason for focusing on splitting
puffs is that these best show the fidelity of the model. Puffs and
slugs are easily obtained. In each case a puff was generated and
R was increased slowly until a splitting occurred. The values
of R are given in the caption.

2. Details of numerical study in Fig. 5

a. Decay and splitting statistics

Figure 12(a) shows time series of total energy E = ∑
i qi

for puffs from three initial conditions in which q is varied
at one space point by less than 10−5. While the dynamics
are deterministic, abrupt decay occurs at unpredictable times.
From a large number of such simulations, lifetime statistics

can be generated. Specifically, simulations were initiated
from small perturbations designed to trigger puffs. A random
number generator was used to introduce a small amount of
randomness into each perturbation. Simulations were then run
for 1000 time steps to allow puffs to equilibrate. If puffs had
not decayed, the puffs were used as initial conditions for sim-
ulations for decay statistics. Figure 12(b) shows representative
survival probabilities P of a puff lasting at least time n. Each
distribution corresponds to 4000 realizations. The survival
functions are exponential (memoryless), P ∼ exp[−n/τ (R)],
where τ (R) is the R-dependent mean lifetime until decay.

Puff splitting is similar. Initial conditions were generated
in the same way, only here equilibration simulations were run
for 1400 time steps because at the largest R in the study 1000
time steps was not quite enough to remove all equilibration
effects. A puff was defined to have split once two turbulent
peaks are separated by least 80 grid points. Figure 12(c)
shows representative survival probabilities P for a puff to last
at least time n without splitting. The distributions are again
exponential, P ∼ exp[−n/τ (R)], showing that model splitting
is indeed memoryless with a mean splitting time τ (R). These
lifetimes are plotted in Fig. 5(a) of the paper.

b. Turbulence fraction

The turbulence fraction Ft serves as the order parameter
for the onset of sustained turbulence. A point is defined to be
turbulent if q > κα, where κ sets a threshold relative to the
lower boundary separating chaotic and monotonic decay of the
map F . Ft is the mean fraction of grid points in the turbulent
state. Means have been computed from four independent
simulations. For R near the critical point, simulations of
8 × 106 time steps were run on grids of 12 × 104 points. The
standard deviation from the four independent simulations is
comparable to the point size in Fig. 5(b) of the paper. For
R > 2200, simulations for 106 time steps on grids of 104

points were more than sufficient. In Fig. 5 of the paper, Ft

is plotted for κ = 0.5. While the exact value of Ft depends on
threshold κ , the extent of the intermittent region and critical
scaling at onset do not.
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[21] H. Chaté and P. Manneville, Physica D 32, 409 (1988).
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