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Nonlinear oscillatory convective regimes in a three-layer system with an inclined
temperature gradient
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The influence of the horizontal component of the temperature gradient on nonlinear regimes of oscillatory
convection developed under the joint action of buoyant and thermocapillary effects in a multilayer system
is investigated. Two-dimensional convective regimes are studied by the finite difference method. Rigid heat-
insulated lateral walls are considered. It is found that the region of nonlinear asymmetric oscillations is restricted
by the Grashof number values, both from below and from above, by the steady states.
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I. INTRODUCTION

Convective phenomena in fluid systems with an interface
have been the subject of an extensive investigation over the
past few decades. Several classes of instabilities have been
found (for a review, see Refs. [1] and [2]).

There are two basic physical phenomena that produce
convective instability in systems with an interface: buoyancy
and the thermocapillary effect. When heating is from below,
buoyancy instability generates the Rayleigh-Bénard convec-
tion [3], while the thermocapillary effect is the origin of the
Marangoni- Bénard convection [1,4]. The case where both
effects act simultaneously is the most typical.

One of the interesting phenomena caused by the joint action
of buoyancy and the thermocapillary effect is the appearance
of oscillatory instability of the mechanical equilibrium upon
heating from below. This phenomenon was first discovered in
the case of a two-layer system [1,5,6]. A similar phenomenon
under the joint action of both mechanisms of instability in
a multilayer system has been studied for free heat-insulated
lateral walls in [7] and in the case of periodic boundary
conditions on lateral boundaries in [8] and [9]. Specifically,
in [8] and [9] it was found that the competition of both
mechanisms of instability could lead to the development
of nonlinear buoyant-thermocapillary traveling waves and
modulated traveling waves.

In reality, it is difficult to guarantee that the temperature
gradient is directed strictly perpendicularly to the interfaces.
Under experimental conditions, the temperature gradient is
not perfectly vertical and the horizontal component of the
temperature gradient appears. The appearance of this compo-
nent changes the situation completely: at any small values of
the Marangoni number (M �= 0), the mechanical equilibrium
becomes impossible, and a convective flow takes place in
the system. Thus, it is reasonable to consider the influence
of the horizontal component of the temperature gradient on
convective regimes developed in the system.

The Marangoni convection with the inclined temperature
gradient in the “symmetric” multilayer system, when the
exterior layers have the same thermophysical properties, has
been investigated in [10].

The interaction of buoyant and thermocapillary mecha-
nisms of instability under the action of the inclined temperature
gradient in multilayer systems has not been studied to our
knowledge.

In the present paper, the influence of the horizontal compo-
nent of the temperature gradient on nonlinear oscillatory con-
vective regimes, developed under the joint action of buoyant
and thermocapillary effects in the system air–ethylene glycol–
fluorinert FC75, is studied. Transitions between convective
flows with different spatial structures are investigated.

The paper is organized as follows. In Sec. II, the mathe-
matical formulation of the problem in a three-layer system is
presented. The nonlinear approach is described in Sec. III.
Nonlinear simulations of the finite-amplitude convective
regimes are considered in Sec. IV. Section V contains some
concluding remarks.

II. GENERAL EQUATIONS AND BOUNDARY
CONDITIONS

Let the space between two rigid horizontal plates be filled
by three immiscible viscous fluids with different physical
properties (see Fig. 1). The equilibrium thickness of each layer
is a. We assume that the deformations of interfaces are small,
and their influence on the flow and temperature distribution can
be ignored. The mth fluid has density ρm, kinematic viscosity
νm, dynamic viscosity ηm = ρmνm, thermal diffusivity χm,
heat conductivity κm and heat expansion coefficient βm.
The surface tension coefficients on the upper and lower
interfaces, σ and σ∗, are linear functions of temperature
T : σ = σ0 − αT , σ∗ = σ∗0 − α∗T . The acceleration due to
gravity is g. The temperature on the horizontal plates z = a1

and z = −a2 − a3 is fixed in the following way: T (x,z,a1) =
−Ahx + θ , T (x,z, − a2 − a3) = −Ahx, Ah > 0. The vertical
lateral boundaries x = 0 and x = l are heat-insulated.

We define

ρ = ρ1

ρ2
, ν = ν1

ν2
, η = η1

η2
= ρν,

χ = χ1

χ2
, κ = κ1

κ2
, β = β1

β2
,

a = a2

a1
, ρ∗ = ρ1

ρ3
, ν∗ = ν1

ν3
,

η∗ = η1

η3
= ρ∗ν∗, χ∗ = χ1

χ3
, κ∗ = κ1

κ3
,

β∗ = β1

β3
, a∗ = a3

a1
, ᾱ = α∗

α
.
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FIG. 1. Geometrical configuration of the three-layer system and
coordinate axes.

As the units of length, time, velocity, pressure, and tempera-
ture, we use a1, a2

1/ν1, ν1/a1, ρ1ν
2
1/a

2
1 , and θ . The complete

nonlinear equations governing convection are then written in
the following dimensionless form:

∂vm

∂t
+ (vm · ∇)vm = −em∇pm + cm�vm + bmGTme, (1)

FIG. 2. A time sequence of snapshots of streamlines for the
symmetric time-periodic motion at ε = 0, G = 2.15, K = 3682, and
L = 3.4.

FIG. 3. Dependencies of Sl,m on time (m = 1,2,3) at ε = 0 (lines
1a, 2a, 3a) and ε = 0.01 (lines 1b, 2b, 3b); G = 2.15, K = 3682.

∂Tm

∂t
+ vm · ∇Tm = dm

P
�Tm, (2)

∇ · vm = 0, m = 1,2,3, (3)

where e1 = c1 = b1 = d1 = 1, e2 = ρ, c2 = 1/ν, b2 = 1/β,
d2 = 1/χ , e3 = ρ∗, c3 = 1/ν∗, b3 = 1/β∗, and d3 = 1/χ∗;
� = ∇2, G = gβ1θa3

1/ν
2
1 is the Grashof number, and P =

ν1/χ1 is the Prandtl number determined by the parameters of
the top layer; and e is the unit vector of the axis z.

The conditions on the rigid horizontal boundaries are as
follows.

z = 1: v1 = 0, T1 = −εx (4)

z = −2: v3 = 0, T3 = −εx + 1. (5)

FIG. 4. Phase trajectory in the plane (Sl1,Sl3) for oscillatory
motion at ε = 0 (line 1) and ε = 0.01 (line 2); G = 2.15; K = 3682.
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FIG. 5. Time sequence of snapshots of
streamlines for the asymmetric time-periodic
motion during one period at ε = 0.00082, G =
2.15, and K = 3682.

Here ε = Aha1/θ > 0 is the nondimensional parameter char-
acterizing the horizontal component of the temperature gra-
dient. The boundary conditions on the interface z = 0 can be
written in the form

η
∂v1x

∂z
− ∂v2x

∂z
− ηM

P

∂T1

∂x
= 0,

η
∂v1y

∂z
− ∂v2y

∂z
− ηM

P

∂T1

∂y
= 0, (6)

v1x = v2x, v1y = v2y, v1z = v2z, (7)

T1 = T2, (8)

κ
∂T1

∂z
= ∂T2

∂z
(9)

and at z = −1,

η−1 ∂v2x

∂z
− ∂v3x

∂z
− M

P

∂T2

∂x
= 0,

η−1 ∂v2y

∂z
− ∂v3y

∂z
− M

P

∂T2

∂y
= 0, (10)

v2x = v3x, v2y = v3y, v2z = v3z, (11)

T2 = T3, (12)

κ−1 ∂T2

∂z
= ∂T3

∂z
. (13)

Here P = ν1/χ1 is the Prandtl number for the liquid in layer
1 and M = αθa/η1χ1 is the Marangoni number.

The conditions on the solid lateral boundaries, which are
assumed to be thermally insulated, are as follows.

x = 0,L: vm = 0,
∂Tm

∂x
= 0, m = 1,2,3. (14)

The above-mentioned boundary value problem in the case
ε = 0 has the solution

vm = 0, pm = 0, m = 1,2,3, (15)

T1 = T 0
1 = − (z − 1)

2 + κ
, (16)
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FIG. 6. Dependence of the period of oscillations on ε. G = 2.15;
K = 3682.

T2 = T 0
2 = − (κz − 1)

2 + κ
, (17)

T3 = T 0
3 = − (z − 1) + (1 − κ)

2 + κ
, (18)

corresponding to the mechanical equilibrium state. Depending
on the physical parameters of fluids, the mechanical equi-
librium state may become unstable with respect to different
instability modes. In the case ε �= 0, mechanical equilibrium
is impossible, in principle, and convective motion appears in
the system.

FIG. 7. Streamlines for the asymmetric steady state at ε =
0.00092, G = 2.15, and K = 3682.

III. NONLINEAR APPROACH

To investigate the flow regimes generated by the con-
vective instabilities, we perform nonlinear simulations of
two-dimensional flows [vmy = 0 (m = 1,2,3); the fields of
physical variables do not depend on y]. In this case, we can
introduce the stream function ψm and the vorticity φm,

vm,x = ∂ψm

∂z
, vm,z = −∂ψm

∂x
,

φm = ∂vm,z

∂x
− ∂vm,x

∂z
(m = 1,2,3),

and rewrite Eqs. (1)–(3) in the following form:

∂φm

∂t
+ ∂ψm

∂z

∂φm

∂x
− ∂ψm

∂x

∂φm

∂z
= dm�φm + bmG

∂Tm

∂x
,

(19)

�ψm = −φm, (20)

∂Tm

∂t
+ ∂ψm

∂z

∂Tm

∂x
− ∂ψm

∂x

∂Tm

∂z
= cm

P
�Tm (m = 1,2,3).

(21)

At the interfaces normal components of velocity vanish
and the continuity conditions for tangential components of
velocity, viscous stresses, temperatures, and heat fluxes also
apply.

z = 0: ψ1 = ψ2 = 0,
∂ψ1

∂z
= ∂ψ2

∂z
, T1 = T2, (22)

∂T1

∂z
= 1

κ

∂T2

∂z
,

∂2ψ1

∂z2
= 1

η

∂2ψ2

∂z2
+ M

P

∂T1

∂x
. (23)

z = −a: ψ2 = ψ3 = 0,
∂ψ2

∂z
= ∂ψ3

∂z
, T2 = T3, (24)

1

κ

∂T2

∂z
= 1

κ∗

∂T3

∂z
,

1

η

∂2ψ2

∂z2
= 1

η∗

∂2ψ3

∂z2
+ ᾱM

P

∂T2

∂x
. (25)

On horizontal solid plates,

z = 1: ψ1 = ∂ψ1

∂z
= 0, T1 = −εx; (26)

z = −2: ψ3 = ∂ψ3

∂z
= 0, T3 = −εx + 1. (27)

On solid heat-insulated lateral walls,

x = 0,L: ψm = ∂ψm

∂x
= ∂Tm

∂x
= 0 (m = 1,2,3). (28)

The boundary value problem formulated above was solved
by the finite-difference method. Equations were approximated
on a uniform mesh using a second-order approximation for the
spatial coordinates. Nonlinear equations were solved using an
explicit scheme, on a rectangular uniform mesh, 56 × 112. We
checked the results on 56 × 168 and 112 × 168 meshes. The
relative changes of the stream function amplitudes for all the
mesh sizes do not exceed 2.5%. The time step was calculated
by the formula

�t = [min(�x,�z)]2[min(1,ν,χ,ν∗,χ∗)]

2[2 + max|ψm(x,z)|] ,
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FIG. 8. Snapshots of streamlines for the
asymmetric time-periodic motion during one
period at ε = 0.0035, G = 2.15, and K = 3682.

where �x, �z are the mesh sizes for the corresponding
coordinates. Poisson equations were solved by the iterative
Liebman successive overrelaxation method at each time step:
the accuracy of the solution was 10−4 for steady motion and
10−5 for oscillations.

The details of the numerical method can be found in the
book by Simanovskii and Nepomnyashchy [1] (see also [11]).

IV. NUMERICAL RESULTS

Let us consider the system air–ethylene glycol–fluorinert
FC75 with the following set of parameters: ν = 0.974,ν∗ =
18.767, η = 0.001, η∗ = 0.013, κ = 0.098,κ∗ = 0.401, χ =
215.098, χ∗ = 606.414,β = 5.9, β∗ = 2.62, P = 0.72, and
ᾱ = 0.080. Fix the ratios of the layer thicknesses a = a∗ = 1.
Nonlinear simulations have been performed for L = 3.4. This
system was chosen for the following reasons. First, this system

is appropriate for Earth experiments because of the relatively
low viscosity of the fluorinert. An extensive experimental in-
vestigation of convection in the present system was performed
by Prakash and Koster (see [12]). Scientific interest in this
system owes to the fact that it is subject to different kinds of
instabilities driven by different interfaces. For the system under
consideration, the flow of thermocapillary origin takes place
mainly near the upper interface. The flow of buoyancy origin
develops mainly in the bottom layer. The “indirect” interaction
of both mechanisms of instability can lead to much more
complex dynamics (in comparison with two-layer systems)
and various unexpected effects. Evidently, such an “indirect”
interaction is impossible in a system with a single interface.

A. The case ε = 0

Under the conditions of the experiment, when the geometric
configuration of the system is fixed while the temperature
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FIG. 9. Dependencies of Sl,m on time (m = 1,2,3) at ε = 0.0035,
G = 2.15, and K = 3682.

difference θ is changed, the Marangoni number M and the
Grashof number G are proportional. It is convenient to define
a parameter that does not change when θ is changed. We define
the inverse dynamic Bond number

K = M

GP
= α

gβ1ρ1a
2
1

.

Let us fix K = 3682. When the Grashof number is small
enough, the system maintains mechanical equilibrium. With
an increase in the Grashof number, the mechanical equilibrium
state becomes unstable, and perfectly symmetric standing
waves (type 1) satisfying symmetry conditions

ψm(L − x,z,t) = −ψm(x,z,t),

Tm(L − x,z,t) = Tm(x,z,t), m = 1,2,3, (29)

FIG. 10. Phase trajectory in the plane (Sl1, Sr1) for asymmetric
oscillatory motion at ε = 0.0035, G = 2.15, and K = 3682.

FIG. 11. Phase trajectory in the plane (Sl1,Sl3) for asymmetric
oscillatory motion at ε = 0.0035, G = 2.15, and K = 3682.

develop near the instability threshold (see [13]). Snapshots of
streamlines during one period are shown in Fig. 2. One can see
that the direction of the vortex rotation in the cavity is changed
during half of this period [cf. Figs. 2(a) and 2(d)].

We use the following integral quantities, characterizing the
intensity of motions in the left and in the right halves of the
layers:

Sl1(t) =
∫ L/2

0
dx

∫ 1

0
dzψ1(x,z,t),

(30)

Sr1(t) =
∫ L

L/2
dx

∫ 1

0
dzψ1(x,z,t);

Sl2(t) =
∫ L/2

0
dx

∫ 0

−a

dzψ2(x,z,t),

(31)

Sr2(t) =
∫ L

L/2
dx

∫ 0

−a

dzψ2(x,z,t);

Sl3(t) =
∫ L/2

0
dx

∫ −a

−a−a∗
dzψ3(x,z,t),

(32)

Sr3(t) =
∫ L

L/2
dx

∫ −a

−a−a∗
dzψ3(x,z,t).

The time evolution of the quantities Slm(t), m = 1,2,3, for
G = 2.15, is shown in Fig. 3 (lines 1a, 2a, and 3a). The phase
trajectory presented in Fig. 4 (line 1) shows a significant phase
delay of oscillations in the top layer with respect to oscillations
in the bottom layer.

B. The case ε �= 0

Let us now consider the influence of a horizontal component
of the temperature gradient on the structures described above.
For any ε �= 0, symmetry conditions (29) are violated and
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FIG. 12. Snapshots of streamlines for ε = 0.01, G = 2.15, and K = 3682.

asymmetric oscillatory motion takes place in the system.
Snapshots of streamlines for this type of motion during the
period of oscillations 0 < t < τ are presented in Fig. 5. One
can see that, in comparison with the symmetric oscillatory
flow shown in Fig. 2, the vortices have the tendency to become
longer. The period of asymmetric oscillations changes in a
nonmonotonic way (see Fig. 6, line 1). At ε > 0.000875,

FIG. 13. Dependencies of Sl,m on time (m = 1,2,3) at G = 2.15
(lines 1a, 2a, 3a), G = 2.20 (lines 1b, 2b, 3b), and G = 2.365 (lines
1c, 2c, 3c); ε = 0.01, K = 3682.

asymmetric oscillations become unstable and an asymmetric
steady flow appears in the system. Streamlines of the steady
state are shown in Fig. 7. At ε > 0.0029, the asymmetric steady
flow is destroyed and an asymmetric oscillatory flow (type
2) is developed in the system. The snapshots of streamlines
during one period for ε = 0.0035, are shown in Fig. 8. The

FIG. 14. Dependencies of Sl,m on time (m = 1,2,3) at G = 2.50
(lines 1a, 2a, 3a), G = 2.70 (lines 1b, 2b, 3b), and G = 3.30 (lines
1c, 2c, 3c); ε = 0.03, K = 3682.
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FIG. 15. Phase trajectories in the plane (Sl1,Sl3) for G = 2.50
(line 1), G = 2.70 (line 2), and G = 3.30 (line 3); ε = 0.03; K =
3682.

time evolution of quantities Slm(t), m = 1,2,3, for asymmetric
oscillations is presented in Fig. 9. One can see that oscillations
become rather complicated, maintaining the periodic form.
The phase trajectories of the asymmetric oscillations in
variables (Sl1,Sr1) and (Sl1,Sl3) have a multiloop character
(see Figs. 10 and 11).

With an increase in ε, the period of oscillations decreases
(Fig. 6, line 2). The dependencies Slm(t), m = 1,2,3, for ε =
0.01 are presented in Fig. 3 (lines 1b, 2b, and 3b) and the
corresponding phase trajectory is shown in Fig. 4 (line 2). With
further increase in ε at fixed values of G and K , the asymmetric
oscillatory flow disappears and a stationary structure with long
cells in each fluid layer is preferentially formed in the system.

FIG. 16. Dependencies of Sl,m on time (m = 1,2,3) at ε = 0.03,
G = 3.35, and K = 3682.

FIG. 17. Dependencies of the period of oscillations on the
Grashof number G; ε = 0.01 (line 1); ε = 0.018 (line 2), and
ε = 0.03 (line 3); K = 3682.

Now let us increase G at fixed values of ε and K . We
take ε = 0.01. For sufficiently small values of the Grashof
number, steady asymmetric flow appears in the system. For
G > 2.085, the steady state is destroyed and asymmetric
oscillations (type 3) develop (see Fig. 12). The dependencies
of Slm(t), m = 1,2,3, for different values of G, are presented in
Fig. 13. At G > 2.374, the oscillatory flow becomes unstable
and an asymmetric steady state occurs in the system. This
means that the region of nonlinear asymmetric oscillations is
restricted by the Grashof number values, both from below and
from above, by the regions of the steady states.

Let us fix ε = 0.03. For G > 2.475, the asymmetric steady
state is destroyed and asymmetric oscillatory flow develops
in the system. The dependencies of Slm(t), m = 1,2,3, for
different values of G, are presented in Fig. 14. The corre-
sponding phase trajectories are shown in Fig. 15. With an
increase in G, the period of oscillations becomes extremely
high (see Fig. 16). One can see a “plateau” for the functions
Slm(t) in Fig. 16. This means that the streamlines as well as
the temperature fields change slightly over a relatively long
time interval. With a further increase in G, the oscillations
disappear. For G close to G∗ = 3.35, the period of oscillations
τ satisfies the relation τ−2 ∼ G∗ − G, which is characteristic
for a saddle-node bifurcation. When G > G∗, the steady
asymmetric motion takes place in the system.

The dependencies of the period of oscillations on the
Grashof number for different values of ε are presented in
Fig. 17.

V. CONCLUSION

The influence of the horizontal component of the temper-
ature gradient on nonlinear regimes of oscillatory convection
developed under the joint action of buoyant and thermocapil-
lary effects in a multilayer system is investigated. Transitions
between different flow regimes have been studied. It is shown
that for ε �= 0, asymmetric oscillatory motion takes place in the
system. In comparison with the symmetric oscillatory flow, the
vortices for the asymmetric oscillations have the tendency to
become longer. At a definite interval of ε, the phase trajectories
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of the asymmetric oscillations have a multiloop character. With
an increase in ε, the oscillatory flow becomes unstable and a
steady asymmetric state develops in the system. It is found that

for ε �= 0, the region of nonlinear asymmetric oscillations is
restricted by the Grashof number values, both from below and
from above, by the regions of the steady states.
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