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Momentum and mass fluxes in a gas confined between periodically structured surfaces
at different temperatures
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It is well known that in a gas-filled duct or channel along which a temperature gradient is applied, a thermal
creep flow is created. Here we show that a mass and momentum flux can also be induced in a gas confined
between two parallel structured surfaces at different temperatures, i.e., orthogonal to the temperature gradient.
We use both analytical and numerical methods to compute the resulting fluxes. The momentum flux assumes its
maximum value in the free-molecular flow regime, the (normalized) mass flux in the transition flow regime. The
discovered phenomena could find applications in methods for energy-conversion and thermal pumping of gases.
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I. INTRODUCTION

Thermally induced gas flow and Knudsen forces arising
from the unbalanced momentum flux in a gas are among the
most interesting phenomena in a rarefied gas with a nonuni-
form temperature field. The rapidly developing micromachin-
ing technologies have made it possible to observe and apply
these phenomena even at atmospheric conditions. For example,
attractive and repulsive forces have been observed on heated
microcantilevers in air [1,2], and a passive micromachined
gas pump utilizing thermal creep flow, called as the Knudsen
pump, has been demonstrated [3]. The promising potential
of these applications has called for a deeper understanding
and study of transport phenomena in a rarefied gas. Several
experimental and numerical studies have been conducted to
study the Knudsen force on cantilevers [4–7], radiometric
forces [8], and Knudsen pumps [9].

Most Knudsen pumps proposed and developed up to now
utilize thermal creep flow. The modeling of such flows dates
back to 1879 when Maxwell [10] derived a mathemati-
cal expression for the flow along a surface induced by a
temperature gradient. Since then, the corresponding thermal
creep flow through ducts or channels has been demonstrated
in many experiments. The flow velocity is proportional to
the temperature gradient, potentially requiring very large
temperature spans when the channel length is no longer small,
which has limited the application perspectives of thermal
creep flow. Some attempts have been made to reduce the
required temperature span by considering a gas between
parallel surfaces with a periodic, step-like topography [11].
Besides that, virtually no studies of transport phenomena in
gases confined between two periodically structured surfaces
seem to be available.
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It is well known that in a gas confined between two parallel
isothermal walls of different temperatures no net mass and
momentum fluxes parallel to the walls occur. However, as
we will show in this article, with periodically structured
surfaces it is possible to induce such fluxes. We consider a
monatomic gas governed by the Boltzmann equation between
two parallel surfaces equipped with periodic structures. The
term “structure” has a twofold meaning. On the one hand, the
surfaces can have a topography, on the other hand, there can
be spatial modulations of the boundary condition expressing
how a molecule gets reflected when impinging on a wall. We
expect that especially when the Knudsen number Kn, being
the ratio of the mean-free path of the molecules and the distance
between the surfaces, is of the order of one or larger, the
surface topography and the spatial modulation of the boundary
condition should have a significant influence on the phase
space distribution of the molecules inside the channel and the
resulting transport phenomena. We are mainly interested in the
total momentum and mass fluxes inside the gas that are created
if the two surfaces are at different temperatures. The purpose
of this work is to identify surface structures that are as simple
as possible and nevertheless give rise to nonvanishing fluxes.
The type of prototype geometry considered is depicted in Fig. 1
together with the predicted directions of mass and momentum
fluxes. The quantities of interest are the total momentum and
mass fluxes in the x direction. It is clear that a nonvanishing flux
along the x direction will only result if the structure breaks the
reflection symmetry with respect to x. As will become evident
in the following, it suffices to structure one of the two surfaces.
The top wall will therefore be considered flat and uniform.

II. MOMENTUM FLUX

Specifically, we are interested in the total momentum in
the x direction per unit time the gas transfers between the
top and the bottom surface. To further simplify matters, let
us limit ourselves to the surface structures shown in Fig. 2.
Besides choosing β = π/2, the distribution of wall boundary
conditions has been fixed. The red (solid) sections denote a
diffuse reflection boundary condition, the blue (dashed) ones
a specular reflection boundary condition, whose mathematical
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FIG. 1. (Color online) Schematic of the two-dimensional channel
geometry considered made of two surfaces with temperatures T1 and
T2. Different styles of the wall segments indicate different boundary
conditions. On the right side, a corresponding geometry incorporating
a wheel with suitable surface structures is sketched to suggest possible
applications.

form will be detailed below. Furthermore, for the time being we
make the assumption that the mean-free path of the molecules
is much larger than W , i.e., we assume gas dynamics in the free-
molecular flow regime. We always suppose that the thermal
conductivity of the wall material is so large that temperature
variations along the surfaces can be neglected.

Assuming no external force fields acting on the molecules,
in the limit Kn → ∞ the solution of the Boltzmann equation
can be reduced to tracing rays representing the paths of the
molecules [12–14]. We give a sketch of the derivation based
on the approach presented in Ref. [14].

We denote by r1 a point on the lower surface and by
fi(r1,ξ 1) the distribution function of the incoming molecules
incident with velocity ξ 1 on r1. For those we have (ξ 1 · n1) <

0, where n1 is inward normal at r1 (in this and the following
the notation for the unit normals is analogous to the boundary
points). The force exerted on the bottom surface by the
incoming molecules is then

Fi = −
∫∫

ξ 1·n1<0
mξ 1(ξ 1 · n1)fi(r1(s1),ξ 1)d2ξ 1ds1, (1)

where the integration is over an arc length parameter s1 through
which the points at the bottom wall are defined via r1(s1).
Similarly, the recoil from the outgoing molecules at r1 gives

Fr = −
∫∫

ξ 1·n1>0
mξ 1(ξ 1 · n1)fr (r1(s1),ξ 1)d2ξ 1ds1, (2)
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FIG. 2. (Color online) The model geometry. Shown are the
notations and an example of a tracing starting at r1.

where fr (r1,ξ 1) is the phase space distribution of the outgoing
molecules. The net force on the lower surface is then given by
F = Fi + Fr .

In the framework of the collisionless Boltzmann equation
fi(r1,ξ 1) is equal to fr (r,ξ 1), where r is a point at the
intersection of a straight line oriented along −ξ 1 with the
boundary. The point r could be either on a diffusive or on
a specular boundary, a situation depicted in Fig. 2 with the
possibilities for r exemplified by rd

1 , rd
2 for the diffusive and

by r̃ for the specular wall segments, respectively.
The boundary condition on the wall segments with diffuse

reflection of molecules is expressed as

fr (rd ,ξ 1) = ν(rd )F2D(rd ,ξ1),

F2D(rd ,ξ1) = 2√
π

(
m

2Trd

)3/2
exp

(
− mξ 2

1
2Trd

)
, (3)

where m is the molecular mass, Trd the temperature of the
wall at point rd (in energy units), and the number of collisions
from the incoming molecules at rd per unit length and unit
time (the particle flux) ν(rd ) has been factored out. This is
a Maxwell boundary condition [10] with an accommodation
coefficient of one. The particle flux is defined in the usual way
as ν(rd ) = − ∫

ξ d ·nd<0(ξ d · nd )fi(rd ,ξ d )d2ξ d .

From particle number conservation we have ν(rd ) =∫
ξ 1·nd>0(ξ 1 · nd )fr (rd ,ξ 1)d2ξ 1, from which the choice of the

pre-exponential factor in Eq. (3) is fixed.
For the specular boundary segments the corresponding

boundary condition is fr (r̃,ξ 1) = fi(r̃,ξ̃ 1), where the expres-
sion on the right-hand side is obtained by further tracing in the
direction of −ξ̃ 1. The velocity ξ̃ 1 is related to ξ 1 by reflection
from the surface with a normal vector ñ, ξ̃ 1 = ξ 1 − 2(ñ · ξ 1)ñ.

The specular boundary condition is again Maxwell’s boundary
condition, but for a wall with an accommodation coefficient
of zero. Tracing particle paths backward from specular wall
segments always brings us to points on a diffuse boundary, in
our example in Fig. 2 the point r̃d

2 at the upper wall, where
the distribution function of reflected molecules is given by
Eq. (3). By similar tracing procedures we find the relevant
relations for the distribution function in the equation for the
recoil force Eq. (2).

As a result, finding the phase space distribution of the
molecules at points along the boundary of the domain
essentially reduces to determining ν(r). For illustration, a
point r1 at the bottom wall receives particles traced to either
a diffusive or to a specular wall segment. The particle flux’s
definition then gives an integral equation

ν(r1) = −
∫

�d (r1)
(ξ 1 · n1)ν(rd )F2D(rd ,ξ 1)d2ξ 1

−
∫

�̃(r1)
(ξ 1 · n1)ν(r̃d )F2D(r̃d ,ξ̃ 1)d2ξ 1, (4)

where �d (r1) denotes the subset of incoming velocities ξ 1

for which the tracing routine relates the point r1 to a point
on a diffusive segment rd = rd (r1,ξ 1), and similarly, �̃(r1)
denotes the subset of incoming velocities for which the
tracing routine relates the r1 to a point on the specular
segment r̃, and eventually to a diffusive boundary point
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r̃d = r̃d (r1,ξ 1). By direct substitution we find that this integral
equation has a constant solution, i.e., ν(r) = ν, independent of
position.

To proceed, let us denote by s0 the projection of the tip of a
fin onto the incline of its neighboring fin, cf. Fig. 2. For closeby
fins or for sufficiently large values of α, s0 is positive, otherwise
negative. This parameter allows to conveniently distinguish
geometries such that a tracing procedure starting at r1 and
hitting the incline can only end at points on the top wall
(s0 < 0), and geometries for which the tracing after hitting
the incline can end either on the top wall or on the vertical side
wall of the lower surface (s0 > 0). Evaluating the integrals in
Eqs. (1) and (2) yields for one unit cell of length L:

Fx =

⎧⎪⎪⎨
⎪⎪⎩

A sin(α)
(

π
2 − α

)
L cos(α), (s0 > 0)

A sin(α)
[(

π
2 − α

)
L cos(α)

−s0 arctan
(

s0
L sin(α)

)]
, (s0 < 0),

(5)

where A =
√

2m
π

ν(
√

T2 − √
T1), and

Fy = −
√

2m

π
ν(

√
T1 +

√
T2)

πL

2
− Fx

tan(α)
. (6)

In the limit L → ∞ we have Fx ∝ [π
2 − α

+ sin(α) cos(α)]H, as derived in [15]. As expected, the
net force Fx vanishes for equal temperatures T1 = T2. Also, if
the specular wall segments are replaced by diffuse boundaries,
Fx vanishes. This shows that in the free-molecular flow
regime a x-momentum flux in the gas and the corresponding
force on the wall cannot be created by virtue of the wall
topography alone.

For comparison with the numerical calculations, we have
considered the ratio Fx/|Fy |. Such a dimensionless ratio gives
an immediate account of the expected magnitude of the effect,
since Fy is the pressure force onto the wall. For example, when
the free-molecular flow regime is approximated by considering
a gas in a nanochannel at standard conditions, the expression of
Eq. (6) is the force resulting from a pressure of one atmosphere.

To numerically solve the Boltzmann equation, Monte Carlo
schemes were employed. Either a time-splitting Monte Carlo
method [16,17] with a hard-sphere collision model or a
standard Direct Simulation Monte Carlo (DSMC) method
with variable hard sphere collision model [18] was used. Both
schemes utilize argon molecules as a gas species.

DSMC is a particle method which tracks a number of
simulated particles, each being a statistical representation of a
large cluster of real molecules. The molecular motions and
intermolecular collisions are decoupled over a small time
interval. Particles undergo a free convection step followed by
a collision step. The convection is treated deterministically
while the intermolecular collisions are treated statistically. A
detailed description of the DSMC method can be found in [18].

In all the simulations the cell size is set to be less than
the mean free path and the time step is chosen so that no
molecule can cross two cells within one time step. Molecules
are initialized based on the average of the wall temperatures
and the prescribed Knudsen number. A gas-wall interaction
model to compute the post-collision molecular velocities as
specified previously in this article is employed.
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FIG. 3. (Color online) (a), (b) Analytical (lines) and numerical
(points) results for the force ratio as a function of geometric
parameters. The circles represent the results obtained for Kn = ∞,
the diamonds those for Kn = 1. (a) shows the dependence on α

with L/W = 5/16, H/W = tan(α)/4. (b) displays the dependence
on L/W, with H/W = 3/4, α = π/3. Inset: the data points at
small values of L/W in more detail. (c) Numerical results for
the force ratio as a function of Knudsen number at α = π/3,

H/W = √
3/4,L/W = 5/16. The red square indicates the predic-

tion from the analytical model.

In the case of the time-splitting method [the data in
Figs. 3(a) and 3(b)], error bars were computed based on
three independent runs with Ncell = 20,40,80 particles per
computational cell. Following that, a Richardson extrapolation
to Ncell = ∞ was performed, allowing to estimate the error
by computing the difference to the Ncell = 80 result. In the
case of the standard DSMC method [the data in Figs. 3(c)–5],
the error bars represent the maximum deviations computed
based on the last one third of total number of samples ranging
from 68000 to 30000000. An average of Ncell = 40 particles
per cell were used for these simulations. In all computations
the temperatures were fixed to T1 = 300 K, T2 = 400 K. The
consistency of the two numerical schemes was checked by
comparing the results for Fx for specific geometric parameter
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values at Kn = 1 and at Kn = ∞. The data points obtained
with the different methods were found to agree, with deviations
within the error bars obtained by the extrapolation, and,
at Kn = ∞, both were within half of their corresponding
standard deviation from the analytical prediction, the red
square in Fig. 3(c).

There are four geometric parameters, H,L,W,α, and for
the comparison between analytical and numerical calculations
we have chosen two ways to fix them, as to have only one
independent parameter to be varied. The first one is to fix the
distance between the fins L and their base length H/ tan(α)
and to change α, the second one is to vary L while keeping
the other parameters the same. Figures 3(a) and 3(b) show the
analytical and numerical values of Fx/Fy obtained that way.
Both Kn = 1 and Kn = ∞ were considered in the numerical
studies. In addition, Fig. 3(c) shows the dependence of the
force ratio on the Knudsen number.

First of all it is worth noting that the analytical curves are
well reproduced by the numerical data obtained for Kn = ∞.
When the Knudsen number is decreased to one, the data points
still follow the same trend, but the magnitude of the dimen-
sionless force is reduced by about 30%. We therefore conclude
that the analytical solution of the collisionless Boltzmann
equation still makes qualitatively correct predictions in the
transition flow regime. The asymmetry of the fins (including
the effect of the boundary condition) is the origin of the
x-momentum flux inside the gas and the corresponding force
onto the walls. Therefore it is expected that the maximum
force values are obtained in a region around L/W = 1, and
that the force decreases as the fins become sparser. This is
exactly the behavior displayed in Fig. 3(b). Figure 3(a) shows
that the force is in fact significant: At Kn = 1 maximum
values of well above 1% are obtained. As expected, the force
vanishes when the gas approaches a state where local thermal
equilibrium prevails (cf. Fig. 3(c)). The maximum force values
are reached in the free molecular flow regime.

From an energetic point of view, when Fx acts to displace
the two parallel surfaces with respect to each other, heat
is transformed into mechanical energy, as indicated in the
schematic on the right-hand side of Fig. 1. We wish to
emphasize that this is a novel energy conversion scheme
that works without the usual volumetric expansion. Rather
than functioning in a cycle, it allows to continuously extract
mechanical work from a temperature difference.

III. MASS FLUX

In the limit Kn → ∞ where the force becomes maximal,
the mass flux in the gas vanishes. Such a scenario bears
some analogy with results that have been obtained for closed
domains [19]. It also shows that the force is not due to the
shear stress caused by a fluid flowing over a surface. At
Kn = ∞ the phase space distribution of the gas is such that the
expectation value of the x-momentum flux transferred between
the walls is nonzero. The molecules emerging from the lower
surface carry a negative x-momentum flux, corresponding
to the positive value of Fx the surface experiences. Away
from the limiting case of infinite Knudsen number, some
of these molecules collide with other gas molecules, thereby
transferring x momentum to the gas. It is expected that by such
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FIG. 4. (Color online) The area averaged x velocity as a function
of the Knudsen number. The averaging is done over a patch connecting
the tip of a fin with the upper surface.

a mechanism the gas in the upper portion of the domain into
which the fins do not extend is set into motion. This picture
suggests that the corresponding mass flux should be opposite
to Fx .

One can also examine the picture from the other end of the
gas regime. In the limit of Kn → 0, the local equilibrium
conditions ensure that both momentum and mass fluxes
are zero and hence no force and mass flow exist. As Kn
increases, nonequilibrium conditions start to prevail. Since
the temperature gradient around the fin tips is likely to be the
most significant, due to both the sharp tip and the asymmetric
boundaries, one would expect that deviations from local
thermal equilibrium first occur in these regions, resulting in
a larger nonzero momentum flux compared to the gas in other
regions. The flow induced by this momentum flux is then
expected to have its maximum velocity near the tip and to
gradually decrease toward the top wall, resulting in a flow
pattern similar to Couette flow. As Kn increases further, the
nonequilibrium region expands into the whole channel. The
tip flow is no longer dominant and the flow pattern is dictated
by the overall configuration of the channel.

FIG. 5. (Color online) The velocity field at Kn = 0.1. The
background color (grayscale) contours indicate the corresponding
temperature field.
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Figure 4 displays numerical results for the average flow
velocity as a function of Kn. For these calculations a specific
geometry with α = π/3,H/W = √

3/4, and L/W = 5/16
was chosen [the same geometry as for the next to last
data point in Fig. 3(a)]. As expected from the analytical
results above and the Navier-Stokes limit of the Boltzmann
equation, there is no flow in the limits Kn → 0 and Kn → ∞.
The maximum average flow velocity occurs in the region
around Kn = 0.1. The behavior at large Knudsen numbers
suggests that the mass flux can be interpreted as a perturbation
effect to the zero mass flux, nonzero momentum flux phase
space distribution derived in the previous section: The mo-
mentum transferred from particle-particle collisions sets the
gas into motion. Figure 5 shows the flow pattern obtained
at Kn = 0.1. The background color contours indicate the
corresponding temperature field. The flow is in the negative x

direction and a Couette-like flow pattern with the maximum
velocity being near the fin tip is clearly visible, consistent
with the simple picture drawn in the previous paragraph.
Significant flow velocities of close to 1 m/s are reached,
making the described principle relevant for the pumping of
gases.

IV. CONCLUSIONS AND OUTLOOK

We have studied the transport processes in a gas between
a flat and a structured surface at different temperatures. We
have shown that with suitably chosen surface structures, both
a momentum and a mass flux parallel to the surfaces can be
induced. The momentum flux takes its maximum values in
the free-molecular flow regime, the mass flux (in terms of the
average velocity) in the transition flow regime. While it is a
priori clear that suitable structures need to break the reflection
symmetry, a purely geometrical symmetry breaking based
on diffusively reflecting walls is not sufficient. The observed
fluxes only occur because a suitable texture comprising surface
patches with diffuse and specular reflection conditions have
been selected. The described effects may find applications
in micro/nanoscale energy converters and micro/nanoscale
pumping technology.
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