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Emergent multistability and frustration in phase-repulsive networks of oscillators
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The collective dynamics of oscillator networks with phase-repulsive coupling is studied, considering various
network sizes and topologies. The notion of link frustration is introduced to characterize and quantify the network
dynamical states. In opposition to widely studied phase-attractive case, the properties of final dynamical states
in our model critically depend on the network topology. In particular, each network’s total frustration value is
intimately related to its topology. Moreover, phase-repulsive networks in general display multiple final frustration
states, whose statistical and stability properties are uniquely identifying them.
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I. INTRODUCTION

Complex systems consist of many individual units that
generate cooperative functional behavior through mutual
interactions [1]. In the last decade it has been realized that
complex systems can be elegantly described by networks,
where nodes represent the functional units, and links model
their interactions [2]. The design and architectures of networks
appearing in nature have been extensively studied, revealing
a few characteristic network classes, such as scale-free or
modular networks [2–4]. A specific emphasis is put on
dynamical networks, whose collective behavior is a cumulative
effect of the individual nodes’ dynamics and the underlying
network topology [2,4,5]. The interplay between network
topology and its emergent dynamics has been widely in-
vestigated on various examples of empirical and artificially
designed networks. The coherent dynamics on scale-free
networks was found to crucially depend on the power-law
exponent in the degree distribution [6]. The intradependence
among the dynamical patterns on micro-, meso-, and macro-
network scale was investigated [7]. The network constructed
by coupling its structural evolution to its emergent dynamics
is different from that obtained if these two processes are
uncoupled [8]. Synthetic gene networks are able to generate
various dynamical regimes in relation to the topology of
their interactions [9]. Collective effects on natural networks
can be examined by assigning the real models as well as
formal dynamical systems to the single nodes [10]. A recently
proposed computational algorithm offers a unified view of all
dynamical patterns that a given topology is able to induce [11].

Models involving repressive or repulsive interactions play
an important role in the context of dynamical networks.
The most popular biological examples are the synthetic
genetic circuits, in particular, toggle switch and repressilator
[12]. Genetic circuits consist of a few genes that mutually
repress each other, creating stable oscillations of their protein
concentrations. Dynamical properties of genetic oscillators
were extensively studied [9,13]. Recent works focus on
the systems of interacting genetic oscillators [9,14], whose
cooperative behavior depends on the nature of interactions
[15], which indicates the ways of engineering genetic networks
with the desired properties. In addition to genes, sparse
repulsive coupling can enhance synchronization in the neural
networks [16]. The crucial role of phase-repulsive interactions

was studied analytically [17] and confirmed experimentally
for oscillations in neural astrocyte cultures [18]. Repressive
interactions can induce frustration [14], which in biological
systems often generates multistability [19]. The existence of
multiple operating regimes is essential for biological systems
since they provide functional flexibility in responding to
the stimuli. This has been largely investigated in relation
to genetic oscillators [9,15], with emphasis on biological
mechanisms and topological structures leading to multista-
bility [20]. The role of multiple dynamical regimes was
also examined in neuronal interactions, both theoretically and
experimentally [21].

Rhythmic behavior in many natural phenomena can be
described by a phase variable [22], which allows the modeling
of complex oscillatory systems and study of the collective
effects such as synchronization [23]. The famous Kuramoto
model of one-dimensional phase oscillators [24] is widely
used not only in theoretical studies [25], but also in modeling-
specific experimental situations [26]. The phase-attractive
coupling model was studied in great detail on a wide range
of network sizes and topologies, with various distributions of
oscillators’ frequencies, involving different coupling schemes
and time-delayed interaction [2,4,5,23–25]. In general, for
sufficiently strong coupling, the system displays a final
synchronized dynamical state, which in the case of identical
oscillators is always stable full synchronization. Although
the time scales of the emergence of synchronization may
vary [5], the final network state is in general independent of the
initial conditions. The time evolution destroys the information
on the network structure, since the most “convenient” final
state always involves synchronization, and is often completely
unrelated to the underlying topology.

The inherent difference between activatory and repressory
interaction is clearly visible in the phase oscillator models.
Phase-repulsive oscillators exhibit algebraic relaxation [27],
in a sharp contrast with the phase-attractive case. Despite
evolving toward a zero-mean field, arrays of repulsive oscil-
lators display nontrivial dynamical behaviors such as phase
locking and clustering [28]. Networks with a given fraction of
repulsive links that induce dynamical frustration were largely
studied [29]. In the context of two-dimensional oscillators,
the presence of repulsion can improve synchronization [16]
or even generate beam-forming effects that act as a phase
array antenna [30]. The prescribed synchronization state can be
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achieved through evolutionary network adaptation by appro-
priately configuring the repulsive subnetwork [31]. Traveling
waves were recently found in a globally coupled system
with repulsive interactions [32]. Among many experimental
scenarios, repulsive oscillators were used to model the neuron
dynamics with spike timing-dependent plasticity [33] and the
cultural dynamics [34].

In this paper we consider complex networks of identical
oscillators with phase-repulsive coupling. Since the oscillators
along each link seek to have the opposite phases, we introduce
frustration as a measure of discrepancy with this preferred state
for each link. Using average link frustration we characterize the
final dynamical states. The frustration–topology relationship is
systematically analyzed employing complex networks of var-
ious sizes. In opposition to many previous works [16,29–32],
our network model involves only phase-repulsive coupling of
uniform strength. Considering this simple dynamical model
we allow for easier study of the interplay between the
emergent dynamics and the underlying topology. As we
show, contrary to the phase-attractive models, the final state
of a network with phase-repulsive coupling is in general
frustrated. The network frustration value is intimately related
to its topology, and in general increases with its connectivity.
Moreover, repulsive networks in general exhibit multiple final
dynamical states characterized by different values of link
frustration. The structure of the frustration states directly
identifies the network topology, suggesting that the repulsive
time evolution preserves much more topological information
than the attractive one. Repulsive complex networks thus
provide a simple model of the multistable systems.

The paper is organized as follows: In the next section
we introduce our model and examine its basic properties
using illustrative examples. In Sec. III we systematically
study all nondirected networks with six nodes, analyzing the
relationship between topology, connectivity, and frustration. In
Sec. IV we investigate the multistability of a larger network,
considering the transitions between frustration states. We
discuss our findings and conclude in Sec. V.

II. THE MODEL AND BASIC PROPERTIES

We consider a network consisting of N oscillators (nodes)
with frequencies ωi . Nodes are connected via L nondirected
links; N − 1 � L � N(N−1)

2 . Dynamical state of the oscillator
i is described by the phase variable ϕi ∈ [0,2π ), and its
dynamics is given by

ϕ̇i = ωi + ε

ki

∑

j=1,N

Aijg(ϕj − ϕi), (1)

where ki is the node’s degree (
∑

i ki = 2L), and ε is the
coupling strength. Network topology is expressed through the
symmetric adjacency matrix Aij = Aji , with value Aij = 1 if
nodes i and j are connected, and Aij = 0 otherwise. Dynamics
starts from a random set of initial phases (IPs), selected
independently for each oscillator from ϕi(0) ∈ [0,2π ). We
consider identical oscillators ωi = ω, and take g = sin, thus
reducing our system to the simple Kuramoto model. Instead of
examining the model with phase-attractive (positive) coupling
ε > 0, we focus here on the opposite case involving only
phase-repulsive (negative) coupling. To this end we fix the

coupling strength to ε = −1. For simplicity we set ω = 0,
i.e., put ourselves in the oscillators’ rotating reference frame.
Equation (1) for our model becomes

ϕ̇i = − 1

ki

∑

j=1,N

Aij sin(ϕj − ϕi). (2)

The interacting pairs of oscillators are seeking to maximize
the phase difference between them, i.e., to stretch π apart from
each other [27–29]. In the final dynamical state, each link will
therefore carry the maximal possible phase difference, which
is preferably π . However, as we show in what follows, due
to the complex network topology the phase difference along
various links is often less than π , or even zero.

The global dynamical state of an oscillator ensemble is
usually quantified via the order parameter R = 1

N

∣∣∑
k eiϕk

∣∣
or one of its variations for complex networks [5]. However,
for the purposes of our study, we here resort to a different
link-based measure of the collective dynamics. Borrowing
the terminology from disordered systems, we define the
frustration fij for each link i − j (Aij = 1) as [29]

fij = 1 + cos(ϕj − ϕi). (3)

Frustration is related with the impossibility for many inter-
acting units to simultaneously attain the state of minimal
energy [35]. In our model a link that stretches to the phase
difference π has zero frustration, while for a link forced to
synchronize (ϕj − ϕi = 0) the frustration is maximal 2. Frus-
tration measures how “squeezed” is a link: It can be pictured
as the elastic potential energy contained in it. We characterize
the final (stationary) states of dynamical networks [Eq. (2)]
by assigning a frustration value f to each link. To measure
the global frustration we introduce F as the network average
of f :

F = 1

L

∑

i>j

Aijfij , (4)

which quantifies how much the network topology allows for
links to stretch. F plays the role of nonequilibrium potential,
since Eq. (2) can be written as [29]

ϕ̇i = −2L

ki

∂F

∂ϕi

.

Frustration can be equivalently defined for the phase-attractive
coupling, with the preferred link state having zero phase
difference. However, since full synchronization is in this case
the only final state, all networks will trivially have zero F . In
contrast, we show here that the topology of a phase-repulsive
network is reflected in its final dynamical state.

A. Illustratory examples

We start with the frustration on small networks. In our
visualization of networks, we picture the links using a (color)
scale to indicate their frustrations fij . The simplest network of
two oscillators shown in Fig. 1(a) is never frustrated: Its two
nodes always attain ϕ1 = 0 and ϕ2 = π , which yields the phase
difference π along the link, and hence the frustration f = 0.
Consider a chain of three oscillators (three-chain) shown in
Fig. 1(b): If the central node has the phase ϕ2 = 0, nothing
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FIG. 1. (Color online) Final states of two-node network (a), both
three-node networks (b), and all six four-node networks (c). Total
frustration F is reported for each network. Links are depicted in a
(color) scale that indicates their frustration fij ∈ [0,2].

prevents the other two nodes from having ϕ1 = ϕ3 = π , thus
again giving the phase difference π and the frustration f = 0
along each link. The situation is however different in the
case of three-node ring (three-ring): Since all nodes are now
connected, all links cannot simultaneously attain the phase dif-
ference π . The stable solution is obtained for ϕ1 = 0,ϕ2 = 2π

3 ,

ϕ3 = 4π
3 , i.e., for phase differences 2π

3 (frustration f = 1
2 )

along each link. Due to its topology, three-chain manages to
attain a more stretched state than three-ring.

In Fig. 1(c) we show all six four-node networks ordered by
increasing F . First three of them (top row) achieve F = 0
due to their specific topologies (we name them four-star,
four-chain, and four-ring, respectively). Note that four-ring in
opposition to three-ring attains F = 0: Each diagonal (noncon-
nected) pair of nodes is synchronized, yielding f = 0 along
each link. The network with F = 0.375 can be understood
from the discussion of three-chain and three-ring above. The
fifth network (termed four-diamond) can be seen as four-ring
with an additional diagonal link. The outside links manage
to stretch to f = 0 by squeezing the diagonal link to f = 2,
which gives the total of F = 0.4. Interestingly, this network
achieves the minimal frustration by fully squeezing one of
its links. The last network is the four-node fully connected
graph (four-clique) with F = 1

3 . For different IPs this network
organizes the values of f differently among the links, always
achieving the total of F = 1

3 . The pairs of links that do not
share a node have the same f value, and in particular, one
such pair is always relaxed to f = 0, while the other two
divide the total of F = 1

3 . The frustration state of four-clique
is thus degenerate, with a continuous degeneracy spectrum.
The total frustration of four-node networks varies with both
topology and number of links. Each of them has a unique
way of distributing the frustration among the links: While
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FIG. 2. (Color online) Time evolution of |f (t) − f | and
|F (t) − F | for four-ring (a) and four-diamond (b), for a single IP.

four-diamond concentrates it into a single link, other networks
distribute it more uniformly.

B. Time evolution

Contrary to the phase-attractive case, time evolution of the
phase-repulsive networks does not always exhibit exponential
relaxation and directly depends on the network topology [27].
To illustrate this, we consider four-ring and four-diamond
from Fig. 1(c). For each link in each network we examine
the behavior of |f (t) − f |, where f is the final link frustration
value, in addition to |F (t) − F |, with F being the final total
frustration. We show all the curves for a single IP for four-ring
and four-diamond in Figs. 2(a) and 2(b), respectively. In
the case of four-ring, all four f values together with the F

value display an exponential convergence, similarly to the
phase-attractive case. In contrast, all five links of four-diamond
exhibit a power-law convergence with (approximate) slope of
−1. Interestingly, the convergence of F also shows a power
law, but with a steeper slope of −2.

These two drastically different convergence regimes reflect
different dynamical processes: While four-ring quickly finds
its dynamical equilibrium, the diagonal link of four-diamond
resists the phase contraction created by stretching of other
four links, thus maintaining the system permanently out
of equilibrium. These convergence patterns are robust to
IPs and confirm the earlier findings on the relaxation of
phase-repulsive oscillators [27]. A similar dynamical behavior
known as splay states appears in networks of pulse-coupled
oscillators [36].

III. SIX-NODE NETWORKS

In order to closely examine the relationship between the
topology and frustration, in this section we systematically
study the phase-repulsive dynamics of all (connected) six-node
networks. There are 112 such networks, which we order by
increasing number of links L that range from 5 to 15. For each
network we compute the total frustration F for 103 random IPs.
Results are reported in Fig. 3, where within each group with the
same L, we order the networks by increasing F (averaged over
IPs), thus constructing a numbering of all six-node networks
(numbering serves only to identify the networks). Interestingly,
there are 11 networks whose final dynamical state can assume
two possible values of F , depending on the IPs (marked by the
vertical lines). The remaining 101 networks display a unique
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FIG. 3. (Color online) Total frustration values F for all 112 connected six-node networks computed for 103 IP. Dashed lines divide between
groups with different numbers of links L (networks 1–6 have L = 5, networks 7–19 have L = 6, etc.). Within each group networks are ordered
by increasing average F (over IPs). Eleven networks that exhibit multiple frustration states are shown by the vertical (red) lines.

frustration state, as do three-node and four-node networks
studied previously. The values of F show an overall increase
with L, finally reaching F = 0.8 for six-node clique. They
also exhibit large variations within each group with the same
L, which indicates that the total network frustration strongly
depends on both topology and L. The network group with
L = 9 links (networks 61–80) exhibits the largest variation in
frustration values depending on topology; it is also the last
group where a fully stretched state with F = 0 is obtainable.
Other groups with medium L (from L = 7 to L = 10) display
the same trend of topology–frustration relationship, despite
containing a different number of networks. Some groups also
include many networks with similar topologies that all have
the same value of F .

We first examine the networks with a unique frustration
state focusing on the L = 9 group. In Fig. 4 we show the
networks 61 and 80, which display minimal and maximal
F values in this group, respectively, F = 0 and 0.611. The
network 61 manages to stretch to F = 0 by being constructed
from symmetrically organized four-stars. Network 80, despite

FIG. 4. (Color online) Examples of six-node networks displaying
a unique frustration state with values of F indicated. Links are marked
in (color) scale illustrating their f values.

having the same L, has a much bigger F : It consists of three-
ring and four-clique, both of which have large total frustrations
(see Fig. 1). This network exhibits continuously degenerate
spectrum of F , since it contains the same degeneracy as
four-clique. These two opposite examples testify about the
flexibility in containing bigger or smaller frustration within
a network, realized through variations of its topology. In
contrast to this, networks 70 and 74 shown in Fig. 4 have
similar F values despite having rather different topologies.
Two networks show very different organization of containing
the frustration: While network 70 distributes it over eight links,
network 74 confines it into only two links, while completely
stretching the other seven. Network 74 includes two four-
diamonds, which in this case display the same frustration
pattern as if they were isolated. Each topology has its own way
of managing the frustration, that depends on its particularities
such as symmetry or modularity.

Next we study the examples of networks with multiple
frustration states. In Fig. 5 we show all 11 of them, visualized
in both states and identified by their numbers as described
above (see Fig. 3). For each frustration state we report the
F value, along with the fraction of IPs leading to it (in
parentheses). There appears to be no specific topological
property common to all multiple-state networks that would
distinguish them from the single-state ones. The simplest
multistable network 11 (six-ring) can attain the fully stretched
state with F = 0 and a squeezed state with F = 1

2 . The
former is obtained for the phase differences π for all links
(equivalently to four-ring), while the latter arises for phase
differences 2π

3 along each link (equivalently to three-ring).
Both states are stable, but the more squeezed one F = 1

2 occurs
for a smaller fraction of IPs (only 14%). This is to say that
both states are stable fixed points (sinks) for the dynamical
system Eq. (2) with six-ring topology, but the F = 0 state
has a bigger basin of attraction. Network 35 is a six-ring
with an additional link inside: Two frustration states differ
in distributing the frustration between these two subnetworks.
Networks 53 and 54 are topologically similar and consequently
have the same F values occurring for the same fractions of
IP. Their dynamics is a competition between a four-ring and
two three-rings in escaping the frustration. The F = 0.396
state of network 55 exhibits a discrete degeneracy: Opposite

016231-4



EMERGENT MULTISTABILITY AND FRUSTRATION IN . . . PHYSICAL REVIEW E 84, 016231 (2011)

FIG. 5. (Color online) All 11 multistable six-node networks visualized in both frustration states and identified by their numbers (see Fig. 3).
The F value is indicated for each state, along with the ratio of IPs leading to that state (in parentheses). (Color) scale illustrates links’ f values.

pairs of links in four-ring can swap their f values without
changing F , while the F = 0.5 state shows a continuous
degeneracy, similar to four-clique. The remaining multistable
networks display similar patterns: The difference between two
states generally lies in the competition between two networks’
structural elements in escaping the frustration by attempting to
stretch to the maximal attainable phase difference. The choice
of IP predefines the final state. The states with lower F values
are usually more preferred. The exception to this is network
79: Its higher F state appears more frequently, despite the
lower F state involving a uniform distribution of f values
over all links. Two F values are typically close, although not
always (network 11). Additional stable states are in principle
possible for some networks, but with extremely small basins of
attraction, which makes them very difficult to observe. Each of
the above networks was tested for 104 IPs, and no third stable
state was found.

Relaxation of the six-node networks displays the same
exponential and power-law convergence patterns observed
earlier (Fig. 2). Power-law relaxation, testifying about the
nonequilibrium processes on the network, is typically found
on the network such as 74 (Fig. 4), which concentrate its entire
frustration into a few completely squeezed links (f = 2).
Interestingly, we revealed various power-law slopes for some
links in those networks, which indicate different squeezing
strengths exerted by the rest of the network, which is a direct
consequence of their specific topologies [27].

It is instructive to consider the distributions (over IP) of
initial total frustration F for various networks, since they
reflect their topological symmetries. In Fig. 6 (top panel) we

show the distributions of F values at time t = 0 for networks
54, 11, and 61 (see Figs. 4 and 5). The central symmetry of
distributions for networks 11 and 61 indicates that each link
has the same structural “role” in relation to the phase-repulsive
dynamics. As expected, all links of those networks always have
the same final values of f . On the other hand, the distribution
for network 54 is asymmetric, since not all of its links “see”
the network in the same way. In the bottom panel of Fig. 6 we
show the distributions of final F values, which for networks 54
and 61 consist of two possible values in a given ratio, and for
network 61 a unique value F = 0. Note that for all networks,
the lowest final frustration state is also the state with the lowest
possible frustration; e.g., for network 54, no situation with F

smaller than F = 0.375 is obtainable due to its topology.
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FIG. 6. (Color online) Distributions of initial (top panel), and
final (bottom panel) values of F for many IPs, for networks 54, 11,
and 61 (see Figs. 4 and 5).
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FIG. 7. (Color online) Time evolution of the distribution of F

for network 54; vertical coordinate indicates the fraction of IPs (log
scale-powers of 10) with a certain value of F at time t . 105 IPs were
considered for t ∈ [0,20].

In Fig. 7 we show the time evolution of F (t) for 105 IPs
for network 54. The vertical coordinate indicates the fraction
of IPs having a certain value of F at time t (time from t = 0
to 20 is considered). We examine the evolution of the initial
distribution of F into its two final states (see Fig. 6 left side).
Many intermediate unstable states with higher F are visited
during the evolution before settling into one of the final states.
For instance, a state with F ≈ 0.65 persists for some time,
but eventually decays (network 54 was tested for 106 IPs and
no third stable state was revealed). This cascading dynamics
involving higher frustration states also occurs in single state
networks. Phase-repulsive networks almost always display
many possible final states, whose stability, however, crucially
depends on their topology. The appearance of multistability
can be seen as the persistence of states with higher F due to
the topological details.

Smaller networks (of size N < 6) do not exhibit multiple
frustration states. On the other hand, multistability becomes
common as the network size is increased: Many networks
of size N = 7 are multistable, some of them possessing three
states. As shown in the two remaining sections, the number and
the organizational complexity of frustration states dramatically
increases with the network size and complexity.

IV. FRUSTRATION STATES ON A LARGE NETWORK

In this section we examine a larger network with more
frustration states, and study the transitions among them
occurring by perturbing the dynamics. To this end, we
construct a network with N = 20 nodes as follows: Starting

 0
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i)

F

 0

 0.1

 0.2

P(
W

i)

(a)

(b)

FIG. 9. (Color online) 12 frustration states W1,W2, . . . ,W12 for
20-node network shown through their values of F (Wi). (a) Fraction
of IPs P (Wi) leading to each state Wi . (b) Fraction of random kicks
leading to no change in the state P (Wi → Wi) [see Fig. 12(b)].

from three initially unconnected nodes, we add at each step
one new node to the existing network. Each new node
is preferentially attached to two existing nodes, randomly
chosen with probabilities proportional to ki + α, where ki are
the current node degrees and α = 1.1. The described step
is repeated 17 times until the network size of N = 20 is
reached, resulting in a 20-node network with L = 34 links.
Phase-repulsive dynamics Eq. (2) is implemented as above.

The dynamics on this preferential attachment grown net-
work displays 12 final frustration states. The network is
visualized in Fig. 8 in its lowest (left) and highest (right)
frustration state. We name the states W1,W2, . . . ,W12, indexing
them by increasing F value termed F (Wi). Each state Wi

appears for a certain fraction of IPs, which are called P (Wi).
All 12 values of P (Wi) are reported in Fig. 9(a) in relation to
the corresponding F (Wi). The most preferred state W1 is also
the one with the lowest F (W1) = 0.278. The values of P (Wi)
overall decrease with F (Wi), although the least preferred state
is W10 with P (W10) � 10−3 and F (W10) = 0.352, while for
the highest frustration state W12 we find F (W12) = 0.364
and P (W12) = 0.006. The states are very unequally spaced
in F , with F (W4) and F (W5) being nearly the same. Each
state can be characterized by its specific distribution of link
frustrations f . As shown in Fig. 8, in state W1 the network
stretches most of the peripheral nodes and confines the entire
frustration into the links between hubs. In contrast, the network
in W12 stretches most of the links around the central hub, while

FIG. 8. (Color online) Lowest
(left) and highest (right) frustration
state for 20-node network, W1 and
W12, visualized with (color) scale
indicating f . F values and P val-
ues are reported.
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FIG. 10. (Color online) Link frustration values f for all links
and all states of 20-node network (arbitrary numeration of links).
Different symbols are used for different states Wi (legend).

squeezing some of the outer links. Similarly, the differences
between other states typically relate to dividing the frustration
between the central and peripheral links. In Fig. 10 we report
all f values for all links and all states (numeration of links
is arbitrary and serves only to discern among them). Some
links (e.g., 2, 15, 28, 23) exhibit a wide range of attainable f

values depending on Wi , which covers the entire [0,2] interval.
Other links (e.g., 7, 11, 13, 24) always maintain roughly the
same f value regardless of Wi . The former group of links
is flexible to different dynamical situations, while the latter
group is robust to it. Some links such as 21 even exhibit
two groups of f values. Some pairs of links always have
the same f values for all states Wi , which suggests that they
have the same dynamical role in the network (e.g., 0 and 1,
8 and 20, 12 and 25, 26 and 30), as also visible in Fig. 8.
The network’s response to phase-repulsive dynamics involves
different dynamical roles for different links, realized through
a spectrum of link frustrations and their flexibility.

In Fig. 11 we illustrate the time evolution of the initial
distribution of F , as done previously for network 54 (see
Fig. 7). The system now visits an even larger number of
intermediate unstable states with the higher F prior to settling
in one of the Wi . The speed of this cascading process seems to
decrease with time. The complex topology of the underlying
network is clearly reflected in the complexity of general time
evolution. The values of P (Wi) are a consequence of starting
the dynamics from random IP, which yields the initial F value
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FIG. 11. (Color online) Time evolution of initial F distribution
for 20-node network, as done in Fig. 7 for network 54. 105 IPs were
considered for t ∈ [0,80].
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FIG. 12. (Color online) (a) Hamming distances between frus-
tration states Wi and Wj for 20-node network. (b) Transition rates
P (Wi → Wj ) defined as fractions of random kicks yielding a given
transition. Note the piecewise constant (color) scale.

much bigger than the range of F (Wi). Starting the dynamics
from specific IPs will not influence Wi , but it will change
P (Wi).

We further compute the Hamming distance H (Wk,Wl)
between the states defined as

H (Wk,Wl) = 1

L

∑

i>j

Aij |fij (Wk) − fij (Wl)|,

which quantifies the “frustration distance” between any two
states by averaging the difference in link frustrations over
all links. The symmetric matrix of Hamming distances for the
20-node network is shown in Fig. 12(a). The states can roughly
be divided into four clusters:

(1) W1 and W2 have similar distances to all other states and
are mutually very close.

(2) The same holds for W3, W5, and W10, which are also
close to W1 and W2.

(3) The cluster of states W7,W8,W9,W11,W12 are higher F

states that are mutually relatively close, but far from the second,
and somewhat close to the first cluster.

(4) W4 and W6 are again mutually very close and close to
the first and the third cluster, while far from the second.

The clustering of frustration states is another property of
phase-repulsive dynamics that reflects the network topological
details. Note that this classification seems not to be directly
correlated with the values of F (Wi) and P (Wi): For instance,
states W4 and W5 are far from each other despite having almost
the same F values.

Below we investigate the transitions between the frustration
states on the 20-node network induced by the random
perturbations of the network dynamics. To this end we modify
the Eq. (2) by adding the kick term:

ϕ̇i = − 1

ki

∑

j=1,N

Aij sin(ϕj − ϕi) + Ki sin(ϕi + αi)δ(t − T ),

which acts at time t = T by independently perturbing the
dynamics of each node [25]. For each kick and each node,
we randomly choose the kicking strength Ki from a Gaussian
distribution centered at zero with standard deviation 2, and
the phase shifts αi uniformly from [0,2π ). The network is
prepared at time t = T in state Wi , after which the kick is
applied. Upon perturbation, the network settles into a new state
Wj . This procedure is repeated 103 times for each starting state
Wi , and the transitions Wi → Wj are recorded. We denote with
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P (Wi → Wj ) the fraction of random kicks leading from the
state Wi to the state Wj . The matrix of transitions is reported in
Fig. 12(b), where the scale shows the values of P (Wi → Wj ).
The matrix is, of course, nonsymmetric, because it is easier to
induce the transitions from a higher to a lower F state than
vice versa. Similarly, the transitions from a more preferred
into a less preferred state are more common than the inverse
transitions. In general, each state Wi appears to have more and
less preferred states Wj into which it jumps. The obtained
transition rates seem to reflect the clustering of the states
according to the matrix of Hamming distances shown in
Fig. 12(a): The high F states prefer to jump into lower F

states that belong to their own cluster. For instance, while all
states jump into W1 and W2 (with various ratios), only some
states jump into W3, such as members of its cluster W5 and
W10. Interestingly, among the very few transitions occurring
from a lower into a higher F state, most start from W1, while
all others occur within a given cluster.

A special role is played by the transitions that do not change
the frustration state, i.e., Wi → Wi , which are the diagonal
elements of the matrix P (Wi → Wj ) in Fig. 12(b). They
are indicators of the robustness of a given state against the
perturbations. We show the values of P (Wi → Wi) in Fig. 9(b)
for comparison with the corresponding P (Wi) in Fig. 9(a).
The ratios of P (Wi → Wi) values only partially reflect the
ratios of P (Wi) values: While W1 and W2 are the most robust
states, higher F states are more robust than expected, in
particular W7,W8,W9, and W11. The value of P (Wi) fraction
of IPs leading to Wi (basin of attraction) can be seen as the
“width” of the potential hole defining Wi . Similarly, the value
P (Wi → Wi) can be understood as the “depth” of the potential
hole, as it indicates how strong perturbation is needed to jump
out of Wi . The comparison of Figs. 9(a) and 9(b) reveals that
depths and widths of the states are not completely correlated:
Low F states are wide and relatively deep, while many high
F states are only somewhat shallower despite being much
narrower. Note that the selection of the kicking strengths is
done appropriately to allow for these properties to be observed.
Very strong perturbations would erase the memory of starting
state Wi , and all transitions would follow the same probabilities
as if starting from random IP.

Finally, we examine the uniqueness of the network frus-
tration profile [shown in Fig. 9(a)] in relation to the network
topology. We implement the link mutation scheme as follows:
One node of the original network and one of its links are
chosen at random. The link is then rewired to a different
(randomly chosen) node, making sure that the network stays
connected. The resulting network differs from the original one
only in a single link, so it is still “topologically close” to
it. We compute the statistics of F (Wi) and P (Wi) for many
mutation examples: The profile always drastically differs from
the original profile from Fig. 9(a). To illustrate this, we show
in Fig. 13 the original profile (black), together with three
examples of profiles obtained for networks with a single link
mutation. The first of them has 20 states, while the second
one has only four; the third profile has the most preferred
state different from the lowest F one. It appears that even
a single link mutation, which only marginally changes the
topology, yields a dramatic change in the number and the
properties of the frustration states. This extreme sensitivity of
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FIG. 13. (Color online) 12 frustration states for original 20-node
network [in black, same as Fig. 9(a)], along with three different
profiles obtained for three examples of mutated network (see text for
details).

multistability to the topology again testifies about the intricate
relationship between them; it appears that the frustration
profile is in general unique for large networks. This can
facilitate the reconstruction of the phase-repulsive networks
from the dynamical data, in which context various methods
are already in use [37].

V. DISCUSSION AND CONCLUSIONS

We studied the collective dynamics of identical Kuramoto
oscillators with phase-repulsive interactions on nondirected
complex networks. Various network sizes and topologies were
considered: All 112 connected six-node networks were sys-
tematically examined, in addition to a preferential attachment
grown 20-node network. In opposition to the phase-attractive
case, our model involves dynamical frustration resulting from
the tendency of linked oscillator pairs to attain the maximal
phase difference of π between them, which is not always
possible due to the network’s topological complexity. We
showed that each network has its characteristic total frustration
F , which largely depends on its size and topology. Moreover,
certain networks display multiple frustration states in relation
to different initial conditions, which can be classified into
clusters. Transitions between states also reflect topological
details and cluster organization. As we finally showed, the
profile of frustration states appears to be a unique “fingerprint”
for each network, which is associated with methods of
detecting the network structure from dynamical data [37].

In the presence of noise our model is expected to exhibit
less frustration states; shallow states such as W10 in 20-node
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FIG. 14. (Color online) Values of total frustration F for all rings
with N = 2, . . . ,50 nodes computed for 103 IP.
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FIG. 15. (Color online) Number of observed F states for each
realization of Erdős-Rényi random graph with N = 40 nodes and
L links between L = 40 and L = 200. 200 IPs were considered for
each realization.

network will immediately become unstable. With increase of
noise strength more states will lose stability, finally reaching
the point where only a single state will remain accessible.
This state will thus be the unique final dynamical state for a
phase-repulsive network.

For networks with the ring topology the F value is directly
related to the ring’s parity. Recall from Fig. 1 that two-node
network and four-ring have F = 0, while three-ring has
F = 0.5. To systematically study this, we show in Fig. 14
the F values of rings as a function of number of nodes N .
Rings with even N always have the lowest F value F = 0;
on the other hand, rings with odd N are always frustrated,
but their lowest F value approaches zero. With increase of
N , rings display a growing number of multiple frustration
states, starting with six-ring (see Fig. 5). Multiple F values
exhibit a periodic pattern with N . The range of attainable F

values shrinks with increase of N , approaching zero at the limit
N → ∞, where the ring topology approaches that of a chain.
The relationship between frustration and parity is associated
with the methods of detecting network motifs: overrepresented
subnetworks with specific topologies [2,3]. Some methods of
searching for network rings are already in use [38]. Since link
frustration f contains local network information, it could be in
principle used for motif detection. However, this will crucially
depend on the way motif is embedded in the network: Both
four-diamond and four-clique (see Fig. 1) contain three-ring
as motif, but its f values are different from those found on
the isolated three-ring. One could also seek to generalize the
idea of parity in the context of networks and find a common
topological property for all networks with F = 0.

Another immediate question revolves around the number
of frustration states in relation to the network connectivity
(number of links L). To examine this we construct Erdős-Rényi

random graphs with N = 40 nodes, taking multiples of 10
for L between L = 40 and 200 (L = 40,50, . . . ,200) [2,4].
For each L value, we construct 100 different random graph
realizations and record the total number of observed states
after 200 runs (phase-repulsive dynamics is implemented as
previously). The results are shown in Fig. 15: Biggest numbers
of states (� 50) most often occur on sparse networks around
L ∼ 70. Sparse networks also exhibit the largest range of
possible number of states depending on the topology and
seem always to have no less than five states. With increase
of L, networks typically display between 1 and 30 states,
which does not substantially change even for very big L. On
the other hand, too sparse networks have even less states.
This result might relate to the sparse connectivity observed
in many biological and technological networks [2,4] and
emphasize the dynamical properties of sparse topologies. This
also indicates the optimal range of network connectivity for
modeling complex multistable systems. The 20-node network
studied in Sec. IV is also sparse.

A further question regards the design of networks with
minimal or maximal total frustration. We showed in Figs. 3
and 4 that a network with a fixed number of links may have
very different F values depending on its topology. It would
be interesting to examine the topological differences between
large networks with fixed L having minimal and maximal
F . Picturing F as an elastic potential energy contained in
the network, this model may indicate the design algorithms
for construction of maximally squeezed (or stretched) elastic
networks. A similar question refers to the networks with
minimal or maximal number of states, which might be of
interest in modeling multistable complex systems (see Fig. 15).

Future generalizations include networks with nonidentical
oscillators, which are expected to exhibit an even wider
spectrum of frustration states, including multirhythmicity [9].
The interaction function g from Eq. (1) was here taken as
g = sin, although other choices of odd g might be interesting.
Repulsive dynamics on directed and weighted networks is
still poorly understood. The stability of the fixed points of
dynamical system (2) can also be investigated analytically,
using the network Laplacian defined as Lij = kiδij − Aij

[2,4,5]. Drawing conclusions about network multistability by
examining Lij might allow more detailed and systematic
insights. In particular, it would be interesting to study the
properties of the Laplacian eigenvalues in relation to the
network relaxation patterns (see Fig. 2).
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