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Phase-flip transition in relay-coupled nonlinear oscillators
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We study the dynamics of oscillators that are coupled in relay; namely, through an intermediary oscillator. From
previous studies it is known that the oscillators show a transition from in-phase to out-of-phase oscillations or vice
versa when the interactions involve a time delay. Here we show that, in the absence of time delay, relay coupling
through conjugate variables has the same effect. However, this phase-flip transition does not occur abruptly
at a certain critical value of the coupling parameter. Instead we find a parameter region around the phase-flip
transition where bistability occurs. In this parameter interval in-phase and out-of-phase oscillations coexist with
changing sizes of their basins of attraction. Further increase of the coupling strength leads to amplitude death and
subsequently to the stabilization of a fixed point. These transitions are characterized through various quantities
such as the average phase difference and crossings in the spectrum of Lyapunov exponents. Numerical results
are presented for a specific case of coupled Rössler-like oscillators.
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I. INTRODUCTION

Two themes that have separately been explored in recent
studies of nonlinear dynamical systems are relay coupling [1,2]
(i.e., coupling two systems via a third) and coupling systems
through conjugate (or dissimilar) variables [3–5]. A primary
interest in such studies has been on synchronization [6] in its
many different forms, from both theoretical and experimental
points of view. Depending on the nature and the strength
of the coupling, different synchronization states are possible;
these include complete or identical synchronization (CS) [7,8],
in-phase (PS) [9], out-of-phase [10,11], lag synchronization
(LS) [12], generalized synchronization (GS) [13], intermittent
lag synchronization (ILS) [14], and mixed synchronization
[15]. Several of these different synchronization phenomena
have been explored in Rössler and Chua’s oscillators [16,17],
semiconductor lasers exhibiting chaotic emission on sub-
nanosecond time scales [18], chemical reactions [19], and
in biological systems such as neurons or ecological food
webs [20].

When there is time delay in the coupling, a large class
of nonlinear dynamical systems shows a phase-flip transition
[21–24]. This transition is characterized by a change of the
synchronized dynamics from being in-phase to out-of-phase
or vice versa; the phase difference between the oscillators
undergoes a jump of π as a function of the coupling strength
or the time delay. This phenomenon is of broad relevance as
it has been observed in regimes of amplitude death, periodic,
quasiperiodic, and chaotic dynamics. This particular transition
(where the phase changes approximately to π ) also occurs
when the coupled systems are nonidentical (i.e., when there is
a mismatch in the parameters) as well as when the oscillators
are distinct. The examples range from coupled-laser systems
to ecosystems [21].
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In the present work, we study the effect of coupling via
dissimilar (conjugate) variables [3,4] on the synchronization
properties of indirectly coupled systems. Practical constraints
often dictate the form and nature of the coupling. In particular,
it is often not possible to couple systems via similar variables;
for example, in coupled–semiconductor-laser experiments
[25], in the study of electrical circuits [26], epidemiology [27],
and many other natural systems. We show here that relay
coupling involving conjugate variables leads to a rich variety
of synchronization behavior.

The similarity of conjugate coupling to time-delay [3] has
been explored in previous work and also underlies the process
of attractor reconstruction [28] from a single time-series. By
coupling systems in relay through conjugate variables, an
effective time-delay is transmitted, causing different synchro-
nization states [phase flip as well as amplitude-death (AD)].
The present studies are carried out for chaotic Rössler-like
oscillators but we believe that the results are applicable
more generally [29]. The transitions to different states of
synchronization are studied by computing phase differences
and Lyapunov exponents.

In the next section of this paper, the model of three coupled
systems and the relay conjugate coupling scheme is described.
This is followed by our main results on the synchronization
properties, the phase-flip transition, and amplitude death in
Sec. III. The paper concludes with a discussion and summary
in Sec. IV.

II. THE MODEL SYSTEM

Consider three systems coupled as in Fig. 1. The equations
of motion in the conjugate coupling scheme are as follows:

Ẋ1 = f (X1) + Kg1(X′
2,X1),

Ẋ2 = f (X2) + Kg2(X′
1,X

′
3,X2), (1)

Ẋ3 = f (X3) + Kg3(X′
2,X3),
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FIG. 1. Coupling scheme in the present model.

where Xi denotes the set of m dynamical variables of the
ith oscillator. The matrix K of dimension m × m contains
information on the coupling topology and the gi are coupling
functions. The superscript primes (′) on X denotes conjugate
coupling; namely, that the arguments of the functions g involve
“dissimilar” variables. Note that the coupling is bipartite in
that the first and third oscillator are coupled only to the second
oscillator and are thus indirectly coupled to each other.

Each of the oscillators in Fig. 1 is a nonlinear dynamical
system and, here, for definiteness, we take them to be Rössler-
like [1]:

ẋi = − [
ωi + ε

(
x2

i + y2
i

)]
yi − zi,

ẏi = [
ωi + ε

(
x2

i + y2
i

)]
xi + ayi, (2)

żi = b + zi(xi − c).

The modified Rössler system reduces to the usual Rössler
model [30] when ε = 0 but has a two-band chaotic attractor,
shown in Fig. 2. The three oscillators are all taken to be
identical, and the coupling is such that the only the equation
for the xi variables is affected:

ẋi = − [
ωi + ε

(
x2

i + y2
i

)]
yi − zi + �3

j=1Kij (yj − xi),

(3)

with i = 1,2,3. The matrix elements are Kii = K13 = 0, K12 =
K23 = k/2, and Kij = Kji . The coupling is diffusive; namely,
the function g is linear in its arguments. The coupling variables
are dissimilar: xi is coupled to the conjugate variable yj .
The term [ωi + ε(x2

i + y2
i )] in the modified Rössler equations

is almost equal to the angular velocity of the ith oscillator
and is perturbed by the chaotic amplitude x2

i + y2
i if ε �= 0.

It has been shown in numerous studies that the dynamics
of the usual Rössler oscillator (ε = 0) is oscillatory over
a range of the parameter a, b, and c and can be also
chaotic [30].

Lyapunov exponents for the coupled system are computed
in the usual way [31]. To compute the oscillator phases, though,
we use the concept of the analytical signal [32] to define the
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FIG. 2. Attractor of the modified Rössler model [Eq. (2)] with
ε = 0.0026 and ω1 = 0.41.

amplitude and the phase of an arbitrary variable s(t). The
analytic signal ψ(t) is the complex function

ψ(t) = s(t) + ιs̃(t) = R(t)eιφ(t), (4)

where the function s̃(t) is the Hilbert transform of s(t). The
instantaneous amplitude Ri(t) and the instantaneous phase
φi(t) of the variable si(t) of the ith oscillator can be defined as

Ri(t) =
√

si(t)2 + s̃i(t)2,
(5)

φi = tan−1 [s̃i(t)/si(t)] ,

respectively. The phases of the individual oscillators are
constructed from the variables xi(t), and the average phase
difference 	φij between two oscillators is

	φij = 〈|φi − φj |〉 for i,j = 1,2,3, (6)

where 〈·〉 denotes the time average.

III. RESULTS

Our focus here is on the phase dynamics which we study in
detail in the parameter space spanned by ε, the magnitude
of the perturbation, and the coupling strength k. We take
all oscillators to be identical, ω1 = ω2 = ω3 = 0.41, and the
other parameter values are fixed at a = 0.15, b = 0.4, c = 8.5.
Before outlining the results for the three coupled systems let
us briefly recall the dynamics for limiting cases.

For the uncoupled standard Rössler system k = ε = 0, the
dynamics are chaotic. Changing k for ε = 0 leads to phase
synchronization and a phase-flip transition can be obtained at
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FIG. 3. (Color online) Phase difference between the first and
third oscillators 	φ13 in parameter space ε and k. There is a sharp
phase flip for ε �= 0 at a critical value of k where systems 1 and
3 go from in-phase synchrony to antiphase synchrony, while the
central oscillator undergoes amplitude death (marked by the arrow at
kc = 0.177 for ε = 0.0026).
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FIG. 4. (Color online) (a) Spectrum of Lyapunov exponents for
three coupled modified Rössler systems. (b) The phase difference
between any two oscillators (	φij ) as a function of the coupling
strength k. At the phase flip 	φ13 (in black) jumps from 0 to
π . In-phase and out-of-phase dynamics of first (black) and third
(red dashed line) oscillators (c) before and (d) after the transition
at k = 0.16 and 0.19, respectively. For (a) and (b), the averaging
is done over 106 time steps after removing transients of the same
duration.
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FIG. 5. Fraction of initial conditions (out of 104 samples) going
to in-phase state fIP is plotted as a function of coupling strength
k. When 0 < fIP < 1, bistability occurs, where some of the initial
conditions are going to the in-phase state while others converge to
the out-of-phase state.

kc = 0.134. By contrast, varying ε for k = 0 yields periodic
oscillations at ε = 0.004. The two limiting cases determine
the dynamical behavior of the two largest regions in parameter
space. Figure 3 shows the phase diagram for 	φ13 and the
phase difference between the indirectly coupled oscillators
labeled 1 and 3. Black dots indicate a zero-phase difference,
while yellow dots correspond to a phase difference π . There is
also a mixed regime where the phase difference is neither zero
nor π . In order to examine the details of the different dynamical
states in parameter space, the four largest Lyapunov exponents
(LEs) have been calculated along a line in parameter space
as a function of the coupling parameter k where ε is fixed at
0.0026. These curves reveal various transitions from chaotic to
periodic motion and vice versa. The Lyapunov exponents and
the average phase difference between all pairs of oscillators
in the coupled system (	φij for i,j = 1,2,3) are shown in
Figs. 4(a) and 4(b), respectively.

As we increase the coupling strength from zero, positive
LEs decrease while the zero LE becomes negative. At the
moment, when one of the zero LE starts decreasing, phase
synchronization sets in. This happens already for very small
k: all oscillators show phase synchrony. There is a significant
region of multistability when the coupling strength is small,
k < 0.09, but upon increasing k there are discontinuous
changes in the phase differences accompanied by discon-
tinuous changes in the nonzero LEs [Fig. 4(a)]. The two
indirectly conjugate-coupled systems (1st and 3rd) show a
transition to in-phase synchronization, where LEs shows a
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FIG. 6. (Color online) (a) Four largest Lyapunov exponents and
real part of the largest eigenvalue (marked as open circles) as a
function of coupling parameter k. Amplitude death occurs beyond
the point marked AD. (b) The x components of the three oscillators
are shown for k = 0.31 in solid (black), dashed (red), and dotted lines
(brown).

discontinuous jump and the average phase difference between
the two oscillators 	φ13 → 0, at k = 0.057. Further increase
of the coupling strength gives rise to a regime of phase
synchronization of all three oscillators for 0.068 � k � 0.076.
Oscillators 1 and 3 again go to an in-phase state at k = 0.087
with a discontinuous jump in LEs and 	φ13 = 0. While the
two indirectly coupled oscillators have a zero-phase difference,
the phases of the directly coupled pairs 	φ12 and 	φ23

have the same nonzero phase difference. Inspection of the
oscillator dynamics reveals that the first and third oscillators
are completely synchronized while the middle oscillator has
a different amplitude and a k-dependent phase shift compared
to its neighbors.

There is an abrupt transition in the Lyapunov exponents
and the phase difference between any two oscillators when
the coupling strength passes through the critical value kc =
0.177 corresponding to the phase-flip transition between the
two indirectly coupled oscillators. Below the critical k, the
mean phase difference 	φ13 computed over many cycles is
nearly zero, indicating complete phase synchronization. When
k < kc, the two indirectly coupled systems become phase
synchronized, and when k > kc they go into an antiphase
synchronized state [Fig. 4(d) for k = 0.19]. It is important
to note that, in contrast to the usual Rössler system (ε = 0),
the phase-flip transition for the modified Rössler system
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FIG. 7. (Color online) Transition to phase flip and the state
of amplitude death for relay-coupled modified Rössler oscillators.
Amplitudes of three oscillators are plotted with dashed (red) A1,
dotted-dash (black) A2, and dotted lines (green) A3.

happens not in a chaotic regime but in a periodic dynamical
regime. The two relay-coupled systems exhibit identical
oscillations before the phase-flip transition and out-of-phase
oscillations beyond the transition. In the spectrum of Lyapunov
exponents, the phase-flip transition point can be identified
by the sharp discontinuity in the slope of the Lyapunov
exponents [Fig. 4(a)] and in the phase difference [Fig. 4(b)].
These results indicate that, even though the spatial systems
are coupled instantaneously, there is an inherent delay in the
communication among different indirectly coupled oscillators.
Comparing the amplitude of the central oscillator with the
outer ones in Figs. 4(c) and 4(d), we notice that it has decreased
sharply with increasing coupling strength. This behavior is
related to the approach of an amplitude death region as
discussed below.

Near the phase flip there is bistability. This transition
does not occur abruptly at a critical parameter value, but
stretches over a parameter range ranging from k ∼ 0.165 to
k ∼ 0.19. In this parameter interval we find the coexistence of
in-phase and out-of-phase attractors. In Fig. 5 the fraction of
initial conditions (out of 104 samples) going to the in-phase
synchronous state (fIP) is shown as a function of the coupling
strength k. Bistability has also been observed in two conjugate-
coupled systems [3].

As mentioned, we also obtain the amplitude death phe-
nomenon, which occurs when coupled oscillators drive each
other to a stable fixed point and stop oscillating [22,24]. As
shown in Fig. 6(a), amplitude death occurs when all Lyapunov
exponents become negative at k = 0.288. The real part of
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the largest eigenvalue of the Jacobian matrix computed at
the emerging fixed point coincides with the largest Lyapunov
exponent in the AD region. The transient dynamics in the
amplitude death regime is shown in Fig. 6(b). The coupling
does not vanish on the synchronization manifold and the
systems are still interacting through the dissimilar (conjugate)
variable. This ongoing interaction is responsible for the
suppression of oscillations [24].

The nature of the transitions to the phase flip and the state
of amplitude death is further characterized by examining the
amplitude of the individual oscillators in Fig. 7. Here, the
transition from oscillatory state to phase flip between the first
and third oscillators is apparent in the sudden drop in the
amplitude of the second oscillator at a critical strength of
coupling. Upon further increasing the coupling strength all
three oscillators go into amplitude death.

IV. DISCUSSION AND SUMMARY

We have shown that the phase-flip transition can occur in
the absence of time-delay coupling when chaotic oscillators
are indirectly coupled via conjugate variables. Using a relay
coupling scheme, where a central system is coupled to

two peripheral systems via conjugate variables, we observe
a phase-flip transition of the indirectly coupled oscillators
followed by an amplitude death transition for the central
oscillator. Our results show that amplitude death and phase-flip
phenomena as observed in delay-coupled systems can also
be obtained in relay-coupled systems with indirect conjugate
coupling. Indirect conjugate coupling gives rise to an effective
delay in the two systems and thereby suppresses oscillations.

The phase-flip transition can be of considerable importance
in switching oscillatory dynamics, and thus the present method
has potential utility as a designing strategy to obtain either in-
phase or out-of-phase states of chaotic and oscillatory systems.
These results also indicate the possibility of the emergence of
an inherent delay in spatially coupled systems, particularly
when there is a large number of interacting oscillators that are
indirectly coupled.
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