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Optimal reconstruction of dynamical systems: A noise amplification approach
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In this work we propose an objective function to guide the search for a state space reconstruction of a
dynamical system from a time series of measurements. These statistics can be evaluated on any reconstructed
attractor, thereby allowing a direct comparison among different approaches: (uniform or nonuniform) delay
vectors, PCA, Legendre coordinates, etc. It can also be used to select the most appropriate parameters of a
reconstruction strategy. In the case of delay coordinates this translates into finding the optimal delay time and
embedding dimension from the absolute minimum of the advocated cost function. Its definition is based on
theoretical arguments on noise amplification, the complexity of the reconstructed attractor, and a direct measure
of local stretch which constitutes an irrelevance measure. The proposed method is demonstrated on synthetic and
experimental time series.
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I. INTRODUCTION

A. Background

Nonlinear time series analysis has been actively developed
during the last decades following a fundamental theorem by
Takens [1]. He proved that it is possible to reconstruct the
attractor of a dynamical system using only a single time
sequence of scalar measurements from the system under study.
The vectors accomplishing this reconstruction have the form
x̄(t) = {x(t),x(t − τ ), . . . ,x[t − (m − 1)τ ]}, where x(t) are
our observations on the system, the integer number m is known
as the embedding dimension, and τ is the time difference
between consecutive components, also called time lag or delay
time, which is some multiple of the sampling time. Takens
assumed an infinite sequence of noise-free measurements
and proved the existence of a diffeomorphism between the
original and reconstructed attractors for almost any choice
of positive delay times τ and a sufficiently big dimension
m. This approach is known as delay coordinate embedding
and constitutes the first step of almost all nonlinear time
series analysis methods such as the determination of attractor
dimensions, Lyapunov exponents and entropy [2]. Takens’
ideas were later revisited by Sauer et al. [3], who proved that
for compact attractors the embedding dimension m must be
larger than twice the box-counting dimension of the original
attractor to ensure a one-to-one reconstruction. In practice,
however, the box counting dimension of the original attractor
is unknown and as a consequence the minimal embedding
dimension must be derived from the data.

The reconstruction problem starts with the measurement
of appropriate physical quantities in order to ensure further
system state reconstruction. This is a very important instance in
the reconstruction process which affects the rest of the process.
The problem of selection of an optimal measurement function
allowing an information flow from the unobserved variables
to the observed variable was first discussed in [4] and later
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studied in [5–7]. This is a very interesting subject but beyond
the scope of this paper.

The selection of the delay time τ , although irrelevant in
Takens’ formal derivation, becomes important for experimen-
tal time series due to their finite length and measurement
precision. More precisely, the quality of the reconstruction
and the extraction of diffeomorphic invariants thereof are
affected by the time window size tw = (m − 1)τ determined
by the choice of τ and m, as argued in the literature by many
authors [4,8–16]. If a small (large) value of tw is chosen a
phenomenon known as redundance (irrelevance) deteriorates
the reconstruction quality [4,8]. We therefore see that, for delay
coordinate reconstructions, two parameters (say τ and m or tw
and m) need to be chosen according to some optimality criteria.
In general, it can be expected that the optimal reconstruction
parameter values will be determined simultaneously.

Many authors have proposed methods to select an optimal
delay time by minimizing redundance between components
[13–22]. However, these methods require additional argu-
mentations on how to avoid irrelevance. In particular, Fraser
and Swinney proposed, in their early work [17], to use
the first minimum of the mutual information (MI) between
delayed components, and their method has now become the
reference standard. By using the first instead of the absolute
minimum they attempted to bias the selection toward small
delays, because large ones could imply irrelevance between
components. Such a criterion has potentially three drawbacks:
(i) The first minimum could be a noise-induced fluctuation
instead of a true local minimum [9]. (ii) There is in general
no evidence that, in addition to minimizing redundance, the
ad hoc choice of the first relative minimum of MI should as
well minimize irrelevance, or at least keep it low. (iii) Most
chaotic flows have a characteristic oscillating period which will
modulate the MI profile generating a structure of maxima and
minima. More precisely, the first maximum of MI will occur at
this characteristic period, which will therefore act as an upper
bound for the first minimum even if the irrelevance time of the
time series is larger than this period. These three arguments
are valid for all methods in [14–22], where a redundance
measure is proposed and a first minimum (or maximum) must
be determined.
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On the other hand, methodologies based on dynamical argu-
ments can be found in the literature on attractor reconstruction
[22–25] which can simultaneously determine both the delay
time and the embedding dimension. These methodologies are
based on tracking the dynamical evolution of nearest neighbors
in the reconstructed space and measuring their divergence and
are intimately related to the concept of false nearest neighbors
(FNNs) introduced by Kennel et al. [26]. In this paper we
refer to them as dynamical methods. The idea of seeking
false neighbors to determine the embedding dimension was
considered also in [27–29].

Recent years have seen an increasing interest on the
development of reconstruction techniques for prediction pur-
poses [12,30–39]. These recent studies have focused on
producing nonuniform delay coordinate vectors whereby each
component is associated to a different delay time. The problem
of nonuniform delay reconstruction has also been addressed
by Pecora et al. [40] and Garcia and Almeida [41,42].
Both methods require the selection of the first minimum (or
maximum) of their proposed measures and are only applicable
to (nonuniform) delay coordinate reconstructions. Holstein
and Kantz [39] proposed a generalized embedding approach
for the case of time series modeling in a Markovian sense.

The quality of a reconstruction was quantified by Casdagli
et al. [4] in terms of its (observational) noise amplification
effect when one wishes to estimate the state of the system.
They defined the noise amplification σ to locally measure this
effect, a statistic that can potentially be computed from the
observed time series. In principle, σ allows for an absolute
comparison among reconstructions, which in turn enables a
selection of optimal reconstruction parameters. An obstacle,
however, is given by the hypothesis of a full knowledge on
the true generating dynamics. In [4] the authors suggest to
estimate σ via a data-driven approximation of the dynamical
evolution law.

In this work we build on the idea of noise amplification
of Casdagli et al. to define a new cost function which is
fully computable from the time series and its reconstruction.
Embedding parameters are then determined from the absolute
minimum of the proposed objective function, which can be
calculated for any kind of reconstruction.

B. Overview of this work

In this paper we propose a criterion to select an optimal
state-space reconstruction of the dynamics of a physical
system from a time series of measurements performed on the
system of interest. The presented methodology is based on the
minimization of a cost function L, which is readily computable
from the available observational data. Different reconstruc-
tions, whether multivariate or time-delayed univariate, uniform
(equally spaced) or not, can be directly compared through L,
and thereby the suitability of different reconstruction settings
can be assessed.

For example, Fig. 1 illustrates how optimal parameter
values for the dimension m and time window tw can be
simultaneously determined by a global optimization of the
proposed cost function for the Mackey-Glass time series [43].
An important advantage of the proposed approach is given
by its automatic and objective character, in contrast to, for
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FIG. 1. (Color online) Profiles of the proposed cost function as
a function of the dimension m and time window tw for the Mackey-
Glass time series. The thick dashed line corresponds to the case of
using all delay coordinates within the time window tw (i.e., using
τ = 1 and m = tw + 1, with τ and tw expressed in units of sampling
time). The cost function has an absolute minimum at m = 4, tw = 30.

example, the subjective or practitioner-dependent choice on
the location of the first local minimum of MI or the value of a
threshold characterizing a negligible fraction of FNNs.

The proposed cost function L is a local property of the
reconstruction, which we then average over the attractor. In
Fig. 2 we illustrate the local behavior of L by plotting a
two-dimensional projection of the Mackey-Glass attractor [43]
as we reconstruct it in spaces of increasing dimension, from
m = 2 [panel (a)] to m = 4 [panel (c)]. As we can see in
panel (a), L correctly senses regions of the attractor not yet
unfolded for m = 2, that is, regions where orbits with different
dynamical evolutions overlap. These regions progressively
vanish in higher-dimensional reconstructions, as reflected by
lower values of L in panels (b) and (c). Notice that the local
cost function serves as a complementary tool that enables an
additional intuition for the problem: The global cost function
difference between the m = 3 and the optimal reconstruction
(m = 4, Fig. 1) gains significance in the light of Fig. 2(b),
which shows localized regions of the attractor with large values
of the local cost function.

As an independent validation of the proposed reconstruc-
tion methodology we here consider forecasting performance
for a range of horizons from short to long term. More precisely,
we use the proposed approach to determine a reconstruction
space and compare the prediction accuracy of local linear
models against the reconstruction arrived at following the
standard approach (MI + FNN). The top panels of Fig. 3
contrast prediction errors at a fixed horizon as a function of the
number of neighbors k involved in the prediction for Mackey-
Glass, Rössler, and Lorenz datasets (for a more detailed
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FIG. 2. (Color online) Color-coded local cost function in two-dimensional projections of m-dimensional delay coordinate reconstructions
of the Mackey-Glass attractor. The time window tw = 30 is the same for all reconstructions but the dimension increases from left to right.
(a) m = 2; (b) m = 3; (c) m = 4.

account of the datasets and simulation settings employed,
please refer to Appendix A). The bottom panels, instead,
illustrate the case of a fixed number of neighbors and a variable
prediction horizon T (for ease of interpretation, measured
in units of the characteristic—first recurrence—time of each
system). Figure 3 demonstrates that more accurate forecasting
can be achieved at a range of horizons with the proposed
approach. This follows from the fact that our methodology
produces smooth embeddings for which the complexity of
the prediction law is minimized and the dynamics can be
more efficiently approximated, as discussed in the following
sections.

As we detail below, L is built upon the concept of noise
amplification introduced by Casdagli et al. [4]. However, in
this paper we present a new interpretation of σ in terms of the
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FIG. 3. (Color online) Comparison of prediction errors (normal-
ized root mean squared error) of local linear models for reconstruc-
tions obtained following the standard approach (MI + FNN, dashed
line) versus the proposed methodology (solid line) for Mackey-Glass
[panels (a) and (d)], Rössler [panels (b) and (e)] and Lorenz [panels (c)
and (f)]. (Top panels) Forecasting error at a fixed horizon as a function
of the database fraction (k/N ) employed for model building. (Bottom
panels) Prediction error at a range of horizons T from short to long
for a fixed number of neighbors. The horizon T is measured in units
of the first recurrence time.

complexity of the prediction law defined on the reconstructed
attractor, as advanced in the previous paragraph. We also show
that the practical implementation of the proposed method is
strongly related to (a) the FNN method proposed by Kennel
et al. [26] and (b) dynamical methods [22–25]. The cost
function also incorporates an irrelevance measure based on a
direct computation of the reconstructed attractor local stretch.

In Sec. II we introduce the notation we use throughout this
work, classify the most common reconstruction strategies, and
discuss under which conditions a reconstruction is optimal.
We review the definition of noise amplification in Secs. III A.
We then show the equivalence between this definition and a
measure of complexity of the resulting prediction law and
discuss the consequences of this reinterpretation in Sec. III B.
Then in Sec. III C we propose an estimation method based on a
first neighbors approximation which enables the computation
of noise amplification from time series. In Sec. III D we
propose a formulation of the cost function which naturally
incorporates a penalization term to account for irrelevant
components. In Sec. IV we discuss how our approach is related
to other methods in the literature. In Sec. V we present field
data application examples. Finally, in Sec. VI we draw our
conclusions.

II. THE RECONSTRUCTION PROBLEM

A. Introduction and notation

In this work we follow the notation employed in [4]. The
time series x(t) is the sequence of measurements performed
on the system under study at regular intervals δt . We indicate
with s(t) the state of system at time t , which evolves according
to a deterministic dynamics on a d-dimensional manifold M:

s(t) = f t [s(0)], (1)

where f t is the evolution law for a time step t . The time series
is then the sequence x(t) = h[s(t)], where h : M → R is a
smooth measurement function defined on the original state
space. The time series x(t) is the only observable, s(t), f t , and
h being unobservables locked in a black box [4].

Figure 4 gives a schematic representation of the state-
space reconstruction process, starting from the measurement
process. In its most general form, a reconstruction of the
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-

FIG. 4. (Color online) Schematic representation of the measure-
ment process and reconstruction of the attractor of a dynamical
system. This figure is inspired in Casdagli et al. [4]. See the main text
for details.

state-space vector s(t) can be described with an n-
dimensional vector y(t) = �[x̄(t)], where x̄(t) = {x(t),
x(t − τ ), . . . ,x[t − (m − 1)τ ]} is the delay coordinate (DC)
vector at time t , and � : Rm → Rn is a further transformation
that accounts for the possibility of considering a more general
transformation (e.g., nonuniform DCs, global or local singular
value decomposition, or a noise reduction algorithm). Here we
first focus on DC reconstructions x̄(t), but the final methodol-
ogy will be generally valid for arbitrary reconstructions of the
form y(t) described above.

The DC reconstruction defines a map � : M → Rm such
that x̄ = �(s). Under the hypotheses considered by Takens,
� will yield a diffeomorphism, and in such a case we obtain
an embedding of the attractor in the reconstructed space. The
dynamics is given by a function F t fully determined by the
original dynamical law f t and �:

x̄(t) = F t [x̄(0)] = � ◦ f t ◦ �−1[x̄(0)]. (2)

The value of x(t + T ) will be given by the reconstructed
vector at time t , and can be obtained by applying the evolution
operator FT to x̄(t) and retaining its first component. This
operation can be captured by the function

gT = π · FT , (3)

where π is the column vector (1,0, . . . ,0), in such a way
that x(t + T ) = gT [x̄(t)]. The same as FT , the function gT is
completely determined by �, the original evolution law f T ,
and the measurement function h, being

gT = h ◦ f T ◦ �−1. (4)

In the following we use the simplified notation x(T ) instead
of x(t + T ) to denote the value of the time series T time steps
after t , which is implicit in the notation. Accordingly, x̄ and s

refer to x̄(t) and s(t), respectively.

B. Reconstruction strategies

Delay coordinate reconstruction is the most common
strategy for attractor reconstruction. However, several al-
ternatives exist ranging from derivative coordinates [44] or

global principal value decomposition [45] to nonuniform DC
vectors. The latter possibility has been extensively explored
in the literature in recent years [12,30–42,46]. All of these
approaches can be described in terms of Fig. 4, that is, by
means of a transformation � applied to the DC vector. Indeed,
any coordinates defining a reconstruction y(t) from samples in
the interval [t − tw,t] can be thought of as the result of applying
a transformation � to the full delay coordinate (fDC) vector,
which contains all available data from [t − tw,t] (i.e., τ = 1
and m = tw + 1, with τ and tw expressed in units of sampling
time).

Back on the domain of linear transformations, Gibson et al.
[8] found an analytical solution for PCA in the limit of a
small time window width. The “small window regime” refers
to widths smaller than

τ ∗
w = 2

√
3〈x2〉/〈(dx/dt)2〉, (5)

where the time series values x have been normalized to zero
mean. Their analytical solution has principal directions given
by discrete Legendre polynomials. For this case, � is a linear
transformation which projects the fDC vector from the time
window tw onto n directions given by the first n discrete
Legendre polynomials. Therefore, the free parameters to build
the Legendre coordinates are the time window width tw and the
dimension n. Gibson et al. gave a guidance for choosing tw, but
they argued that there is no simple rule to select n. In order to
avoid redundance and irrelevance and achieve a good balance
between signal-to-noise ratio and complexity, they proposed
to use a window width smaller than but close to τ ∗

w [8].
However, there is no demonstrated relationship between τ ∗

w and
the characteristic irrelevance time, and it cannot be discarded
that time window widths larger than τ ∗

w could provide useful
information about the system state for its reconstruction.

Gibson et al. also showed that, in the limit of a small DC
dimension m, applying the discrete Legendre polynomials
transformation to the fDC vector is equivalent to a finite
differencing filter which will recover derivative coordinates.
Therefore, derivative coordinates are also encompassed by the
same linear transformation framework.

Finally, nonuniform delay coordinate (nuDC) reconstruc-
tion has been proposed as a generalization of standard DC
reconstruction by allowing a different time lag for each
component of the DC vector, namely

y(t) = [x(t),x(t − τ1),x(t − τ2), . . . ,x(t − τ(n−1))], (6)

where the dimension n and the n − 1 delay times
{τ1,τ2, . . . ,τ(n−1)} are the set of parameters to be determined.
Also in this case the reconstructed vector y can be obtained
from the fDC vector on tw = maxi(τi). The dimension is
reduced from m = tw + 1 to n by retaining only the n

coordinates corresponding to the nonuniform delays. It is
important to remark that this procedure constitutes a linear
projection � onto a subspace and that the iDC reconstruction
is not a new procedure outside the reconstruction scheme of
Fig. 4 proposed in [4].

In summary, existing strategies in the literature consist of
a linear projection of the fDC vector onto a subspace (in
particular, this is also the case for the usual, uniform DC
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reconstruction). It is unclear which strategy will be optimal
in each case.

C. When is the reconstruction optimal?

Once the reconstruction problem has been defined, the
question arises as to how to choose the free parameters tw
and m (and, eventually, also the parameters associated to
a further transformation �) in order to achieve the best
possible reconstruction. To answer this question one must
define the criterion of optimality. In other words, what would
best mean for the purpose of the reconstruction? Takens’
theorem gives no guidance to define such criterion, almost
any τ and a big enough m being equally valid solutions for
the noise free and infinite amount of data case analyzed by
the theorem. The presence of noise and the finite amount of
data introduce limits to the quality of the reconstruction in the
sense that any measure we would later estimate from it would
require modeling the distribution of points, introducing noise
amplification and estimation error [4]. The aim of the optimal
reconstruction will be to simultaneously minimize these two
effects. Observational noise amplification is reduced for well
unfolded attractors in the reconstructed space because, roughly
speaking, well separated states will be harder to mix by noise
displacements. On the other hand, excessive unfolding will at
some point produce an overly complicated reconstruction that
will later require more data points in order to be modeled. The
compromise between these two opposite scenarios will then
depend on the noise level and the amount of available data.

Another idea of optimality is based on minimizing the dis-
tortion of the original attractor introduced when applying the
reconstruction map �. If we assume that the original attractor
is known, then it is possible to define measures of distortion
between the two attractors as in [4,11,47]. However, there is
no reason to assume that the original attractor constitutes the
best representation of itself. For example, Pecora et al. suggest
that a combination of original and DCs of the Lorenz attractor
can produce a better reconstruction than the original attractor
itself [40]. Beyond these arguments, we do not use these
distortion measures as our cost function because we assume
that the original attractor is unknown. However, the point we
would like to question here is whether these measures [4,11,47]
are absolute measures of the reconstruction quality.

III. CONSTRUCTION OF THE COST FUNCTION

A. Noise amplification

The concept of noise amplification as given by Casdagli
et al. [4] aims at quantifying the effect that observational noise
on x has on our uncertainty about the system state s. Given that
the state of the system is unknown and we only have access
to the observational time series x = h(s), it is impossible to
evaluate the quality of a reconstruction by comparing the
reconstructed attractor with the original one. However, the
quality of a reconstruction can be assessed by considering
the predictive power that it allows for. In this context, the
definition of noise amplification (see [4] for details) is given
by

σ (T ,x̄) = lim
ε→0

σε(T ,x̄), (7)

where

σε(T ,x̄) = 1

ε

√
Var[x(T )|Bε(x̄)], (8)

Var[x(T )|Bε(x̄)] being the conditional variance of x(T ) for x̄ in
a radius ε ball Bε(x̄) defined by an observational noise level ε.
According to the definition given in [4], Var[x(T )|Bε(x̄)] does
not contain any contribution from modeling error. Instead, the
exact form of gT is assumed to be known and used to compute
the width of the image of Bε(x̄) when passed through gT . In the
limit ε → 0 the value of σ (T ,x̄) is independent from ε but only
a function of the reconstruction as given by �. Finally, in [4]
the authors considered the mean square value of σ (T ,x̄) with
respect to the measure of the attractor, 〈σ 2(T )〉, to globally
characterize the reconstruction.

The forward time step T on which Var[x(T )|Bε(x̄)] is
evaluated is a free parameter of σ (T ,x̄). Notice, however, that
the evaluation of σ (T ,x̄) on a single value of T is insufficient
to correctly characterize the divergence of reconstructed orbits
since the measurement function can collapse different states
onto the same value. A more robust measure of the divergence
between neighboring orbits is obtained by considering the
average of σ 2(T ,x̄) for T on the interval [0,TM ] for some
upper value TM .

Therefore, we redefine σε(x̄) as

σ 2
ε (x̄) = 1

TM

∫ TM

0
σ 2

ε (T ,x̄)dT (9)

and consider the limit

σ (x̄) = lim
ε→0

σε(x̄) (10)

instead of the original definitions given in Eqs. (7) and (8),
respectively. We will keep the notation σε(T ,x̄) (with an
explicit indication of parameter T ) for the cases where the
average over T in [0,TM ] is not performed and when we would
like to evaluate this quantity—and others derived from it—at
a single instance in the future, T .

The choice of parameter TM will determine the sensitivity
of σ (x̄) to the quality of the reconstruction. However, there
is no need to make an accurate selection of TM provided that
it is large enough to capture orbits divergence. The purpose
of setting an upper bound for TM is just to achieve a better
sensitivity of σ to the optimum reconstruction. Our method
based on the estimation and minimization of σε(x̄) produces
consistent results for a wide range of TM values, as we show
in Sec. IV C.

B. Complexity of the prediction law

Although the purpose of the definition of σ (T ) is to
characterize the reconstruction determined by �, it depends
exclusively on the function gT . Therefore, it should be possible
to derive an expression of σ (T ) in terms of gT only. This is
the purpose of this section.

Let Bε(x̄) be a Gaussian ball with standard deviation ε,
that is, a multivariate normal distribution with a diagonal
covariance matrix 	 with all entries equal to ε2. In this context,
Var[x(T )|Bε(x̄)] is the variance of this Gaussian distribution
mapped through gT to R. As we aim to take the limit ε → 0,
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we can consider ε small enough as to make a first-order
approximation around x̄,

gT (x̄ + ξ ) = gT (x̄) + b†ξ + O(‖ξ‖2), (11)

where b = ∇gT (x̄) and ξ represents a displacement from x̄

with a size ‖ξ‖ bounded by ε. In this linear limit the resulting
mapped distribution is also normal with a variance given by
b†	b = ε2‖∇gT (x̄)‖2. According to this result we find that

σ 2(T ,x̄) = ‖∇gT (x̄)‖2. (12)

This relationship, not considered in [4], allows for a new
interpretation of the minimization of 〈σ 2(T )〉 in terms of the
complexity of the resulting gT . A change in the reconstruction
modifies the support where gT lives and therefore gT itself.
The smoothness of gT can be quantified by 〈‖∇gT (x̄)‖2〉,
which can then be interpreted as a measure of the complexity
of this function. Minimizing 〈σ 2(T )〉 is therefore equivalent to
minimizing the complexity of gT .

This new interpretation is per se sufficient to consider
the minimization of 〈σ 2(T )〉 as an optimality criterion to
guide the reconstruction process, independently of the original
arguments on the effects of observational noise. The law gT

will be easier to model the lower the value of 〈σ 2(T )〉 is, and
therefore fewer parameters will be needed to describe it. Fur-
thermore, smoothness of the dynamics is the first assumption
when modeling a system with the purpose of forecasting, for
example, with techniques such as artificial neural networks,
radial basis functions, or interpolating splines. Building on
this hypothesis, all of these modeling approaches include
a regularization parameter to avoid overfitting [48]. More
importantly, even when forecasting is not the final purpose
but estimating an invariant quantity such as the maximum
Lyapunov exponent, these algorithms are also implicitly
applied, k-NN being the most frequently used. Therefore,
it is crucial that the unknown function gT complies, as
closely as possible, with the hypotheses made on it when it is
modeled.

A further consequence of this reinterpretation is the
possibility to generalize the definition of σ to the more
general reconstruction vector y = �(x̄). In [4] the ε ball
Bε(x̄) is originated in independent and identically distributed
observational noise in each component of the DC vector x̄ and
can only be associated to it. Any further transformation � will
distort this noise-induced ε ball. For the new interpretation in
terms of ‖∇gT (x̄)‖2, the ε ball is a mathematical construction
to capture the behavior of the neighborhood of x̄, and as such
is therefore is also applicable to y.

C. Estimation of noise amplification with k-NN

In practical applications the law gT is inaccessible (both
the dynamical law f t and the measurement function h being
unknown), and the only available information is the time series
itself. In this context we propose to estimate σ 2

ε (x̄) by recursing
to the nearest k neighbors of x̄ [49]. These k neighbors and
x̄ define a set Uk(x̄) with k + 1 elements which will act as a
proxy for the ball Bε(x̄) in the following definitions.

We approximate the conditional variance Var[x(T )|Bε(x̄)]
by

E2
k (T ,x̄) ≡ 1

k + 1

∑
x̄ ′∈Uk(x̄)

[x ′(T ) − uk(T ,x̄)]2, (13)

where x ′(T ) is the future value of x corresponding to x̄ ′, and

uk(T ,x̄) ≡ 1

k + 1

∑
x̄ ′∈Uk (x̄)

x ′(T ). (14)

In order to capture the time average over T in [0,TM ] in
Eq. (9), we define Ek(x̄) (without explicit T notation) as

E2
k (x̄) ≡ 1

p

p∑
j=1

E2
k (Tj ,x̄), (15)

where the integral has been replaced for a sum over the actual
p sampled times Tj in [0,TM ].

We estimate the size of the neighborhood as

ε2
k (x̄) ≡ 2

k(k + 1)

∑
x̄ ′,x̄ ′′∈Uk (x̄)

x̄ ′′ �=x̄ ′

|x̄ ′ − x̄ ′′|2, (16)

which is a robust measure of the characteristic square radius
of Uk(x̄). Notice that here we are making no assumptions on
the box counting dimension of this set.

Finally, the noise amplification estimated from k nearest
neighbors is [50]

σ 2
k (x̄) ≡ E2

k (x̄)

ε2
k (x̄)

, (17)

and we consider the average over N reference points x̄i of the
reconstructed attractor randomly selected from the time series
to define the global measure

σ 2
k ≡ 1

N

N∑
i=1

σ 2
k (x̄i). (18)

For this k-NN estimation of 〈σ 2〉 a new free parameter has been
introduced to the method, namely the number of neighbors k.
If the value of k is chosen too large, the linear approximation of
gT around x̄ will be invalid and σ 2

k (x̄) will differ from the ε →
0 limit σ 2(x̄). On the other hand, k needs to be large enough for
the convergence of the estimator of the conditional variance
[Eq. (13)]. In Sec. IV A we present practical considerations
concerning the selection of appropriate values for k.

D. Normalization

In the framework of the new interpretation of σ 2(x̄) in terms
of ‖∇gT (x̄)‖2 discussed in Sec. III B, the value of ε is no longer
related to the observational noise and therefore its scale can
change with the reconstruction. For example, were y = �(x̄)
the optimal reconstruction, a simple rescaling αy would also
be optimal because it would leave the neighborhood structure
unchanged and therefore would not affect the computation of
any dynamical invariant nor the application of any prediction
algorithm. However, in the calculation of σk the characteristic
radii εk would be affected by the factor α, and therefore the
resulting σk will also differ by a factor α. This is clearly
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FIG. 5. Schematic representation of two DC reconstructions,
(a) �1 and (b) �2, with τ1 < τ2. The distance between neighbors
increases with the delay time τ due to the stretching and folding of
the attractor, while the global characteristic size L of the attractor
remains constant because it only depends on the amplitude of the
time series.

undesirable: Equally optimal reconstructions should yield the
same σk values.

The hypothetical case described above is somewhat arti-
ficial in the sense that it cannot occur when reconstructing
a dynamical system: No such global scaling factor α will
unexpectedly affect interpoint distances for a particular re-
construction among the set of all possible DC reconstructions
which is obtained by varying parameters τ and m. However, a
subtle effect will be present upon variation of these parameters:
The value of εk(x̄) along the attractor will grow with larger
delays due to the irrelevance effect which stretches (and folds)
the attractor.

Figure 5 illustrates this behavior schematically. Each panel
depicts a DC reconstruction given by �1 and �2, where
τ1 < τ2. The attractor, represented by a curve, is sampled
the same number of times in both cases. In this example
the larger value of τ2 induces a stretching and folding of the
reconstructed attractor. However, the characteristic size L of
the reconstructed attractors is the same as it is determined
by the amplitude of the time series. On the other hand, the
typical first neighbor distance is larger for �2, an effect that
is captured by larger values of 〈εk〉. However, larger values of
〈εk〉 produce in turn a smaller value of σk , which goes in an
opposite direction to a desired penalization of irrelevance.

In Fig. 6 we use the time series from the x variable of
the Lorenz system (see Appendix D for details) to profile the
behavior of εk defined by

ε2
k ≡ 1

N

N∑
i=1

ε2
k (x̄i), (19)

as a function of the reconstruction parameters m and tw. As
argued above, this figure quantifies how the characteristic dis-
tance between first neighbors averaged over the attractor grows
with the size of the considered time window. Additionally, the
typical distance between neighbors will also grow with the
dimension induced by the noise which populates all directions,
as pointed out in [25]. We therefore conclude that in order to
be able to compare different reconstructions a normalization
is needed to account for this changing average interpoint
distance. We also notice that εk captures the local scale
variations between reconstructions and is a measure of the
degree of irrelevance of the considered delayed components.
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FIG. 6. (Color online) Response of the characteristic radii εk (k =
2) to changes in the reconstruction parameters tw and m for the Lorenz
time series (noise free and with 10% noise). (a) εk monotonically
grows with tw and m in the noise-free case. (b) The same holds
true for the noisy case. (c) For the normalized radii ε∗

k = εk/
√

m

the dependence with m is eliminated at the lower end of tw values.
(d) In the noisy case—as well as for large tw in the noise-free
case—the sampled points fill the m-dimensional space and the growth
of εk with m cannot be avoided. In all cases the thick dashed line
corresponds to the full delay coordinate (fDC) reconstruction (τ = 1
and m = tw + 1).

Taking this argument further, the normalization we propose in
this section follows from considering the average of σ 2

k (x̄) over
the attractor [Eq. (18)] as a weighted average of E2

k (x̄)
with weights wk(x̄) proportional to εk(x̄)−2; that is,

wk(x̄) = αkεk(x̄)−2. (20)

Across different reconstructions these weights should satisfy∑
i wk(x̄i) = 1; therefore, the normalization factor is

α2
k =

[∑
i

ε−2
k (x̄i)

]−1

(21)

in such a way that α2
kσ

2
k = ∑

i wk(x̄i)E2
k (x̄i).

This normalization gives the product αkσk , the units of
x, the observed variable, independently of the proposed
reconstruction. This allows a direct comparison between any
kind of reconstruction for a given time series. If the statistics
is so normalized, αkσk will be upper bounded by the standard
deviation of the time series and lower bounded by the noise
level.

E. Overview

Here we collect the arguments of the previous sections to
construct a cost function L to guide the search of the optimal
reconstruction. Ideally, such function can be thought of as a
sum of two terms with competing behavior,

L = R + λI. (22)

The R term should penalize redundance when the window
size tw is too small or, in case it is not, when the number of
components within tw is insufficient to unfold the attractor. On
the other hand, the I term should penalize irrelevance when
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the window size tw is too large or, in case it is not, when the
number of components within tw is unnecessarily larger than
needed to unfold the attractor.

Throughout this section we have shown the basis and
definition of σk inspired on the definition of noise amplification
in [4], from which we arrived at a new interpretation in terms
of the complexity of the dynamics gT . Furthermore, we have
defined a normalization factor αk needed to adjust σk to scale
variations induced by stretching and folding of the attractor
when irrelevant delayed components enter the reconstruction
vector. These two terms, σk and αk , are natural candidates to
play the role of R and I . We therefore define

Rk = log10 σk, (23)

Ik = log10 αk, (24)

and arrive at

Lk = Rk + Ik (25)

= log10(αkσk), (26)

where the parameter λ in Eq. (22) must necessarily be equal
to 1, following the conception of αk as a normalization factor
(Sec. III D).

In Appendix E we give details on our implementation of
the method proposed in this work, which is freely available.

IV. RELATED WORK

A. Selection of k and relationship with the method
of FNN of Kennel et al.

If we only consider the first neighbor to compute σk(x̄),
that is, k = 1, and choose the time step T equal to τ reducing
the sum in Eq. (15) to a single term, we exactly recover the
statistics proposed by Kennel et al. [26] to detect FNN; that is

σ1(T = τ,x̄) = |x(t + τ ) − x ′(t + τ )|
d(x̄,x̄ ′)

, (27)

where x̄ ′ is the first neighbor of x̄ in the reconstruction and
d(x̄,x̄ ′) their distance and we question whether it is a true
neighbor. The criterion used by Kennel et al. was to consider
x̄ and x̄ ′ false neighbors if σ1(T = τ,x̄) > 10.

The method of Kennel et al. is therefore encompassed
by our proposal as a particular case with k = 1. The main
difference is given by the fact that we consider T in the
interval [0,TM ] instead of T = τ . The time lag parameter
τ , or equivalently tw, must also be determined. Figure 7
shows the profiles of Lk vs tw for several values of k and
benchmark time series. Choosing k = 1 is not always the best
option because the obtained profiles can be too noisy for a
correct determination of the optimal tw. Increasing the value
of k regularizes the estimation of Var[x(T )|Bε(x̄)] but also
increases the size of Uk(x̄). The corresponding profiles of Lk

tend to be smoother or converge to a stable profile but the
method becomes less sensitive to local divergences. A trade-off
solution is given by the smallest value of k for which the Lk

profile is stable in the sense of consistency in the optimal tw
values obtained, which are given by the position of the global
minima of Lk . In general, we found k = 2 or 3 to be a good
choice for the time series considered in this paper and suggest
the use of these values for general applications.
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FIG. 7. (Color online). Profiles of Lk vs tw for a range of k values
and benchmark case studies. (a) Lorenz, m = 3; (b) Rössler, m = 3;
(c) Mackey-Glass, m = 4; (d) Mackey-Glass with 10% noise, m = 4.
For all time series studied in this work the structure of maxima and
minima converges for low values of k.

B. Relationship with prediction error

Here we analyze the mean of E2
k (T ,x̄) [from Eq. (13)]

over the attractor instead of the proposed cost function. This
is nothing else than the usual mean squared prediction error
(MSE), which we here compute using a local constant model
based on the first k neighbors and note E2

k (T ).
The question we address in this section is whether a

minimization of Ek(T ) constitutes an appropriate criterion to
select reconstruction parameter values instead of the more
complex definition of Lk(T ). The main difference between
these two approaches is that Ek(T ,x̄) does not carry any
information about the size of the neighborhood Uε(x̄). The
relevance of this lack of information becomes evident when
considering a reconstruction with a region of collapsed orbits.
By “collapsed orbits” we here refer to the case of true neighbors
that become arbitrarily close for a given reconstruction—
without involving the presence of false neighbors. This is
illustrated in Fig. 8 and again in panel (b) of Fig. 9.

Panels (a) and (b) show two different reconstructions of the
same group of points; as we can see in panel (b) the orbits
are collapsed. If we compute Ek(T ) using k = 2 we arrive at
identical values for both reconstructions. This follows from

FIG. 8. Schematic representation of two reconstructions of the
same region of an attractor with (a) well-behaved orbits and (b)
collapsed ones. The computation of Ek(T ) using k = 2 will yield
identical results for both reconstructions while Lk will penalize the
collapsed orbits of panel (b).
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FIG. 9. Illustration of the sensitivity of Lk and Ek to an orbit
collapse for the three-dimensional DC reconstruction of the Rössler
system. (a) Plot of Lk and Ek vs τ . Notice that at τ = 7 the curves
differ maximally. (b) Detail of the reconstructed attractor at τ = 7.
The reconstruction exhibits collapsed orbits at this specific delay
value.

the fact that the distortion occurring in panel (b) does not
alter the neighborhood structure. On the other hand, if we
compute σk(T ,x̄) for both reconstructions we will arrive at
different values. The case of panel (b) will yield a larger value
of σk(T ,x̄). This will follow from smaller neighborhood sizes
in the denominator for regions of the reconstruction that exhibit
a collapse.

The situation of an orbit collapse described in this section is
typical of the “redundance limit” (small tw), but can also occur
for intermediate tw values in low-dimensional reconstructions.
This effect can be illustrated for the three-dimensional DC
reconstruction of the Rössler system from the time series
of the x variable (see Appendix C). For τ = 7 there is an
orbit collapse as shown in Fig. 9(b). Figure 9(a) shows the
response of Ek as compared to Lk for this three-dimensional
reconstruction as a function of τ . Notice how the profile of Lk

jumps at τ = 7 while Ek does not.
To support the contention that the response of Lk shown

in Fig. 9(a) corresponds to the collapsed region of Fig. 9(b)
we use α2

kσ
2
k (T ,x̄) as a local cost function to extract spatial

information about the reconstruction quality. This has been
done in Fig. 10 where the values of α2

kσ
2
k (T ,x̄) have been

plotted on the attractor in the bottom panels and as a function
of x(t) (=x0) in the top panels. From left to right the
reconstructions have τ = 2, τ = 5, τ = 7, and τ = 11. For
τ = 7 [panel (c)] the values of Lk are clearly dominated by
the behavior in the collapsed region. The same holds true for
τ = 11 [panel (d)] but in this case there are false neighbors as
orbits cross each other [51].

If we compare Fig. 10 with Fig. 11, where α2
kσ

2
k (T ,x̄) has

been replaced with E2
k (T ,x̄), we find that the local response

to the collapse of orbits (τ = 7) and to the presence of
false neighbors (τ = 11) is lower, especially as compared
to the ground response. We note in passing that this ground
response is in itself an interesting finding from this plot. More
precisely, E2

k (T ,x̄) exhibits a rich structure along the attractor
(e.g., along the radial direction on the spiral) even when the
reconstruction is optimal [τ = 5, panel (b)]. E2

k (T ,x̄) penalizes
orbits of the attractor that do not seem to be more divergent
than others where, however, E2

k (T ,x̄) is smaller. Instead, these
orbits belong to lower density regions, which yields larger
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FIG. 10. (Color online) Sensitivity of Lk to collapsed orbits. The
local cost function α2

kσ
2
k (T ,x̄) is plotted vs x0 in the top panels and

color coded in the two-dimensional projection of the reconstruction
in the bottom panels for reconstruction parameters m = 3 and
(a) τ = 2, (b) τ = 5, (c) τ = 7, and (d) τ = 11.

values of E2
k (T ,x̄). As expected, E2

k (T ,x̄) evaluates the quality
of the prediction algorithm (k-NN in this case) rather than
reconstruction quality. On the other hand, the variability of
α2

kσ
2
k (T ,x̄) across the attractor shown in the bottom panel of

Fig. 10(b) is less severe and only associated with intrinsic
divergence of orbits.

In Small et al. [12] the authors explored the use of the k-NN
prediction algorithm for the selection of optimal reconstruction
parameters. The quantity they proposed to minimize is the
description length (DL) of the time series using this particular
modeling approach and a candidate reconstruction. In the
particular case of k-NN the description length reduces to the
logarithm of Ek(T ); therefore, the previous critiques in this
section apply to their method. Another important drawback
is that their analysis of the method is reduced to k = 1 and
T = 1. The authors also referred to previous works based on
minimizing DL for different prediction algorithms (radial basis
functions [52] and neural networks [53]). They concluded
that for these algorithms DL is harder to estimate, and that

x 1
 

x0 x0 x0 x0 
10-4

10-3

10-2

10-1

100

E
k2 (T

,x-
)

(a)  τ = 2
(tw = 4)

   

   

   

 

(b)  τ = 5
(tw = 10)

   

   

   

 

(c)  τ = 7
(tw = 14)

   

   

   

 0

 0.1

 0.2

 

E
k2 (T

,x-
)

(d)  τ = 11
(tw = 22)

FIG. 11. (Color online) Same as Fig. 10 for E2
k (T ,x̄). This

quantity is less sensitive to a collapse of orbits [panel (c)] and false
neighbors [panel (d)] as compared to its ground level, which presents
a spurious structure [panels (a) and (b)]. See the main text for details.
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their free parameters are harder to optimize for the purpose of
determining reconstruction parameters.

C. Relationship with dynamical methods

The dynamical methods [22–25] mentioned in the Intro-
duction are also based on the detection of FNNs and provide a
criterion for choosing m and τ . The methodology we propose
in this work can also be considered a dynamical method. In
the following we discuss the most relevant differences between
these methods and our approach.

1. Gao and Zheng

In [24] Gao and Zheng used a quantity close to σ1(T ,x̄)
(notice k = 1) to determine the reconstruction parameters m

and τ and also to estimate the maximum Lyapunov exponent
of the dynamics. This quantity is given by

R(T ,x̄) = d(x̄(T ),x̄ ′(T ))
d(x̄,x̄ ′)

, (28)

where the only difference with σ1(T ,x̄) is that both numerator
and denominator are given by distances computed in the
reconstructed space. They then defined the cost functions to
be minimized as 
 = 〈ln[R(T ,x̄)]〉 and 
+ = 〈ln[R(T ,x̄)]〉+,
where in 
+ the mean is taken over positive values of
ln[R(T ,x̄)] only. Mean values of logarithmic divergence are
suboptimal for the purpose of detecting collapsed orbits.
However, the main critique we make to the method of Gao and
Zheng is the use of a distance in the full reconstructed space
in the numerator to measure divergence of neighboring orbits.
Given a DC vector x̄ = {x[t − (m − 1)τ ], . . . ,x(t − τ ),x(t)}
at time t , its image under the dynamics for a time step T ,
x̄(T ), will share m − 1 components with x̄ when T = τ . This
constraint, which is inherent to the DC reconstruction and
independent of the time series under analysis, will in general
affect the distance d(x̄(T ),x̄ ′(T )) in the numerator of Eq. (28),
producing an artificial minimum at τ = T in a 
 vs τ profile.

In Fig. 12 we plot the time window tw which minimizes Lk

as a function of parameter TM for the DC reconstructions of
the noise-free Mackey-Glass time series [panel (a)] and also
for the noisy case [adding 10% i.i.d. noise; panel (b)]. For
increasing dimensions m from 2 to 4 we see that the time
window converges to a stable value if TM is large enough. In
contrast, for small values of TM the value of tw is unstable.
This is due to the high correlation between successive values
of oversampled time series which implies that x(T ) will be
determined by x̄ independently of the reconstruction quality.
In order to characterize a proper interval [0,TM ] for T we
built a space-time separation plot [54] for the time series
under consideration without any reconstruction, as shown in
Fig. 12(c). The upper curve corresponds to the 95% percentile
of the distribution of |x(t + T ) − x(t)|; that is, this curve is
almost an upper bound for |x(t + T ) − x(t)|. We use this curve
to choose TM as the time of its first maximum in order to
ensure that nearby orbits are given enough time to diverge.
For this time series we obtain TM = 44, a value that avoids the
fluctuations in tw shown in panels (a) and (b). Notice, however,
that any value of TM between 30 and 100 is equally valid, and
that no particular choice of this parameter is critical in order to
obtain consistent results. The use of the 95% percentile curve
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FIG. 12. (Color online). Optimal window size tw (in an Lk sense)
as a function of the horizon parameter TM for (a) the noise-free
Mackey-Glass case and (b) the noisy case. Panels (a) and (b) also
show tw vs T as obtained by applying Gao’s method (dashed gray line)
which exhibits a high dependence on parameter T . The dashed vertical
lines signal the horizon parameter TM equal to the first maximum of
the upper curve of the space-time separation plot [54] for the time
series without any reconstruction [panel (c)].

from the space-time separation plot has given appropriate TM

values that avoid fluctuations in tw for all time series considered
in this paper (plots of tw vs TM not shown).

In [24] the authors give no suggestion to choose an adequate
value for T . Indeed, no value of T ensures an independent
output for τ as discussed previously in this section. As shown
in Fig. 12(a) the tw obtained with Gao’s method has a strongly
fluctuating dependency on T . This situation even deteriorates
when noisy time series are considered [panel (b)], in which
case one identically obtains τ = T as previously explained.

2. Buzug and Pfister

Close to the definition of 
 by Gao and Zheng is the
averaged local deformation proposed by Buzug and Pfister
in an earlier work [22]. Their divergence measure is obtained
similarly to 
 but with a small difference in the expression
of Eq. (28): The distance from the reference point x̄ to its
first neighbor x̄ ′ is replaced with the distance to the center of
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mass of the cloud of neighbors initially inside a fixed-radius
ball around the reference point (in both the numerator and the
denominator). Buzug and Pfister give no justification for the
latter choice, which has two drawbacks: First, as recognized by
the authors, under noisy conditions the center of mass tends
to be close to the reference point, introducing a divergence
in Eq. (28). Second, the divergence of false neighbors is
underestimated. More precisely, if the cloud is split when the
dynamics evolves (assuming that there were false neighbors),
the distance of x̄ to the center of mass is about half of the
distance between the two clouds. This effect makes it harder
to discriminate false from true neighbors.

3. Kennel and Abarbanel

In 2002 Kennel and Abarbanel [25] presented an improved
version of their FNN method [26]. This new method, which
mainly deals with the case of oversampled time series,
also produces an estimate of the optimal delay time. The
strategy is based on considering nearest strands, which are
sets of nearest neighbors which are close in time and
characterize nearest orbits rather than nearest neighbors.
The divergence of nearest neighbors is then averaged over
neighbors in a strand and compared to a threshold. The
divergence measure is similar to Eq. (27), also with T =
τ but the denominator is absent (it is replaced with the
standard deviation of the time series for normalization
purposes). The proposed methodology has two undesirable
consequences. First, the value of T should be the same
for all reconstructions independently of the candidate delay
time τ . This leads to wrong conclusions about the optimal
delay time, because the smaller are τ and T , the lower is
the expected divergence and therefore fewer false neighbors
will be detected using a fixed threshold. The authors correctly
diagnosed this problem and proposed to apply a linear
transformation to the reconstructed space before using the
false strands algorithm. The purpose is to spread out the
attractor which, in the case of a small τ , tends to be collapsed
onto the identity line. We found this solution unsatisfactory
because it requires to transform the reconstruction we intend
to evaluate. Second, the suppression of the denominator in
Eq. (27) prevents the detection of collapsed orbits as discussed
in Sec. IV B.

4. Summary

In summary, common drawbacks of existing dynamical
methods in the literature are the following. (i) Results, in
general, depend on T as in [24]. Usually the value of T is
either fixed to be equal to τ , as in [23,25], or equal to the
sampling time, as in [22], which is suboptimal and sampling
dependent. (ii) The global reconstruction quality measure is
an average of the logarithm of a divergence metric which does
not fully capture the presence of false neighbors, as in [22–24],
or is a count of divergences above a threshold which is fixed
ad hoc, as in [25]. (iii) The number of neighbors is fixed to
k = 1, as in [12,23–25], while in some cases it is desirable to
consider k > 1 to gain robustness.

However, the main contribution in our proposal is not how
to deal with these drawbacks but to introduce the normalization
factor αk which penalizes irrelevance by adjusting the scales in

the reconstructed attractor. We have not found in the literature
any irrelevance measure based on the characteristic distance
among neighbors. This measure explicitly uses the fact that
irrelevance stretches (and folds) the attractor. Furthermore, this
irrelevance measure is incorporated into the cost function as a
normalization factor avoiding the introduction of extra param-
eters. The factor αk is the key ingredient in our reconstruction
quality measure—it is responsible for an absolute minimum
in our cost function when screening all possible values of tw.

V. PRACTICAL APPLICATIONS

A. Noisy time series

For the case of noisy time series we found, in general,
that the higher the number of delayed components considered
inside the selected time window, the lower the value of Lk is.
An illustration of this behavior is given in Fig. 13(a) where
we show the profiles of Lk vs tw for the Mackey-Glass time
series with 10% (amplitude) i.i.d. observational noise. For this
time series the minimal embedding dimension is m = 4 in
the noise-free case (see Fig. 1). However, in the noisy case
the profiles of Lk vs tw do not reach their minimum for
a small dimension m, and the minimum of Lk corresponds
to the case of including every possible delayed value inside
the time window of the reconstructed vector. We previously
called this high-dimensional vector the fDC vector for a given
time window, and it has a dimension m = tw + 1 (where tw

 −1

  0

   

Lk

m=2

m=3

m=4

m=5

m=11

m=21

fDC

(a)

 −1

  0

 10  100  1000

Lk

tw

n=2

n=3

n=4

n=5

n=6

fDC

(b)

FIG. 13. (Color online). Cost function vs time window size tw
for the Mackey-Glass series plus 10% noise. (a) Delay coordinate
reconstructions with different dimensions m as in Fig. 1. (b) Legendre
coordinates reconstruction of different dimensions n. Both panels
show the curve for the fDC reconstruction (τ = 1 and m = tw + 1).
Note that the Legendre profiles reach values below the latter curve.
The vertical dashed line indicates tw = τ ∗

w .
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is expressed in sampling time units) which depends on the
sampling. The behavior of Lk can be explained by noticing
that the inclusion of redundant components allows noise
filtering (given that the noise is i.i.d.). Noise filtering is
performed in the computation of the Euclidean distances
between pairs of reconstructed vectors since the Euclidean
distance is essentially an average of the quadratic distance for
each component. More precisely, for large m the distance d2

noisy
between two noisy DC vectors tends to be [55]

d2
noisy ≈ d2

clean + 2mξ 2, (29)

where d2
clean indicates distance between clean vectors and ξ 2 is

the noise variance. As the second term does not depend on the
specific pair of vectors (assuming i.i.d. noise), d2

noisy produces
a correct rank of nearest neighbors. This result was anticipated
in [4] from an information point of view: More information
implies less distortion; therefore, the distortion is a monotonic,
nonincreasing function of the dimension. Our cost function is
reflecting this behavior because it is based on the theoretical
definition of noise amplification σ (T ,x̄) as defined in [4].

B. Discrete Legendre polynomials

In the previous sections we have only considered DC recon-
structions, and found that high-dimensional reconstructions
yield minimum noise amplification in the case of noisy time
series. One can apply a further transformation � : Rm → Rn

in order to reduce the dimensionality of the DC vector.
To this end we can use a linear � which projects a fDC
vector from tw + 1 dimensions onto n directions given by, for
example, the first n discrete Legendre polynomials. Therefore,
the free parameters for the Legendre coordinates that we
need to determine are the time window width tw and the
dimension n.

Our aim is to show here how our cost function allows
the evaluation of more general reconstructions than just DCs.
Notice that the proposed method can be used to determine
whether applying a further transformation � improves the
reconstruction quality. In addition, it allows the computation
of optimal parameters for this reconstruction exactly in the
same way as for DC reconstructions.

Figure 13(b) shows Lk vs tw for n = 1, . . . ,6 for the the
same noisy Mackey-Glass time series as in panel (a). We see
that the minimal embedding dimension n = 4 is recovered
despite the presence of noise. However, the optimal time
window width tw = 113 is much larger than in the noise-free
case. This difference can be explained by considering that,
due to the presence of noise, the information about the system
state carried by measures with larger delay times is now
more relevant relative to the larger uncertainty on the system
state (reflected by larger values of Lk with respect to the
noise-free case). As pointed out in Sec. II C, we expect that
the optimal embedding parameters depend on the noise level.

Finally, we would like to notice that this transformation �

not only reduces the dimensionality from m = tw + 1 to n = 4
but also the value of the cost function with respect to the lowest
level attained with a DC reconstruction (which is obtained for
the fDC vector and plotted in both panels of Fig. 13 with a
gray dashed line).
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FIG. 14. Chua’s circuit data [56]. (a) The full-length time series.
(b) Detail of the first 1500 data points. The characteristic period
is approximately 94 sampling time units. (c) Preliminary two-
dimensional DC reconstruction using τ = 23 (which corresponds to
a quarter of the characteristic period).

C. Chua’s circuit

We now consider a real time series from a practical
implementation of Chua’s circuit. The data correspond to
measurements of inductor current values performed in [56] and
can be retrieved from [57]. The data are depicted in Fig. 14.

This time series has a significant amount of observational
noise mainly due to a small resolution in the A/D conversion
and to the Hall-effect probe used to measure the current
through the inductor [56].

For this noisy time series we explored both delay and
Legendre coordinates. Figure 15(a) shows the profile of Lk vs
tw for DC reconstructions of increasing dimension m from 2 to
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FIG. 15. (Color online) Cost function vs time window size
tw for Chua’s circuit time series. Panel (a) corresponds to DC
reconstructions with different dimensions m as in Fig. 1. Panel
(b) corresponds to Legendre coordinates of different dimensions n.
Both panels show the profile for the fDC reconstruction (τ = 1 and
m = tw + 1). The vertical dotted line indicates the value of τ ∗

w .
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FIG. 16. (Color online) Views of the three-dimensional Legendre
coordinate reconstruction of Chua’s circuit attractor. (a) y1 vs y0; (b)
y2 vs y0; and (c) y2 vs y1. (d) Perspective view of the reconstructed
attractor. The local cost function over the attractor is color coded. The
principal directions of the attractor (in the PCA sense) are aligned with
the coordinate axes. The local cost function does not present localized
regions of high values [as, e.g., in Fig. 2(b)], implying the absence of
false neighbors.

tw + 1. These results are consistent with the ones obtained for
the noisy Mackey-Glass case [Fig. 13(a)], where the minimum
value of Lk is reached when the DC vector incorporates all
delayed values inside the selected time window.

In Fig. 15(b) we show the curves Lk vs tw corresponding
to Legendre coordinates for increasing dimensions n. For
comparison we also plot the profile corresponding to the fDC
reconstruction [plotted with a gray dashed line as in panel (a)].
Again, as observed for Legendre coordinate reconstructions of
the noisy Mackey-Glass time series, the absolute minimum of
Lk is now reached for a low-dimensional reconstruction with
parameters n = 3 and tw = 81. This type of reconstruction
significantly reduces the minimum value of Lk obtained with
a DC reconstruction, which is in turn due to the noise reduction
effect of projecting onto the discrete Legendre polynomials.

Now we compute τ ∗
w from Eq. (5) in order to find the upper

bound for which the analytical solutions are equivalent to PCA.
Simply applying Eq. (5) to the raw data leads, in general, to an
overestimation of 〈(dx/dt)2〉. A solution is to smooth the data
with a Savitzky-Golay filter [58]. This type of filter has two
free parameters: the length of the fitting window and the order
of the fitted polynomial. Using a fitting window of 7 points and
polynomials of order 2 we found τ ∗

w ≈ 96. The time window
width obtained by minimizing Lk is less than but close to the
upper bound τ ∗

w, in agreement with the guidelines given in [8]
to choose tw in order to maximize the signal-to-noise ratio and
simultaneously avoid irrelevance effects. Furthermore, tw <

τ ∗
w implies that the Legendre coordinate reconstruction which

is optimal in terms of Lk is likely performing a PCA over the
fDC reconstruction. This is confirmed by Fig. 16, where from
three independent views of the reconstruction we see that the
Legendre coordinates are aligned with the principal directions
of the attractor.
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FIG. 17. SFI Laser data. (a) Full-length time series. (b) Detail
of the first 1000 samples. (c) Zoom on the first 100 points. The
characteristic period is approximately seven sampling time units.

D. SFI laser

The last data set we consider in this work corresponds to
measurements of fluctuations in a far-infrared laser taken from
the Santa Fe Institute time series prediction competition [59]
and can be retrieved from [60]. The full time series is plotted
in Fig. 17(a), and further details on different time scales are
shown in panels (b) and (c). The average pulsation frequency
is ≈1.65 MHz and the sampling time is 80 ns. Therefore, the
time series is sampled approximately 7.6 times per cycle [see
panel (c) of Fig. 17], which is a very low sampling frequency as
compared to the previous examples. Notice that the time series
covers a larger numbers of cycles than in previous examples.
This in turn produces a higher number of neighbors outside
the Theiler exclusion window and therefore more points are
effectively available to compute the cost function. However,
some problems may arise due to undersampling. (i) Inside the
embedding window we may not find enough observations to
unfold the attractor; (ii) in the case of noncoherent dynamics,
the sampling could be insufficient to describe the faster
oscillations as discussed in [61]; and (iii) the optimal value
of tw cannot be studied with the desired resolution. From the
description and analysis of the time series given in [59] we can
in this case eliminate possibilities (i) and (ii) above.

Figure 18(a) shows the values of Lk for DC reconstructions
as a function of tw for different dimensions m. The absolute
minimum of Lk occurs for tw = 16 and m = 17, that is,
considering all delayed values inside the selected window
(fDC).

As discussed in Sec. V A, high-dimensional DC reconstruc-
tions allow noise filtering when computing distances between
vectors and this is probably the reason why the absolute
minimum is found at m = 17. From Fig. 18(a) it can be argued
that a reconstruction of dimension m = 5 can be achieved
with only a slight increase in the cost function. To investigate
whether this increase is relevant for reconstruction quality we
considered the distribution of the local cost function in the
same way as it was done in Fig. 2. We found (figure not shown)
that this slight increase in Lk is due to large increases of the
local cost function at localized regions of the attractor which
involve a small fraction of points [as it can also be observed
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FIG. 18. (Color online) Evaluation of the cost function for
different reconstruction strategies applied to the SFI laser time series.
(a) Lk vs window size tw for m-dimensional DC reconstructions
and for the fDC reconstruction (thick dashed gray line). (b) As a
function of the dimension m, we plot (i) Lk for fDC (thick dashed
gray line), (ii) mintwLk for DC, (iii) mintwLk for Legendre coordinate
reconstructions, and (iv) Lk for PCA reconstructions. In the latter
case, principal components are incorporated in decreasing order of
their corresponding eigenvalues (solid line).

in Fig. 2(b)]. This gives a meaning to the difference between
m = 5 and m = 17 in the global cost function which can be
then considered relevant. As far as the time window width
is concerned, we found that it approximately corresponds
to the size of two characteristic periods. We therefore see
that, in contrast to previously considered systems, our analysis
suggests that for this time series the irrelevance time is larger
than the characteristic period.

In Fig. 18(b) we plot for each dimension m the minimum
value of Lk over tw for the DC reconstructions of panel (a) and
also for Legendre coordinates. In the latter case the minimum
of Lk is reached at tw = 19 and n = 20, which means that no
dimension reduction is achieved.

To illustrate the versatility of the proposed approach, we
also considered PCA coordinates in order to compare with
the performance of the Legendre approach. More precisely,
we applied PCA to the tw = 16 fDC reconstruction, which
was the optimal DC reconstruction, and computed Lk for
reconstructions of increasing dimension by sequentially in-
corporating the PCA components in decreasing order of their
corresponding eigenvalue [solid-line profile in Fig. 18(b)].
After the seventh PCA component Lk falls below the Legendre
profile and reaches a minimum, thereby substantially reducing
the dimensionality of the representation.

y0

y1

10-2 10-1 100

Local Cost Function

(a)

(b)

y1

y6

(c)

(d)

FIG. 19. (Color online) Views of a three-dimensional reconstruc-
tion of the SFI laser attractor using PCA coordinates. (a) y1 vs y0;
(b) y6 vs y0; and (c) y6 vs y1. (d) View in perspective of the recon-
structed attractor. The local cost function for the seven-dimensional
PCA reconstruction is color coded over the attractor and penalizes
regions of high divergence. A spline interpolation was used to connect
points in order to guide the eye for this undersampled time series.

Figure 19 shows a three-dimensional reconstruction using
coordinates y0, y1, and y6 obtained from PCA. The recon-
structed attractor exhibits a structure reminiscent of the Rössler
attractor: a growing spiral in the (y0,y1) plane with a reinjection
of orbits at different radii. Indeed, the equations describing
the system dynamics are equivalent to Lorenz equations but
the symmetric two-spiral structure of the Lorenz attractor is
collapsed into one single spiral by the measurement process
[59]. The values of the local cost function have been computed
for the n = 7 dimensional reconstruction and color coded in
the three-dimensional projection of Fig. 19. Notice the costly
region corresponding to the reinjection of orbits into the spiral.
In contrast, in flatter regions of the spiral orbits are more
predictable and show lower local objective function values.

E. Nonuniform delay coordinate reconstructions

We now report an exploration of the potential of this
approach for the construction of nuDC vectors, that is, the case
where consecutive delayed coordinates are not equidistant.
We briefly report a case study taken from Pecora et al., who
in [40] introduced an nuDC reconstruction method and used it
to analyze a quasiperiodic, multiple time-scale time series of
the x coordinate of an orbit in a two-dimensional torus living
in a three-dimensional space. The two frequencies are ω1 and
ω2 with ω2 = 2.5 πω1 and the time series is sampled 32 times
per fast cycle.

On one hand, applying a greedy search algorithm, Pecora
et al. arrived at a four-dimensional reconstruction with delay
times τ1 = 8, τ2 = 67, and τ3 = 75. The first delay τ1 = 8 cap-
tures the fast frequency, being exactly 1/4 of the corresponding
period (this fraction is the time lag where autocorrelation
vanishes for harmonic signals). However, τ2 = 67 slightly fails
to capture the slow frequency (it should be τ2 = 63).
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On the other hand, we exhaustively searched over the
complete space of parameters {m,τ1,τ2, . . . ,τ(m−1)} for the
minimum value of Lk . According to our proposed measure
Lk , the optimal nuDC reconstruction is attained for parameter
values m = 4, τ1 = 8, τ2 = 63, and τ3 = 71. As we can see,
in this solution τ1 and τ2 exactly capture the fast and slow
frequencies of this torus time series.

Finally, we used independent sets of random samples and
ran bootstrapping experiments to compare the value of Lk

on the above reconstructions. First, we found that the nuDC
reconstruction obtained by the approach here proposed is
significantly better, in a statistical sense, than the one found
by Pecora et al. This result was expected by construction
(except possibly the statistical significance). Second, we also
found that according to our measure the nuDC reconstruction
obtained by Pecora et al. is in turn statistically significantly
better than the best possible uniform DC reconstruction.

VI. CONCLUSIONS

In this work we considered the reconstruction problem as
an optimization case and proposed an objective function to
guide the search for an optimal state-space reconstruction. This
cost function is based on (1) the hypothesis of an underlying
deterministic dynamics, (2) theoretical arguments on noise
amplification, and (3) the idea of minimizing the complexity
of the reconstruction. It incorporates an irrelevance measure
based on the characteristic distance to nearest neighbors in the
reconstructed space. The latter statistics captures in a simple
and intuitive way attractor stretching—a typical feature of
overfolded reconstructions.

The proposed objective function can be evaluated on any
reconstructed attractor, thereby enabling a direct comparison
among different approaches: (uniform or nonuniform) delay
vectors, PCA, Legendre coordinates, etc. It can also be used
to select the most appropriate parameters of a particular
reconstruction strategy by searching for the absolute minimum
of the advocated cost function. For example, in the case of DCs
the search for the optimal delay time and embedding dimension
can be automated by simply exploring the corresponding
parameter space. The absolute character of this search is
in contrast with subjective choices of other methods in the
literature, such as the value of a threshold to define false
neighbors or a tolerance limit to discriminate a noise-induced
fluctuation from a true relative minimum.

Our approach has only two free parameters: the number
of nearest neighbors k and the prediction horizon TM . We
have given a simple guidance to choose appropriate ranges for
these parameters, where results depend mildly on the particular
configuration and the method returns a robust output. Code
implementing the proposed method is freely available (see
Appendix E).

We applied the proposed method for the analysis of several
synthetic and experimental times series. Among the latter
we considered field measurements from an experimental
realization of Chua’s circuit and a far-infrared laser taken
from the Santa Fe Institute time series prediction competition.
In particular, we used the latter examples to demonstrate
the ability of the proposed approach to handle different
types of reconstructions, which we believe to be a distinc-

tive and powerful feature of this method. In all cases we
found a well defined absolute minimum of the objective
function.

In the particular case of DC embeddings we found the in-
teresting result that the time span of the optimal reconstruction
window is not necessarily related to the characteristic period
of the time series under consideration. The results obtained for
the SFI laser time series suggest that measurements from more
than one cycle in the past are relevant for the reconstruction of
the system state.

As a final remark, we would like to mention that in the
present work we have not proposed a reconstruction strategy
but a methodology to measure the quality of a reconstruction.
From the case studies analyzed in this work we conclude
that none of the considered reconstruction techniques (DCs,
PCA, Legendre coordinates) is universally optimal. From
a practitioner’s point of view, the proposed cost function
is therefore useful to assess which is the most appropriate
reconstruction method for the particular time series under
study.
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APPENDIX A: FORECASTING ACCURACY COMPARISON

As an objective validation of the proposed approach we
compared the forecasting accuracy of local linear mod-
els in reconstruction spaces obtained with the standard
approach (mutual information + false nearest neighbors) and
our method. For the Mackey-Glass time series the standard
embedding method gives m = 4 and τ = 22 (an embedding
window of size tw = 66) while the proposed method gives m =
4 and τ = 10 (i.e., a smaller window size tw = 30). For the x

coordinate of the Rössler time series the standard embedding
space is m = 3, τ = 11 (tw = 22) while our approach gives
m = 3, τ = 5 (tw = 10). Finally, for the x coordinate of the
Lorenz system the standard method yields m = 3, τ = 16
(tw = 32) and the proposed one m = 3, τ = 6 (tw = 12).

In these reconstruction spaces, for a given vector y(t) in an
independent test set (not used to determine the reconstruction
parameters) the prediction algorithm identifies the first k

neighbors among the N available in the training set (also used
to determine the reconstruction parameters) and locally fits a
linear model.

A comparison of the normalized root mean squared pre-
diction error on data sets from the Mackey-Glass, Rössler,
and Lorenz systems (Appendices B, C, and D, respectively) is
depicted in Fig. 3. In the top panels we show the prediction
error as a function of the number of neighbors k (more
precisely, as a function of the fraction k/N , where N is
the size of the training set). We fixed the horizon T at the
first maximum of the space-time separation plot as discussed
in Sec. IV C 1. In the lower panels of Fig. 3 we show the
prediction error as a function of the horizon T (expressed in
units of the characteristic period of each time series) for a
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fixed, nonoptimized, arbitrarily chosen number of neighbors
k = 15.

APPENDIX B: MACKEY-GLASS DATASET

We considered the Mackey-Glass equation [43],

dx

dt
= ax(t − τ )

1 + xc(t − τ )
− bx,

with parameters a = 0.2, b = 0.1, c = 10, and τ = 17. Using
as initial conditions x(t < 0) = 0 and x(t = 0) = 1.2, after
integrating this infinite-dimensional differential equation and
sampling every δt = 0.5 we kept a 10 000-element time series
following the first 2000 iterations, which were discarded as
a transient. We also computed a 50 000-element continuation
used only as a test set in the prediction task, and the same was
done for Rössler and Lorenz below.

APPENDIX C: RÖSSLER DATASET

For the Rössler system [62] we integrated the equations

dx/dt = −(y + z),

dy/dt = x + αy,

dz/dt = β + z(x − γ ),

with parameters α = 0.15, β = 0.2, and γ = 10. As initial
conditions we used x = y = z = 1; we then employed a
fourth-order Runge-Kutta numerical integration method, sam-
pled the x coordinate of the obtained trajectory with a step
δt = 0.125, and finally discarded the first 8000 data points
keeping a time series of length 10 000, plus an extra 50 000
for testing.

APPENDIX D: LORENZ DATASET

The Lorenz system [63] is described by the equations

dx/dt = σ (y − x),

dy/dt = x(ρ − z) − y,

dz/dt = xy − βz,

with parameters σ = 10, ρ = 28, and β = 8/3. We initialized
the system at x = y = 1, z = 50 and integrated with a fourth-
order Runge-Kutta procedure with step δt = 0.01. After a
transient of 1000 data points we kept 10 000 samples from the
x coordinate of this flow and additional 50 000 for independent
testing.

APPENDIX E: IMPLEMENTATION

The computation of the cost function requires to perform
nearest neighbor searches in high dimensional spaces. To this
end we use a box-assisted algorithm for efficient neighbor
searching [2]. This algorithm is an extension of the FNN
algorithm of the TISEAN package [64]. This extension allows
the search of k nearest neighbors of x̄ to define the set Uk(x̄),
where none of the neighbors belong to the same Theiler
window.

An implementation in C code of the method proposed in this
work can be downloaded from [65]. The program computes
the global and local cost function for DC, fDC, and Legendre
coordinates, which are internally implemented. Alternatively,
it also allows loading reconstructions from external files and
then computes corresponding local or global cost function
values. We also provide scripts to reproduce Figs. 1, 2, 15(b),
and 16.
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