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Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system
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Application of time-delayed feedback is a practical method of controlling bifurcations in reaction-diffusion
systems. It has been shown that for a suitable feedback strength, time delay beyond a threshold may induce
spatiotemporal instabilities. For an appropriate parameter space with differential diffusivities of the activator-
inhibitor species, delayed feedback may generate Turing instability via a Hopf-Turing transition, resulting in
stationary patterns. This is explored by a theoretical scheme in a photosensitive chlorine dioxide–iodine–malonic
acid reaction-diffusion system where the delayed feedback is externally tuned by photoillumination intensity.
Our analytical results corroborate with direct numerical simulations.
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I. INTRODUCTION

The interaction of reaction and diffusion in a system far
from equilibrium may generate various kinds of spatiotem-
poral instabilities, for example, stationary patterns, spirals,
targets, traveling waves, solitons, and oscillons [1]. Among
these, Turing patterns have been widely studied in the past
several decades [2]. The underlying instability owes its origin
to short-range activation and long-range diffusion of two in-
teracting species obeying activator-inhibitor reaction kinetics,
and the resulting symmetry-broken state is characterized by
ordered structures or patterns. The far-from-equilibrium states
are intrinsically guided by the nonlinearity in the kinetic terms
and the diffusivities of the species present in the system. The
first unambiguous experimental evidence of a convection-free
Turing pattern [3] was reported in a thermodynamically
open chlorite–iodide–malonic acid (CIMA) reaction-diffusion
system. Since then, a lot of experimental and theoretical studies
on Turing instabilities have been made in this system [4,5]
and its variant chlorine dioxide–iodine–malonic acid reaction
(CDIMA) [6,7].

Controlling spatial or spatiotemporal instabilities and pat-
tern formation is a growing area of interest in this context. The
influences of external perturbations such as light, electric field,
magnetic field, and noise play major roles in controlling and
modulating patterns when the parameter space of the dynamics
is appropriately tuned [8–10]. For example, in the case of a
reaction-diffusion system with ionic species, the electric field
may affect mass transport, resulting in symmetry-breaking
spatial structures [8,9]. For photosensitive reaction-diffusion
systems, depending upon the photoillumination intensity, the
excitation by light is very effective in inducing various types
of spatial organizations and crossover between them [11,12].
Apart from electric fields and light, noise in both additive and
multiplicative forms [13–16] has been used to induce ordered
spatial structures. Another interesting area covering external
effects on pattern-forming processes concerns the application
of the forces generated by the system itself (i.e., feedback). The
feedback can also be generated and manipulated externally in
a system. A convenient method of feedback control is based
on the use of appropriate time delay on the dynamical system.
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Since time delay is important in many natural systems, its
effect can be crucial and instrumental in the system dynamics.
An early attempt in this direction was made by Ott et al.,
who employed input signals constructed from the difference
between the current and past states [17]. Another simple and
efficient scheme of time-delayed feedback control is given
by Pyragas [18,19]. Delayed feedback and its modifications
are widely used to control chaos and to stabilize unstable
oscillations. This has been useful in controlling multiple
rhythms in a self-sustained oscillator [20–22]. Control of
pattern in the form of time-delayed feedback in spatially
extended systems has been investigated in the past few years
[23–27]. For example, recently, it has been shown that applying
localized feedback at a few spatial locations can stabilize
both uniform and pattern states. Local delayed feedback has
been used to orient spatial patterns in various forms and to
induce and manipulate spiral dynamics [28–30]. The majority
of these concern the influence of delayed feedback on systems
in pattern-forming regions for delayed feedback, revealing that
the original patterns can be modulated or even suppressed by
the delayed feedback. In this paper, we focus on the application
of a global feedback control involving short time delays on a
photosensitive CDIMA reaction-diffusion system. This model
has remained a classic paradigm for both experimental and
theoretical studies for a wide class of far-from-equilibrium
phenomena over the years. Global feedback control implies
that, based on the measurements of some global characteristics
of the system, we may vary some parameter that determines
the system behavior in the whole domain. Such type of
control is easier to implement experimentally. An important
attempt in this direction has been made in [23], where pattern
formation in catalytic CO oxidation on a Pt surface has been
observed by controlling chemical turbulence using global
delayed feedback. In this paper, time-delayed feedback is
externally imposed and manipulated by photoillumination
intensity in the non-pattern-forming region where the system
without the feedback is a spatially uniform state. A simple
theoretical scheme is worked out to determine the instability
criteria in the presence of delayed feedback, which ensures
a Hopf-Turing transition due to the feedback initiating the
formation of stationary patterns. Our theoretical analysis is
corroborated by numerical simulations.

The paper is organized as follows: In the next section, we
explore analytically the influence of time-delayed feedback on
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the photosensitive CDIMA system to determine the instability
conditions. Our theoretical analysis is verified by numerical
simulation of the spatially extended dynamical equations
of the reaction-diffusion system. The paper is concluded in
Sec. III.

II. ANALYSIS OF TIME-DELAYED FEEDBACK
IN REACTION-DIFFUSION SYSTEM

A. The model and preliminary discussion

To demonstrate the effect of time-delayed feedback in
controlling the pattern-forming process, we choose the mod-
ified Lengyel-Epstein model as a prototypical two-variable
reaction-diffusion system. The reaction includes the illumina-
tion effect for the photosensitive CDIMA system:

∂u

∂t
= a − u − 4uv

1 + u2
− φ + ∇2u, (2.1)

∂v

∂t
= σ

[
b

(
u − uv

1 + u2
+ φ

)
+ d∇2v

]
. (2.2)

Here u and v are dimensionless concentrations of I− and
ClO−

2 , respectively. They are dimensionless parameters; a and
b are related to kinetic parameters and are proportional to the
concentration ratios [CH2(COOH)2]/[ClO2] and [I2]/[ClO2],
respectively, where [ClO2], [I2], and [CH2(COOH)2] are in
large excess. Variable d denotes the ratio of the diffusion
coefficients, d = [DClO−

2
]/[DI−]; σ refers to the concentra-

tion of starch, which forms a complex with I−3 such that
σ = 1 + K[S]. Here K is the equilibrium constant for the
starch-iodide complex and [S] is the concentration of starch
tri-iodide binding sites. The parameter σ is controlled by the
concentration of starch. Here φ refers to the dimensionless
rate of photochemical reaction, which is proportional to the
external light intensity. The feedback is introduced by external
illumination, which becomes a time-dependent quantity when
feedback is present and has the form φ(t) = φ0 − P [v(t − τ )
− v(t)], where P is the feedback intensity of the control
strategy, v(t − τ ) denotes the delayed concentration with
respect to present variables, τ is the effective delay time,
and φ0 is the reference light intensity, which is a constant.
φ = φ0 when there is no feedback in the system. We
confine our treatment to short time delay for the present
purpose.

It is well known from the linear stability analysis of the
system that by varying the complexing agent (σ ) one can adjust
the Hopf curve in the b − a parameter plane in such a way that
it lies below the Turing bifurcation curve. The Turing curve is
independent of the value of σ , and below it the homogeneous
steady state is unstable to inhomogeneous perturbation. The
region above the Hopf curve is homogeneously stable. Turing
patterns arise in the region below the dashed Turing curve and
above the solid Hopf curve. This can be seen from the inset in
Fig. 1. Introduction of delayed feedback may give us another
useful handle for further manipulation of the instability region
between Hopf and Turing curves. We proceed to explore this
in the next section.

FIG. 1. Bifurcation diagram for b − a parameter region for
P = 0.2, d = 1.6, and φ0 = 1.0 and for fixed σ = 4.0. The solid
curves denote Hopf bifucation curves. Inset figure represents b − a

bifurcation diagram for different values of σ in the absence of
time-delayed feedback.

B. Theoretical analysis of the system under feedback control

In the presence of time-delayed feedback externally ma-
nipulated by the illumination intensity φ(t), the governing
equations for the CDIMA system become

∂u

∂t
= a − u − 4uv

1 + u2
− {φ0 − P [v(t − τ ) − v(t)]} + ∇2u

= f (u,v) + P [v(t − τ ) − v(t)] + ∇2u (2.3)

and

∂v

∂t
=σ

[
b

(
u− uv

1 + u2
+ {φ0−P [v(t − τ )−v(t)]}

)
+d∇2v

]

= g(u,v) − σbP [v(t − τ ) − v(t)] + σd∇2v, (2.4)

where

f (u,v) = a − u − 4uv

1 + u2
− φ0,

(2.5)
g(u,v) = σ

[
b

(
u − uv

1 + u2
+ φ0

)]
.

Assuming τ to be small, we replace v(x,y,t − τ ) as
[v(x,y,t) − τ

∂v(x,y,t)
∂t

] in Eqs. (2.3) and (2.4) and write it as

∂u

∂t
= f (u,v) − Pτ

∂v(t)

∂t
+ ∇2u, (2.6)

∂v

∂t
= g(u,v) + σbPτ

∂v(t)

∂t
+ σd∇2v. (2.7)

Now, by rearranging the above two equations, we finally obtain
the following expressions:

∂u

∂t
= f (u,v) −

(
τP

1 − σbτP

)
g(u,v) + ∇2u

−
(

τP

1 − σbτP

)
σd∇2v, (2.8)

∂v

∂t
=

(
1

1 − σbτP

)
g(u,v) +

(
1

1 − σbτP

)
σd∇2v. (2.9)
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The homogeneous steady states of the dynamical system
are the fixed points u0 and v0 defined by f (u0,v0) = 0,
g(u0,v0) = 0, which is obtained as u0 = a/5 − φ0 and v0 =
a(1 + u2

0)/5u0.
To see how the system responds when it is perturbed,

we consider small spatiotemporal perturbations δu(x,y,t) and
δv(x,y,t) around the homogeneous steady state (u0,v0) as
follows:

u(x,y,t) = u0 + δu(x,y,t),
(2.10)

v(x,y,t) = v0 + δv(x,y,t).

Linearizing the dynamical system around the steady state
(u0,v0), we obtain

∂(δu)

∂t
= (fu − χτPgu + ∇2)δu

+ (fv − χτPgv − χτPσd∇2)δv, (2.11)

∂(δv)

∂t
= χguδu + χ (gv + σd∇2)δv. (2.12)

Here ( 1
1−σbτP

) is abbreviated as χ .
By expressing spatiotemporal perturbation δu(x,y,t) and

δv(x,y,t) in the form

δu(x,y,t) = δu0e
λt cos kxx cos kyy,

(2.13)
δv(x,y,t) = δv0e

λt cos kxx cos kyy,

and inserting them into Eqs. (2.11) and (2.12), we obtain
the following matrix equation for eigenvalues of the stability
matrix.

(
(fu − χτPgu − k2) − λ (fv − χτPgv + χτPσdk2)

χgu χ (gv − σdk2) − λ

)

×
(

δu0

δv0

)
= 0, (2.14)

where k2 = k2
x + k2

y .
By expanding the Jacobian matrix, we get the following

quadratic equation for the eigenvalues of the associated
stability matrix:

λ2 − [fu + χgv − χτPgu − (1 + χσd)k2]λ

+χ [(fugv − gufv) − k2(σdfu + gv) + σdk4] = 0. (2.15)

We now insert the explicit form of χ in Eq. (2.15), and after a
little rearrangement we obtain the following form:

λ2 − [fu + gv − τP (σbfu + gu) − (1 + σd − τPσb)k2]

(1 − τPσb)
λ

+ [(fugv − gufv) − k2(σdfu + gv) + σdk4]

(1 − τPσb)
= 0. (2.16)

Our aim here is to find out the threshold value of the delay
time for which the system with delayed feedback, which is
otherwise stable with respect to homogeneous perturbation,

becomes unstable. For the homogeneous case, Eq. (2.16) can
be written in the form

λ2 − Aλ + B = 0, (2.17)

where

A = [fu + gv − τP (σbfu + gu)]

(1 − τPσb)

and

B = (fugv − gufv)

(1 − τPσb)
.

The condition for stability of the homogeneous steady state
for the system with delayed feedback is A < 0 and B > 0. B

is positive if (1 − τPσb) > 0 since (fugv − gufv) is greater
than 0 for homogeneous system. Now the condition A < 0
can be obtained when [fu + gv − τP (σbfu + gu)] < 0 and
(1 − τPσb) > 0. This allows the range of values for τ for a
fixed value of feedback strength determined by the following
condition:

fu + gv

P (σbfu + gu)
< τ <

1

Pσb
. (2.18)

Now let us consider the effect of diffusion on the dynamical
system and study how it destabilizes the homogeneous steady
state of the system under delayed feedback to generate
spatiotemporal instability, if any. We rewrite Eq. (2.16) in the
form

λ2 − Qλ + R = 0, (2.19)

where

Q = [fu + gv − τP (σbfu + gu) − (1 + σd − τPσb)k2]

(1 − τPσb)

and

R = [(fugv − gufv) − k2(σdfu + gv) + σdk4]

(1 − τPσb)
.

We now impose the condition of stability of homogeneous
steady state (fu + gv < 0 and fugv − gufv > 0). This ensures
the positivity of R when the ratio of the diffusion coefficients
is unity (d = 1.0) with σ = 1.0. Since the numerator of R

determines the Turing curve, which is found to be independent
of τ and P , any delayed-feedback-induced instability in the
presence of diffusion must depend on Q. Therefore, the
condition of instability is Q > 0. At the same time, since
the denominator of Q is always positive, the condition of
instability reduces to the following inequality:

[fu + gv − τP (σbfu + gu) − (2 − τPσb)k2] > 0. (2.20)

This implies that the lower bound of τ must satisfy

τ >

[
2k2 − (fu + gv)

P (bk2 − bfu − gu)

]
= τc, (2.21)

which further leads to the condition k2 > (fu + gu/b) and
gives a measure of wavelength scale of the system when the
symmetry is broken.
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Therefore, for a fixed parameter set and feedback strength
P , time delay beyond a critical threshold τc asserts a condition
of instability of the homogeneous steady state of the system
even if the ratio of the diffusion coefficients of the species
is unity. However, it can be observed from the detailed
numerical simulations of the partial differential equations
carried out in the next section that this instability does not
give rise to any spatial structures. When the ratio of diffusion
coefficients of the two species (i.e., activator and inhibitor) is
not unity (d �= 1), then the system exhibits symmetry-breaking
spatial structures. Hence, the condition for instability is
actually

τ >
(1 + σd)k2 − (fu + gv)

P [σb(k2 − fu) − gu]
= τc, (2.22)

which finally gives the condition k2 > (fu + gu/σb).
Hence, the conclusion is that for a suitable feedback

strength, a time delay τ beyond the threshold value can
generate spatiotemporal instability in the two-component
activator-inhibitor system when the system without delayed
feedback remains homogeneously stable. It can be shown that
the Hopf bifurcation curve for the system in the presence of
delayed feedback (τ �= 0) is given by

b = 5u0
(
1 + u2

0

) + 4a
(
1 − u2

0

)
5σ

[
τPa

(
1 − u2

0

) − u2
0

] , (2.23)

whereas the Turing bifurcation curve is given by

b = d

5u2
0

[
45u0

(
1 + u2

0

) − 4a
(
1 − u2

0

)

− 20
√

u0
(
1 + u2

0

)[
5u0

(
1 + u2

0

) − a
(
1 − u2

0

)]
, (2.24)

where u0 = (a/5 − φ0).
Expression (2.24) reveals that the Turing bifurcation curve

is unaffected by the presence of delayed feedback. Therefore,

FIG. 2. Numerically simulated (in two-dimensional space; grid
size 100 × 100 with 	x = 	y = 0.50 and 	t = 0.0025) delayed-
feedback-induced spatial instability in a photosensitive CDIMA
system for the parameters a = 18.0, b = 1.5, P = 0.2, φ0 = 1.0,
σ = 4.0, d = 1.6, and τ = 0.2 (delayed feedback in Hopf region).
White corresponds to a higher concentration of iodide (u).

FIG. 3. Numerically simulated (in two-dimensional space; grid
size 100 × 100 with 	x = 	y = 0.50 and 	t = 0.0025) delayed-
feedback-induced spatial instability in a CDIMA system for the
parameters a = 36.0, b = 3.5, P = 0.2, φ0 = 1.0, σ = 4.0, d = 1.6,
and τ = 0.1 (delayed feedback in Hopf region). White corresponds
to a higher concentration of iodide (u).

it is noteworthy that Hopf bifurcation curve can be suitably
adjusted in the b-a plane by the appropriate choice of time
delay (τ ) for a given feedback strength (P ) so that it crosses
the Turing curve. By adjusting the Hopf curve, the region
of instability can be modified by proper tuning of the delay
time. This is shown in Fig. 1 for the parameter set φ0 = 1.0,
d = 1.6, σ = 4.0 and for a fixed feedback strength P = 0.2.
By increasing the time delay τ , the Hopf curve crosses the
Turing curve to give rise to a Turing pattern. The nature of the
Hopf curve is such that it crosses the Turing curve for higher
values of a and b. With increases of time delay, the Turing
region expands for lower values of a and b (i.e., the Turing
region is widened for larger τ ).

FIG. 4. Bifurcation diagram for b − a parameter region for P =
0.3, d = 1.6, and φ0 = 1.0 and a fixed σ = 4.0; the solid curves
denote Hopf bifucation curves.
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FIG. 5. Numerically simulated (in two-dimensional space; grid
size 100 × 100 with 	x = 	y = 0.50 and 	t = 0.0025) delayed-
feedback-induced spatial instability in a CDIMA system for the
parameters a = 18.0, b = 1.5, P = 0.3, φ0 = 1.0, σ = 4.0, d = 1.6,
and τ = 0.15 (delayed feedback in Hopf region). White corresponds
to a higher concentration of iodide (u).

C. Numerical results

In order to compare the analytical predictions from the
aforesaid analysis, we carry out numerical simulations of
the system under the influence of delayed feedback, using
Eqs. (2.3) and (2.4), by the explicit Euler method with
parameter set (experimentally admissible values) a = 18.0,
b = 1.5, d = 1.6, φ0 = 1.0, and P = 0.2. The computations
have been performed on a 100 × 100 array with grid
spacing 	x = 	y = 0.50, time step 	t = 0.0025, and zero
flux boundary condition. The simulations are started with
spatially random perturbations of ∼1% around the steady state
u0 = (a/5 − φ0), v0 = a(1 + u2

0)/5u0 and for σ = 4.0, which
is a Hopf region. The system without delay (τ = 0) remains
homogeneous in this parameter regime. The development of
a typical delayed-feedback-induced pattern in the form of
labyrinthine stripes for the above-mentioned parameter set
is shown in Fig. 2 for τ = 0.2. This clearly demonstrates
a Hopf-Turing transition induced by delay (τ ). It is also
noted from the analytical treatment (Fig. 1) that the Turing
region appears for much lower value of delay time τ in
higher range of b − a parameter space. In order to explore
this observation further, we have numerically simulated the
system with a = 36.0 and b = 3.5, with other parameters
remaining the same and found that inhomogeneity in the
form of spots arises for much lower τ (=0.1) value shown
in Fig. 3.

It is pertinent to understand to what extent the dynamics is
sensitive to the choice of P , the feedback strength. A simple
consideration shows that a change in the strength of feedback to
P = 0.3, gives rise to a Turing pattern with much lower value
of time delay (τ ). This can be seen from Fig. 4. It indicates
that the Hopf curve crosses the Turing bifurcation curve for a
smaller value of delay time in comparison to the corresponding
situation for lower feedback strength. The results on variation
of delay time are shown in the bifurcation diagram, Fig. 4.
The numerical simulation of Eqs. (2.3) and (2.4) is further

FIG. 6. Numerically simulated (in two-dimensional space; grid
size 100 × 100 with 	x = 	y = 0.50 and 	t = 0.0025) delayed-
feedback-induced spatial instability in a CDIMA system for the
parameters a = 36.0, b = 3.5, P = 0.3, φ0 = 1.0, σ = 4.0, d = 1.6,
and τ = 0.05 (delayed feedback in Hopf region). White corresponds
to a higher concentration of iodide (u).

extended to the case for higher feedback strength P = 0.3.
The results are shown in Figs. 5 and 6. The results on
numerical simulations agree well with the predictions from the
bifurcation diagram.

III. CONCLUSION

We have proposed a simple approach to study the ef-
fect of global delayed-feedback-induced instabilities in two-
component reaction-diffusion systems. This method is par-
ticularly suitable for short time delay (τ ), which is relevant
for chemical systems as compared to biological systems. In
the latter cases, where the delay time is much longer, one
needs a more careful scrutiny by taking care of the joint
effects of diffusion and delay [31]. The technique involves
stability conditions based on transcendental equation where
the relation between characteristic eigenvalue λ appears as
a function of eλτ . Our analysis reveals that for a suitable
feedback strength, delay time can be an useful handle to
control Hopf-Turing space. By tuning the value of delay time,
the Hopf-bifurcation curve can be manipulated in such a way
that it can give rise to symmetry-breaking spatial structures
in the form of Turing patterns. The theoretical predictions
have been tested on a chlorine dioxide–iodine–malonic acid
system by numerical simulations. Although the present study
of dynamical control of patterns by delayed feedback has been
carried out on a specific model as a prototypical example,
we believe that our results on delayed-feedback-induced in-
stability are likely to be important for other reaction-diffusion
systems.
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