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We investigate decoherence in quantum systems coupled via dephasing-type interactions to an arbitrary
environment with chaotic underlying classical dynamics. The coherences of the reduced state of the central
system written in the preferential energy eigenbasis are quantum Loschmidt echoes, which in the strong coupling
regime are characterized at long time scales by fluctuations around a constant mean value. We show that due
to the chaotic dynamics of the environment, the mean value and the width of the Loschmidt-echo fluctuations
are inversely proportional to the quantity we define as the effective Hilbert-space dimension of the environment,
which in general is smaller than the dimension of the entire available Hilbert space. Nevertheless, in the
semiclassical regime this effective Hilbert-space dimension is in general large, in which case even a chaotic
environment with few degrees of freedom produces decoherence without revivals. Moreover we show that in
this regime the environment leads the central system to equilibrate to the time average of its reduced density
matrix, which corresponds to a diagonal state in the preferential energy eigenbasis. For the case of two uncoupled,
initially entangled central systems that interact with identical local quantum environments with chaotic underlying
classical dynamics, we show that in the semiclassical limit the equilibration state is arbitrarily close to a separable
state. We confirm our results with numerical simulations in which the environment is modeled by the quantum
kicked rotor in the chaotic regime.
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I. INTRODUCTION

In open quantum systems the interaction between a system
and its environment may result in the well-known phenomenon
of decoherence [1,2]. While the central system becomes ever
more entangled with the environment, quantum information
initially present in the reduced state of the system may be
lost to the environment. The most transparent example of how
the irreversible loss of quantum information to the environ-
ment leads to decoherence is in the case of dephasing-type
system-environment interactions (or so-called measurement-
type interactions [2]), i.e., when the interaction Hamiltonian
commutes with the free system Hamiltonian. In this case,
by tracing over environmental degrees of freedom, one may
observe the irreversible decay of the quantum coherences of
the central system’s reduced density matrix written in the
preferential basis of the free Hamiltonian eigenstates, while
the populations are conserved.

The traditional approach to this problem points to the
need for an infinite number of environmental degrees of
freedom in order for the decoherence process to occur [2]. The
Caldeira-Leggett model [3] is the most renowned environment
model of this type. However, recently there has been an
increasing interest in understanding if and how environments
with few degrees of freedom can produce decoherence in a
quantum system of interest [4–18] and if decoherence can
be produced by few internal degrees of freedom [19,20].
One motivation for this is the relevance of decoherence to
quantum computation and quantum information tasks, where
often the interaction of the system of interest with a global
environment (usually composed of many degrees of freedom)
is well screened and therefore the interaction with a “near”
environment composed of few degrees of freedom involved in
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the control of quantum operations may be the most relevant
[21,22]. The other motivation is the study of the emergence
of classicality in quantum systems, where decoherence plays
a central role.

The study of environments with few degrees of freedom
is in general related to the role of the chaotic dynamics of
their classical counterpart [4–16,18].1 The connection between
environment-induced decoherence and the so-called fidelity
decay (or quantum Loschmidt-echo decay2) brought great
insight into the study of decoherence by chaotic environments
[1,16,19,25–28]. The sensitivity of chaotic environments to
the perturbations produced by the interaction with a central
system was conjectured in [25] to be related to their ability to
rapidly produce decoherence. A precise connection between
quantum Loschmidt echo and decoherence was first made
in [27] in the case of dephasing-type system-environment
interactions, where the off-diagonal elements of the system’s
reduced matrix written in the preferential basis are different
Loschmidt echoes in the environmental degrees of freedom.
This connection does not neglect the free evolution of the
central system. A similar approach was developed in [13], but
for a generic small coupling to the environment. In that article
the authors show, using perturbative approximations, that the

1Due to the well-established connection of random matrix theory
and quantum chaos some studies use a random matrix model of the
environment [22].

2The Loschmidt echo is related to the procedure of propagating a
system forward in time with some Hamiltonian and then back with a
perturbed one (see [23] and references therein). The overlap between
the initial pure state and the final one, after forward and backward
evolution, is called fidelity [24], and measures the sensitivity of the
system to perturbations. A similar quantity for mixed states (the
allegiance) was introduced in [19].
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off-diagonal elements of the reduced matrix of the system in
its energy eigenstates basis are proportional to fidelities.

It is common to associate the decoherence time with the
characteristic short-time scale for the decay of the fidelity
[13,25]. However, for long times the fidelity in general can
suffer fluctuations that can be large and may lead to important
revivals of the coherences. Indeed, if the quantum environment
has chaotic underlying classical dynamics, at long-time scales
the coherences of the central system’s reduced density matrix,
written in its preferential eigenbasis, fluctuate around a
constant mean value. For a generic central system strongly
coupled by dephasing-type interactions to an arbitrary chaotic
environment (which may have few degrees of freedom), we
show that the time average and the width of these fluctuations
are inversely proportional to the effective dimension of the
environment’s Hilbert space, which can always be defined
(even in the case in which the total available Hilbert space of
the environment has infinite dimension). Thus, for chaotic
environments, the decoherence occurs in the semiclassical
limit, i.e., h̄eff = h̄/S → 0 (S is a typical action of the
environment), where typically the effective Hilbert-space
dimension of the environment is large.

Our results have a direct application to the problem of
equilibration, a key process in the understanding of thermal
equilibration in quantum systems [29–31]. A central system
equilibrates if its initial state evolves toward some particular
state, in general mixed, and remains in that state, or close
to it, for all times. Here we show that if the environment
Hamiltonian has underlying classical chaotic dynamics, and
for a dephasing system-environment interaction, the central
system equilibrates to a totally decohered mixed state in
the semiclassical regime, independent of the initial state of
the system and for generic initial states of the environment
(initially decoupled from the system of interest).

The study of entanglement decay due to the action of
environments is a central problem in quantum computation
and quantum-information processing. In this regards it is
important to know how chaotic environments with few degrees
of freedom can produce entanglement decay in the system of
interest [9,11,14,15,18]. Here we show that an initially entan-
gled state of two noninteracting central systems coupled to
equivalent local quantum environments with chaotic classical
dynamics equilibrates to a state that is arbitrarily close to a
separate state in the semiclassical limit.

The paper is organized as follows: In Sec. II we present
the echo dynamics approach to decoherence. We then obtain
the long-time behavior of decoherence functions for chaotic
environments in Sec. III and go on to discuss decoherence
and equilibration of a one-party central system in Sec. IV.
Disentanglement and equilibration of bipartite systems pro-
duced by chaotic environments are discussed in Sec. V, and
in Sec. VI we describe our numerical simulations and analyze
their results. We finish with concluding remarks in Sec. VII.

II. ECHO DYNAMICS APPROACH TO DECOHERENCE

We consider an arbitrary system interacting with a generic
dephasing environment:

Ĥ = Ĥc ⊗ 1̂e + gŜ ⊗ V̂ + 1̂c ⊗ Ĥe, (1)

where Ĥc and Ĥe are, respectively, the Hamiltonians of the
central system and the environment. The dephasing interaction
is ĤI = gŜ ⊗ V̂ , where Ŝ acts on the system degrees of free-
dom and [Ĥc,Ŝ] = 0. The operator V̂ acts on environmental
degrees of freedom, and g is the coupling strength. The global
initial state is a product state

ρ̂ce(0) = ρ̂(0) ⊗ ω̂(0) =
∑
n,m

Anm|n〉〈m| ⊗ ω̂(0), (2)

where ω̂(0) is the initial reduced state of the environment, and
we have expanded the initial state of the central system ρ̂(0)
in the preferential basis of common eigenstates of Ĥc and Ŝ,
which we assume to have discrete and nondegenerate spectra:

Ĥc|n〉 = εn|n〉, Ŝ|n〉 = sn|n〉. (3)

The evolved reduced density matrix of the central system is
obtained by tracing over the environmental degrees of freedom

ρ̂(t) =
∑
n,m

Anme−i(εn−εm)t/h̄Tre[Û †
mÛnω̂(0)]|n〉〈m|, (4)

where ÛI+e,n(m) ≡ Ûn(m) are conditional effective evolution
operators associated with the Hamiltonians

Ĥn(m) = Ĥe + gsn(m)V̂ , (5)

which act exclusively on environmental degrees of freedom.
Hence, the central system’s diagonal matrix elements in the
preferred basis {|n〉} are constant, while the time evolution of
off-diagonal matrix elements is controlled by the decoherence
functions [2]

Fnm(t) = |Tre[Ûm(−t)Ûn(t)ω̂(0)]|2, n �= m. (6)

Following essentially the approach in [27] (see also
[13,16,25]), we can associate the decay of these decoherence
functions with the decay of quantum Loschmidt echoes in
the Hilbert space of the environment. Indeed, the amplitudes
of the decoherence functions (6) are the so-called allegiance
amplitudes [19],

fnm(t) = Tre[M̂nm(t)ω̂(0)], (7)

where we have introduced the echo operator that acts in the
Hilbert space of the environment,

M̂nm(t) = Ûm(−t)Ûn(t). (8)

In this echo dynamics, Ĥm (5) plays the role of the
unperturbed Hamiltonian, and Ĥn (5), rewritten as Hn =
Ĥm + εnmV̂ , is the perturbed Hamiltonian with perturbation
amplitude given by εnm ≡ g(sn − sm).

For pure initial states ω̂(0) the allegiance amplitudes in
Eq. (7) reduce to the so-called fidelity amplitudes introduced
by Peres [24]. It is important to note that the decay of an
off-diagonal element in a given column of the system’s reduced
density matrix is determined by an echo operator composed
of an unperturbed evolution operator Ûm, which is common
to all the elements in that column, and a perturbed operator
Ûn. The perturbation strength εnm increases as we move away
from the diagonal. Thus, all echo dynamics associated with a
given column m are in the strong perturbation regime if and
only if εm+1,mV̂ represents a strong perturbation.
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In general, the time evolution of the Fnm(t) ≡ |fnm(t)|2
depends on the specific system-environment coupling, on
the environment Hamiltonian Ĥe, and on the properties of
the initial state ω̂(0). Complete decoherence is said to have
occurred if after a typical time scale, called the decoherence
time, the system’s reduced density matrix becomes diagonal
in the preferred basis. Nevertheless, we can also say that the
central system suffers decoherence or partial decoherence if
in the long-time regime, Fnm(t) decreases to very small values
and remains small for times much longer than the decoherence
time (the central system never regains its coherences). This
means that in order to produce true decoherence on another
system, the environment echo dynamics must decrease signif-
icantly in the long-time regime and must not present revivals
thereafter.

A very simple example of a rapid initial decrease of Fnm(t)
which presents revivals in the echo dynamics consists of
an arbitrary central system coupled in the form ĤI = Ĥc ⊗∑N

j=1(gj b̂
†
j + g∗

j b̂j ) to a nonchaotic environment composed of
N bosonic modes described by a set of harmonic oscillators,
Ĥe = ∑N

j=1 h̄ωj b̂
†
j b̂j . When the initial state of the environ-

ment is ω̂(0) = |0〉〈0| ⊗ · · · ⊗ |0〉〈0| (where |0〉 is the vacuum
state), and for a constant spectral density of environment
modes with a finite cutoff, it is straightforward to show that
the system coherence amplitudes will oscillate in time. So,
at finite times the central system regains its lost coherence.
In order for decoherence to occur without revivals, one must
perform the continuous limit of environment modes. In this
case the decoherence functions are given by exponentially
decreasing functions with no revivals. Therefore, in this simple
example, the environment can produce true decoherence on
the condition that it has a very large number of degrees of
freedom.

In the case of an environment with few degrees of freedom,
we will show that a very similar situation arises when the echo
dynamics in the environment is associated with a Hamiltonian
which has chaotic underlying classical dynamics. In this case
decoherence (with no revivals) is produced when the effective
dimension of the environment’s Hilbert space is very large, a
condition that generically can be satisfied in the semiclassical
regime (small effective Planck constant), independent of the
system-environment initial state.

III. LONG-TIME BEHAVIOR OF DECOHERENCE
FUNCTIONS Fnm(t) FOR CHAOTIC ENVIRONMENTS

In this section we determine the long-time behavior of
the decoherence functions Fnm(t) in the case of chaotic
environments. When the classical dynamics associated with
the free environment Hamiltonian Ĥe is fully chaotic, one can
generally expect that the classical dynamics associated with
the effective Hamiltonian Ĥm Eq. (5) is also fully chaotic. In
this case, the behavior in time of the decoherence functions
Fnm(t), determined by the echo operator in Eq. (8), consists
essentially in an exponential decay with different decay rates
depending on the perturbation regime [19,23]. However, when
the Hilbert space of the environment is finite, the decoherence
functions will not decay to zero even at long-time scales.
Indeed, the discrete spectrum of the evolution operators in

the echo operator in Eq. (8) causes Fnm to fluctuate around the
time-average value 〈Fnm〉 [23,32], where

〈· · ·〉 = lim
t→∞

1

t

∫ t

0
· · · dt ′. (9)

Nevertheless, even if the Hilbert space of the environment
is infinite, the effective Hilbert space covered by the evolved
state of the environment is always limited, in which case 〈Fnm〉
also has a finite value. A straightforward example is when the
average available energy is finite. In this case, the state of
the environment is constrained to the subspace composed of
energy eigenstates with less energy than this available amount.

With the assumption that the quantum echo dynamics
in the environmental degrees of freedom is associated with
fully chaotic underlying classical dynamics, we extend the
arguments in [23] to obtain a relation between the time average
of the decoherence functions and the effective dimension of the
environment’s Hilbert space in the strong perturbation regime.
Indeed, by expanding the initial state of the environment in the
eigenbasis {|ψl〉} of the unperturbed evolution operator Û

†
m or

the eigenbasis {|ψ̃〉} of the perturbed evolution operator Û
†
n

one obtains:3

ω̂(0) =
Nm∑
l=1

Nm∑
k=1

ωlk(0)|ψl〉〈ψk|, (10)

=
Nnm∑
l=1

Nnm∑
k=1

ω̃lk(0)|ψ̃l〉〈ψ̃k|, (11)

where Nm and Nnm represent the number of eigenstates of the
evolution operators which significantly contribute to the sums,
i.e., ωlk(0) ≈ 0 for l,k > Nm and ω̃lk(0) ≈ 0 for l,k > Nnm. At
any future time, the reduced density matrix of the environment
ω̂(t) can be spanned by Neff linearly independent orthogonal
eigenvectors {|ψl〉} or {|ψ̃l〉}, where

Neff ≡ max
nm

(Nm,Nnm). (12)

Therefore, Neff can be interpreted as the effective dimension of
the environment’s Hilbert space for all times. In Appendix A
we show that due to the classically chaotic underlying
dynamics of the environment, the strong coupling regime to
the central system (and for Neff � 1), it is possible to relate
the time average of the system decoherence functions to

〈Fnm〉 = C

Neff
= C̃h̄

γ

eff, (13)

where C is a constant that depends on ω̂(0) (see Appendix A)
and C̃ is related to C once we know the specific relationship
between the effective Planck constant h̄eff and Neff that can in-
volve an exponent γ . For example, in the case of environments
with an autonomous Hamiltonian Ĥe and time-independent
couplings to the central system, the dynamics associated with
the unperturbed Hamiltonians Ĥm conserve energy. In this
case, following the well-known semiclassical prescription (i.e.,
Weyl’s rule [33]) one obtains Neff ∼ Nm ≈ νEm

/(2πh̄eff)γ ,

3If the environment is a periodic time-dependent system these are
the eigenstates of the corresponding Floquet evolution operators.
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where νEm
is the volume inside the phase-space surface of

constant energy Em ∼ Tr[Ĥmω̂(0)], and γ is the number of
degrees of freedom of the environment.

The description of the long-time behavior of the decoher-
ence functions Fnm(t) in the case of chaotic environments is
completed with the analysis of the width of the fluctuation
around the mean value. In Appendix A we obtain


Fnm ≡
√〈

F 2
nm

〉 − 〈Fnm〉2 = G

Neff
= G̃h̄

γ

eff, (14)

where G is a constant that depends on ω̂(0) (see Appendix A)
and G̃ is related to G once we know the specific relationship
between h̄eff and Neff . We point out that to arrive at relations
(13) and (14), the approximation Neff � 1 must be made. With
these conditions fulfilled we can say that the above results only
depend on the initial state of the environment ω̂(0) through the
values of C and G.

IV. DECOHERENCE AND EQUILIBRATION OF A
CENTRAL SYSTEM BY A CHAOTIC ENVIRONMENT

Here we show that the results of Sec. III imply that in
the semiclassical regime (h̄eff � 1) a central system with a
dephasing-type coupling to an environment with fully chaotic
dynamics equilibrates to a state given by the time-averaged
state of the central system, i.e.,

ρ̂eq = 〈ρ̂(t)〉 =
∑

n

Ann|n〉〈n|, (15)

where ρ̂(t) is given in Eq. (4) [see Appendix B for a derivation
of Eq. (15)]. This occurs independent of the initial state of the
environment and of the central system provided that the initial
state of the composite system is uncorrelated [as in Eq. (2)].

Generically, there is a back and forth of information
flow between the central system and the environment as the
reduced state of the system ρ̂(t) fluctuates around the totally
decohered state 〈ρ̂(t)〉 in Eq. (15). As a consequence of this
non-Markovian character of the reduced dynamics of the
central system, the degree of distinguishability between the
evolved state ρ̂(t) and 〈ρ̂(t)〉 oscillates. In order to quantify
this fluctuations we use the trace distance [34]

D(ρ̂(t),ρ̂eq) = 1
2 Trc

√
[ρ̂(t) − ρ̂eq]2 , (16)

which is a measure of the distinguishability between the two
quantum states [35]. An upper bound to the trace distance is
given by the Hilbert-Schmidt distance DHS [36],

D(ρ̂(t),ρ̂eq) �
√

Nc

2
DHS(ρ̂(t),ρ̂eq), (17)

=
√

Nc

2

√∑
n�=m

|Anm|2Fnm(t), (18)

where DHS(ρ̂(t),ρ̂eq) ≡ √
Trc{[ρ̂(t) − ρ̂eq]2} and Nc is the

effective dimension of the Hilbert space of the central system,
which is given by the number of essentially nonzero terms in
the expansion of the central system’s initial state ρ̂(0) in the
eigenbasis of Ĥc. We calculate the Hilbert-Schmidt distance in
Eq. (18) from the expressions for ρ̂(t) Eq. (4), 〈ρ̂(t)〉 Eq. (15).

Using the concavity of the square-root function, we can
estimate an upper bound for the time-averaged fluctuations:

〈D(ρ(t),ρ̂eq)〉 � h̄
γ /2
eff

√
NcC̃

2

√∑
n�=m

|Anm|2 , (19)

where we use the result in Eq. (13) for 〈Fnm(t)〉. According to
this result, the fluctuations, measured by 〈D(ρ̂(t),ρ̂eq)〉, tend
to zero in the semiclassical limit (h̄eff → 0). This means that
in this limit the evolved state ρ̂(t) becomes indistinguishable
from the totally uncorrelated state in Eq. (15). In the semiclas-
sical regime, the entanglement between the central system and
the environment reaches its maximum possible value (which
is determined by ρ̂(0)).

We can see this by noting that if the initial total composite
state is ρ̂ce(0) = ρ̂(0) ⊗ ω̂(0), and for a dephasing-type cou-
pling of the central system to the environment, the purity of
the reduced evolved density matrix has the lower bound,

Trc[ρ̂(t)2] =
∑

n

|Ann|2 +
∑
n�=m

|Ann|2Fnm(t)

� Rinv(ρ̂(0)) , (20)

where Rinv(ρ̂(0)) ≡ Tr[diagρ̂(0)] = ∑
n |Ann|2 is the gener-

alized inverse participation ratio [23] of the initial reduced
density matrix in the energy eigenbasis of the central system.
The maximum entanglement between the central system and
the environment is attained when the lower bound in Eq. (20)
is reached. By inserting the result of Eq. (13) into Eq. (20) and
taking the time average, one obtains

〈Trc[ρ̂(t)2]〉 h̄eff→0−→ Rinv(ρ̂(0)), (21)

which means that maximum entanglement is expected in the
semiclassical regime.

V. DISENTANGLEMENT BY CHAOTIC ENVIRONMENTS

We now consider two noninteracting central systems, Ĥci

(i = 1,2), each coupled to a local environment Ĥei
through a

dephasing-type coupling,

Ĥ = Ĥc1 + Ĥc2 + ĤI1 + ĤI2 + Ĥe1 + Ĥe2 , (22)

where ĤIi
= giŜi ⊗ V̂i , with [Ĥci

,Ŝi] = 0. For simplicity we
consider the two local environments to have Hamiltonians
Ĥe1 and Ĥe2 with the same functional form. Thus, classically
this corresponds to two different chaotic systems with the
same dynamics. We stress here that the occurrence of local
environments is the most common situation in proposals of
quantum computation and quantum-information processing.
In this framework the two central systems in Eq. (22) can be
considered as noninteracting qubits in the time interval sepa-
rating the action of two consecutive conditional logical gates
that involve an interaction between them. Assuming that the
two system Hamiltonians Ĥc1 and Ĥc2 have discrete and nonde-
generate spectra, we denote {|ni〉} the basis of common eigen-
states of Ĥci

and Ŝi : Ĥci
|ni〉 = εni

|ni〉 and Ŝi |ni〉 = sni
|ni〉.

The total initial state is the tensor product: ρ̂ce(0) = ω̂(0) ⊗
ρ̂(0) ⊗ ω̂(0) where ρ̂ = ρ̂c1+c2 is the entangled initial state of
the bipartite central system and ω̂(0) is the initial state of each
local environment.
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After tracing over the environmental degrees of freedom,
one obtains the reduced density matrix at time t for the central
bipartite system:

ρ̂(t) = Tre1 Tre2 [ρ̂ce(t)]

=
∑

n1,m1,n2,m2

An1m1n2m2e
−i
h̄

(εn1 −εm1 +εn2 −εm2 )t

× fn1m1 (t)fn2m2 (t)|n1〉〈m1| ⊗ |n2〉〈m2|, (23)

where fnimi
(t) = Trei

[M̂nimi
(t)ρ̂ei

(0)] is the allegiance ampli-
tude introduced in Eq. (7), and M̂nimi

are the echo operators in
the Hilbert space of the local environments [see Eq. (8)].

Note that when Fnimi
≡ |fnimi

|2 = 0, for all ni �= mi ,
the initial entangled state ρ̂(0) becomes separable.
But for Fnimi

�= 0 the two subsystems are not necessarily
entangled. In order to illustrate how the allegiance amplitudes
fnimi

can control the degree of entanglement of the central
systems, we consider a simple case of two qubits with the
free system Hamiltonians in Eq. (22) given by Ĥci

= h̄ωσ̂zi
/2

(i = 1,2), where σ̂zi
are the Pauli z operators whose eigenstates

are {|0〉,|1〉} (“up” and “down” states, respectively). If we start
with the entangled two-qubit state |ψc〉 = (|0〉|+〉 + |1〉|−〉)/2
(where |±〉 = (|0〉 ± |1〉)/√2), the evolved reduced density
matrix in Eq. (23) in the basis {|00〉|01〉|10〉|11〉} is

1
4

⎛⎜⎜⎜⎝
1 f01(t)e−iωt f01(t)e−iωt −f 2

01(t)e−i2ωt

1 |f01(t)|2 −f01(t)e−iωt

1 −f01(t)e−iωt

H.c. 1

⎞⎟⎟⎟⎠ . (24)

A simple way to measure the entanglement of this state is
to calculate its negativity [37], NE(ρ̂) = ∑

j (|λj | − λj )/2,
where λj are the eigenvalues of the partial transpose of
ρ̂. For 0 � F01(t) < 1, one obtains NE(ρ̂) = [|β| − (β)]/8
where β ≡ −F01(t) − 2

√
F01(t) + 1. This means that when

F01(t) decreases from 1, the entanglement between the two
qubits decreases until this function reaches a critical value

F
(cr)
01 ≡

√
−1 + √

2 [when NE(ρ̂) = 0], and from then on
the two qubits are no longer entangled to each other. This
is a simple example of the so-called entanglement sudden
death [38] by a dephasing reservoir.

If F01(t) were a monotonously decreasing function of time,
we could be sure that from the time in which F01(t) � F

(cr)
01

the two qubits would be disentangled. But the disentanglement
is also guaranteed even if, after some time, F01(t) starts to
fluctuate around a mean value 〈F01〉 < F

(cr)
01 with the condition

that the width 
F01(t) of this fluctuation is sufficiently small.
As shown in Sec. III, this situation is always satisfied for
chaotic environments with few degrees of freedom where the
mean values 〈Fnimi

〉 and the magnitude of the fluctuations

Fnimi

(t) go to zero in the limit of small effective Planck
constant of the environment.

We can outline the disentanglement of the two central
systems due to the action of the local chaotic environments
if we assume that they are identical, i.e., Ĥc1 and Ĥc2 with
identical functional form, and with a spectrum of eigenenergies

with nondegenerate gaps.4 In this case it is straight forward to
calculate the time average of the evolved reduced state of the
bipartite central system if the initial state has the form ρ̂ce(0) =
ω̂(0) ⊗ ρ̂(0) ⊗ ω̂(0) (ρ̂ = ρ̂c1+c2 is the entangled initial state of
the bipartite central system), which unlike the time-averaged
reduced state in Eq. (15) is not necessarily a separable state.
Nevertheless, it can be written as

〈ρ̂(t)〉 = 〈ρ̂(t)〉d + Ô
(
h̄

γ

eff

)
, (25)

where

〈ρ̂(t)〉d ≡
∑
n1

∑
n2

An1n1n2n2 |n1〉〈n1| ⊗ |n2〉〈n2| (26)

is a disentangled state, and

Ô ≡
∑
n1

∑
n2

An1n2n2n1

〈
Fn1n2 (t)

〉|n1〉〈n2| ⊗ |n2〉〈n1|. (27)

Note that using Eq. (13) we can write Ô(h̄γ

eff) ≡ h̄
γ

eff
ˆ̃O where

Tr[ ˆ̃O] = 0. Following the same reason as in Sec. IV, we can
estimate the time-averaged fluctuations of the evolved state
ρ̂(t) around 〈ρ̂(t)〉 and we obtain 〈D(ρ(t),ρ̂eq)〉 � O(h̄γ

eff).
Thus, we see that in the semiclassical regime 〈ρ̂(t)〉 is the
equilibrium state of the bipartite central system. It is clear
from Eq. (25) that if the equilibrium state is not disentangled,
it is arbitrarily close to a separable state in the sense that
a small perturbation of order O(h̄eff) is enough to separate
the state. Indeed, if the perturbation is given, for example,
by the completely positive trace preserving map 〈ρ̂〉 → (1 −
ς )〈ρ̂〉 + ς (〈ρ̂〉 − ˆ̃O) = 〈ρ̂〉d + Ô − ς ˆ̃O, it is enough to apply
a perturbation of the order ς ≈ h̄

γ

eff to obtain the disentangled
state 〈ρ̂〉d .

VI. NUMERICAL SIMULATIONS

In order to confirm the analytical results in Secs. III and IV,
we perform numerical simulations in which the environment
is modeled by the periodically kicked Hamiltonian

Ĥe = P̂ 2

2M
+ V0 cos(k0X̂)

∞∑
n=0

(t/T − n), (28)

where [X̂,P̂ ] = ih̄. We consider two forms of dephasing-type
coupling [see Eq. (1)] to a generic central system. The first
is a linear coupling via the environment operator V̂ = P̂

and the second is via the kicked coupling operator V̂ =
δV0 cos(k0X̂)

∑∞
n=0(t/T − n). Because the results we found

for the two couplings are equivalent, we only show those for
the linear coupling.

It is more convenient to work with the dimensionless coor-
dinate θ = k0X̂ and momentum p̂ = k0T P̂ /M = h̄effP̂ /h̄k0

that satisfy the commutation relation [θ,p̂] = ih̄eff where
the effective Planck constant is h̄eff = k2

0h̄T /M . Using these
dimensionless variables and performing the energy transfor-
mation (h̄effT/h̄)Ĥ → Ĥ to the total Hamiltonian Ĥ in

4A spectrum {El} has nondegenerate gaps if and only if the equation
Ef − Ej + Ek − El = 0 has as solutions only the cases f = j and
k = l or f = l and k = j or f = j = k = l [30].

016220-5



GABRIELA BARRETO LEMOS AND FABRICIO TOSCANO PHYSICAL REVIEW E 84, 016220 (2011)

Eq. (1), the environment is represented by the kicked rotor
Hamiltonian [39],

ĤKR = p̂2

2
+ K cos(θ̂)

∞∑
n=0

(t̃ − n), (29)

where the new dimensionless kicking amplitude is K =
k2

0T
2V0/M = h̄effT V0/h̄ and t̃ = t/T .

In the case of linear coupling V̂ = P̂ , the echo operator
in Eq. (8) is therefore associated with the dimensionless
unperturbed Hamiltonian

Ĥm = ĤKR + smḡp̂, (30)

and the perturbed effective Hamiltonian

Hn = Ĥm + εnmp̂, (31)

where εnm ≡ ḡ(sn − sm) ≡ gk0T (sm − sn) is dimensionless.
Replacing the quantum operators (θ̂ ,p̂) with the clas-

sical coordinates (θ,p) in ĤKR, one obtains the classical
Hamiltonian whose dynamics are governed by K . When K

increases from zero the phase-space structure follows the
Kolmogorov-Arnold-Moser (KAM) theory [40] where the last
invariant KAM torus is broken for K = KR ≈ 0,97, and the
motion becomes unbound for K > KR . If K ∼ 1, the classical
phase space is mixed, and for K � 5 the classical motion
may be considered completely chaotic having negligibly
small stability islands [41]. The classical counterpart of the
Hamiltonian Ĥm in Eq. (30) also presents essentially chaotic
dynamics for K � 5 even when the strength of the linear
coupling smḡ is large, because the linear coupling simply
represents a linear shift in the kicked system’s classical phase
space.

We verified the results in Secs. III and IV in two different
situations. The first is when the phase space of the kicked
rotor is closed on the torus −π � θ � π , −π � p � π so
that the Hilbert space of the environment is finite (dimension
N ). Because the angle variable θ is bounded, the quantum
momentum eigenstates are discrete, p̂|j 〉 = h̄effj |j 〉 (j =
−N/2, . . . ,0,N/2 − 1), and N is related to the effective
Planck constant by h̄eff = 2π/N . When the underlying classi-
cal dynamics of the unperturbed Hamiltonians Ĥm in Eq. (30)
are chaotic, at some finite relaxation time the environment’s
evolved state occupies all the available momentum eigenstates.
It is thus clear that in this case the effective size of the
environment’s Hilbert space is Neff = N = 2π/h̄eff , for all m.
Substituting this into Eqs. (13) and (14) one obtains

1/Neff ∝ h̄eff =⇒ 〈Fnm〉, 
Fnm ∝ h̄eff . (32)

The second situation is the case in which the environment
Hilbert space is infinite.5 In this case, the appearance of an
effective dimension of the environment Hilbert space is well
exemplified by the renowned phenomenon of dynamical local-
ization [39,42]. It is well known that during the time interval

5We simulate this situation numerically by considering many more
quantum levels than the size of the environment’s effective Hilbert
space so that the evolved state of the environment does not spread to
the “boundaries” of the defined momentum space.

0 < t̃ < t̃R , the kicked rotor Hamiltonian ĤK with K � 5 and
h̄eff � 1 presents diffusion in the discrete momentum levels in
good correspondence with the classical model, i.e., 
p̂2(t̃) ≈
D(K)t̃ [where D(K) is the classical diffusion coefficient].6 But
after a finite relaxation time scale t̃R , an important decrease in
the diffusion rate is observed until the state ceases to spread
in momentum space. This happens approximately when the
occupation number in momentum space of the evolved state
reaches the value Neff ≡ maxnm(Nm,Nnm) determined by the
initial state ω̂(0) (see Sec. III), i.e.,

Neff ∼ J ≈
√

D(K)t̃R/h̄eff, (33)

where J , called localization length, is essentially the width
of the momentum eigenstates distribution. Due to the fully
chaotic underlying classical dynamics, this phenomenon does
not depend on the shape of the initial wave function (pro-
vided the initial state is not an eigenstate of the evolution
operator). When dynamical localization takes place, the mean
level spacing between quasienergy eigenstates involved in
the expansion of the localized (in momentum) initial wave
function is 
 ≈ 2π/J . Thus, according to the Heisenberg
principle, the minimum time required for the dynamics to
resolve this level spacing is t̃R ≈ 1/
 ∝ J . Substituting t̃R
into Eq. (33) one finally obtains

1/Neff ∼ 1/J ∝ h̄2
eff =⇒ 〈Fnm〉, 
Fnm ∝ h̄2

eff, (34)

where we use Eqs. (13) and (14).
The behavior in time of the decoherence function Fnm(t),

determined by the echo dynamics with the conditional unper-
turbed Hamiltonian given in Eq. (30) with K = 5, is illustrated
in Fig. 1, in which we consider a strong coupling between the
central system and the environment. In both the case in which
at large times the evolved state of the environment spreads
over all the available Hilbert space and the case in which the
available Hilbert space is much greater than the dynamical
localization length, we found that at long-time scales, the
decoherence function Fnm(t) fluctuates around an asymptotic
mean value 〈Fnm(t)〉. This is typical in the long-time behavior
of the fidelity amplitude in systems with fully classical chaotic
dynamics in finite Hilbert spaces [23]. We confirmed that this
behavior is independent of the initial state of the environment,
ω̂(0).

The values of 〈Fnm(t)〉 and 
Fnm for long times are plotted
in Fig. 2 as a function of coupling strength ḡ. The top graph
corresponds to the situation in which the environment’s phase
space is closed on a torus, and the bottom graph simulates
the situation in which the environment has an infinite Hilbert
Space and dynamical localization is observed. The red solid
lines correspond to the numerical results for 〈Fnm(t)〉 and the
blue dashed lines correspond to 
Fnm. From these plots it is
possible to identify three echo perturbation regimes: region
I is the weak perturbation regime and there is essentially no
echo decay; region II is an intermediate regime in which the
mean value and standard deviation of the decoherence function

6Except for special values of h̄eff where the energy growth is
quadratic in time due to constructive quantum interference, char-
acterizing the phenomenon called “quantum resonance” [39].
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FIG. 1. (Color online) Typical behavior of the decoherence func-
tion Fnm(t) as a function of time when the environment has chaotic
classical dynamics. In these plots the environment corresponds to the
kicked rotor on a cylinder with K = 5 and linear coupling to the
central system. The unperturbed Hamiltonian in the corresponding
echo operator is given in Eq. (30) with smḡ = 0.1 and the perturbed
Hamiltonian is given by Eq. (31) with the strong perturbation
εnm = 0.1. The time is measured in number of kicks. The full red
line corresponds to h̄eff = 0.92 and the dashed blue line corresponds
to h̄eff = 0.015. The initial state of the environment is ω̂(0) =
|p = 0〉〈p = 0|.

FIG. 2. (Color online) Long-time behavior of the average
〈Fnm(t)〉 (red solid lines) and the standard deviation 
Fnm (blue
dashed lines), with n = m + 1, as a function of the coupling strength
to the environment. The environment was modeled by a kicked
rotator with K = 5, linearly coupled to a central system with sm = 1.
The upper plot corresponds to the case where at large times the
evolved state of the environment spreads over all the available Hilbert
space (the kicked rotor is defined on a torus) and in the bottom
plot we simulate the kicked rotor on a cylinder, where dynamical
localization is observed. Other parameters are h̄eff = 0.025 (top plot)
and h̄eff = 0.083 (bottom plot) and the initial state of the environment
is ω̂(0) = |p = 0〉〈p = 0|. The three regions identified in the plots
are explained in the text.

FIG. 3. (Color online) 〈Fnm〉 (bottom graph) and 
Fnm (top
graph) as a function of the effective Planck constant h̄eff for n =
m + 1. The environment is a kicked rotator with K = 5 with a
strong linear coupling to the central system, εnm = 0.1. Blue circles
correspond to a finite Hilbert space and the red filled dots correspond
to the case in which dynamical localization is observed. The linear
fits are drawn. The corresponding slopes of these fits are in good
agreement with analytical predictions and are given by 2.03 ± 0.03
(top graph, filled red dots); 1.1 ± 0.02 (top graph, blue circles);
2.03 ± 0.03 (bottom graph, filled red dots); 1.08 ± 0.02 (top graph,
blue circles).

depend on both h̄eff and the perturbation εnm = ḡ(sn − sm); and
region III is the strong perturbation regime in which the mean
value and standard deviation do not depend on the perturbation
strength εnm. It is in this third region that the results in Eqs. (13)
and (14) apply [with C = G for the particular initial state ω̂(0)
considered]. In order to confirm these relations we plot in
Fig. 3 the numerical calculation of log10〈Fnm〉 (bottom graph)
and log10(
Fnm) (top graph) as a function of log10 h̄eff for the
kicked rotor closed on a torus (blue circles) and in the case in
which the Hilbert space is much larger than the localization
length J (red filled dots). The linear fittings through the
numerical points indeed confirm the relations given in Eq. (32)
for the first case and the relations given in Eq. (34) for the
second case. Therefore, in the long-time regime, when the
environment has fully chaotic underlying classical dynamics
and the system-environment coupling is strong, all of-diagonal
matrix elements of the reduced density matrix in Eq. (4) tend
to zero in the semiclassical limit, i.e.,

〈Fnm〉, 
Fnm
h̄eff→0−→ 0. (35)

In order to see the equilibration of the evolved reduced
state of the central system ρ̂(t) to the totally decohered state
ρ̂eq = 〈ρ̂(t)〉 in Eq. (15), we consider as a central system
a quantum harmonic oscillator and an initial state ρ̂(0) =
|ψ〉〈ψ | where |ψ〉 = N (|α〉 + |−α〉) (|α〉 a coherent state, i.e,
an eigenstate of the annihilation operator [43]). We consider
this Schrödinger-cat-like state initially uncorrelated from
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FIG. 4. (Color online) Typical time evolution of the Hilbert-
Schmidt distance DHS between the evolved reduced state of a central
system ρ̂(t) and the totally decohered state 〈ρ̂〉 in Eq. (15) for
h̄eff = 0.53 (red upper curve) and h̄eff = 0.01 (blue lower curve). In
these graphs the central system is a harmonic oscillator and the system
plus environment (kicked rotor) initial state is ρ̂(0) ⊗ ω(0) where ρ̂(0)
is a Schrödinger-cat-like state and ω̂(0) = |p = 0〉〈p = 0|.

the initial state of the environment ω̂(0) = |p = 0〉〈p = 0|.
Equivalent results were obtained for different initial states
ρ̂(0) ⊗ ω̂(0).

The general behavior of the upper bound of the trace
distance in Eq. (17) is shown in Fig. 4 where we see that the
Hilbert-Schmidt distance DHS in long time scales fluctuates
around a mean value that decreases with h̄eff . In Fig. 5 we plot
this mean value, given by the time average 〈DHS(ρ̂(t),ρ̂eq)〉,

FIG. 5. (Color online) Time-average value of the Hilbert-Schmidt
distance DHS between the evolved reduced state of a central system
ρ̂(t) and the totally decohered state 〈ρ̂(t)〉 in Eq. (15), as a function
of the effective Planck constant h̄eff . The central system is a harmonic
oscillator and the environment is a kicked rotator with K = 5 on a
torus (blue circles) or on a “cylinder” (red filled dots), in which case
dynamical localization is observed. The lines correspond to linear
fittings of the numerical results whose slopes are given by 0.9 ± 0.1
(fitting over filled red dots) and 0.53 ± 0.01 (fitting over blue circles).
The interaction between central system and environment is linear with
εnm = 0.1 and the initial state of the system plus environment is the
same as in Fig. 4.

as a function of the effective Planck constant. According to
the result in Eqs. (32) and (34), the upper bound of the trace
distance obtained in Eq. (19) has a dependence on h̄

1/2
eff when

the evolved state of the environment is spread over the entire
available Hilbert Space and has a dependence on h̄eff when
the evolved state dynamically localizes before filling the
available Hilbert space. This is confirmed by the linear fit over
the numerical points in Fig. 5. Hence, in the semiclassical limit
we obtain for the trace distance

〈D(ρ̂(t),ρ̂eq)〉 h̄eff→0−→ 0. (36)

This means that in the semiclassical regime the central system
always equilibrates to the totally decohered state given in
Eq. (15), irrespective of the initial states of the system and
the environment.

VII. CONCLUSION

We studied the decoherence process of a generic quantum
central system coupled via a dephasing-type interaction to an
environment whose underlying classical dynamics is chaotic.
We have shown that if the environment has chaotic classical
dynamics and the coupling to the central system is strong,
the time average of the decoherence functions and the width
of the fluctuations around this time average are inversely
proportional to the effective Hilbert space dimension of the
environment, defined as the dimension of the largest subspace
onto which the projection of the initial state of the environment
is not negligible, i.e., the maximum number of eigenstates
of the perturbed or unperturbed conditional environment
evolution operators needed to write the initial state of the
environment. This means that if the effective Hilbert space
of the environment is large, decoherence will occur; i.e., in
the long-time regime, the coherences of the reduced density
matrix of the central system written in the preferential basis
will decrease significantly and on average will suffer only
small fluctuations. If the quantum environment has chaotic
underlying classical dynamics, the inverse of the its effective
Hilbert-space dimension will in general be proportional to
some positive power of the effective Planck constant h̄eff ,
which implies that decoherence of the central system is
guaranteed in the semiclassical regime (h̄eff � 1). This is true
even for an environment with few degrees of freedom. We
stress that, in general, if the coupling is not strong the central
systems may have revivals of the coherences.

We thus confirm the intuitive notion that the fundamental
quantity regarding the production of decoherence by chaotic
environments is the dimension of the Hilbert space over which
the environmental state is spanned, independent of the number
of environmental degrees of freedom [6]. In [17] the authors
also discuss the connection between the effective Hilbert-space
size and decoherence, but in our case it becomes clear that the
decoherence is only guaranteed if the environment has chaotic
underlying classical dynamics.

For the system-environment models considered, in general
the evolution of the reduced state of the system is not
Markovian once the quantum information contained in the
coherences of the reduced density matrix in the preferential
basis flows back and forth between system and environment.
However, we showed that the decoherence process that occurs
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leads the central system to equilibrate in the semiclassical
limit to a diagonal state given by the time average of its
evolved reduced density matrix. In this case, equilibration
takes place independent of the initial state of the system and for
a generic initial state of the environment (considered initially
separable from the system). This result is in agreement with
that obtained in [30]. However, in our case, it is only the
underlying chaotic classical dynamics of the environment that
guarantees equilibration.

We also investigate the entanglement decay of two noninter-
acting central systems coupled via dephasing-type interactions
to identical quantum local environments with classical chaotic
dynamics. In this case we show that the reduced evolved
state of the system equilibrates to a nondiagonal state in the
preferential basis, which in the semiclassical limit (h̄eff → 0)
is arbitrarily close to a diagonal state (in the preferential basis).
Thus, if the equilibrium state is not already disentangled, i.e.,
the evolved reduced state presents entanglement sudden death,
a very small perturbation is sufficient to lead the system into
a separable state. We confirmed all our analytical results with
numerical simulations in which the environment is modeled
by a kicked rotor in the regime where its underlying classical
dynamics can be considered completely chaotic.
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APPENDIX A: DERIVATION OF THE RESULTS
IN EQS. (13) AND (14)

In this Appendix we calculate the time average and standard
deviation of the decoherence functions Fnm(t) assuming
chaotic underlying classical dynamics of the environmental
degrees of freedom. From here forward, we assume n �= m. We
expand the conditional unperturbed and perturbed evolution
operators Ûm and Ûn in their own eigenbasis:

fnm(t) = Tr[Û †
mÛnω̂(0)], (A1)

Û †
m =

∑
l=1

eıξl t/h̄|ψl〉〈ψl|, (A2)

Ûn =
∑
l=1

e−ıξ̃l t/h̄|ψ̃l〉〈ψ̃l|, (A3)

where ξl and ξ̃l are quasienergies. To simplify the notation, we
omit the indexes n and m in ξl , ξ̃l , |ψl〉 and |ψ̃l〉. The sums
in Eqs. (A2) and (A3) may go to infinity if the spectrums of
evolution operators are unbounded. We also expand the initial
state of the environment in these eigenbases, as in Eqs. (10)
and (11). Inserting Eqs. (A2) and (A3) in (A1) we obtain

fnm(t) =
∑
l=1

∑
l′=1

e−i (̃ξl′ −ξl )t/h̄Oll′Bl′l , (A4)

where

Oll′ = 〈ψl|ψ̃l′ 〉, (A5)

Bl′l =
Nm∑
k=1

ωkl(0)O∗
kl′ =

Nnm∑
k′=1

ωl′k′(0)O∗
k′l . (A6)

Observing Eq. (A6) it is possible to see that matrix Bll′

is essentially nonzero in the intervals 1 � l � Nm and 1 �
l′ � Nnm. We remind the reader that 1 � n,m � NC , where
NC is the number of terms that significantly contribute to
the expansion of the initial state of the central system ρ(0)
in the eigenbasis {|n〉}. Hence, as in Sec. III, we use the
definition of effective dimension of the environment subspace:
Neff ≡ maxnm(Nm,Nnm), where the maximum is taken over
all possible n and m. Indeed, at any time, the reduced density
matrix of the environment can be written as

ω̂(t) =
Neff∑
l=1

Neff∑
k=1

ωlk(0)e−i(ξl−ξk)t/h̄|ψl〉〈ψk|, (A7)

=
Neff∑
l=1

Neff∑
k=1

ω̃lk(0)e−i (̃ξl−ξ̃k)t/h̄|ψ̃l〉〈ψ̃k|, (A8)

and the allegiance amplitude can be written as

fnm(t) =
Neff∑
l=1

Neff∑
l′=1

e−i (̃ξl′ −ξl )t/h̄Oll′Bl′l . (A9)

For the time average of the decoherence functions we imme-
diately obtain

〈F 〉 =
Neff∑
l=1

Neff∑
l′=1

|Bll′ |2|Oll′ |2. (A10)

We consider a nondegenerate chaotic quasienergy spectra
and strong enough perturbation such that the bases {|ψl〉}
and {|ψ̃l〉} are uncorrelated. In this case, one can assume
the overlap matrix O, formed by the elements Oll′ , to be
a random unitary matrix [44]. In the limit of large Neff

[such that (Neff + 1)Neff ≈ N2
eff], the matrix elements Oll′

can be considered complex random numbers with a Gaussian
distribution ∝ exp(−Neff|Oll′ |2) [45]. We can then average
over this distribution of matrix elements:

Oll′ = O∗
ll′ = 0, |Oll′ |2 = 1/Neff, |Oll′ |4 = 2/N2

eff,

(A11)

where · · · denotes the average over the Gaussian distribution
of matrix elements. Using expressions (A11) in (A10), for
Neff � 1 we finally obtain

〈Fnm〉 = C

Neff
, (A12)

where C ≡ Rinv(ω̂(0)) + Tr[ω(0)2] and Rinv(ω̂(0)) ≡∑Neff
l=1 |ωll(0)|2 is the generalized inverse participation

ratio [23] of the initial reduced density matrix of the
environment in the eigenbasis of the unperturbed evolution
operator Ûm.
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In order to calculate 
Fnm in Eq. (14), we must calculate
〈F 2

nm〉 starting from

F 2
nm =

Neff∑
f,j,k,l=1

Neff∑
f ′,j ′,k′,l′=1

e
i
h̄

(ξf −ξj +ξk−ξl−ξ̃f ′+ξ̃j ′ −ξ̃k′ +ξ̃l′ )t

×B∗
ff ′Bjj ′B∗

kk′Bll′Off ′O∗
jj ′Okk′O∗

ll′ . (A13)

For chaotic quasienergy spectra it is reasonable to
assume that they have nondegenerate gaps (see footnote 4
above), so there exist only nine possible sets of conditions
on {f,j,k,l} and {f ′,j ′,k′,l′} for which the time average
〈ei(ξf −ξj +ξk−ξl−ξ̃f ′ +ξ̃j ′−ξ̃k′ +ξ̃l′ )t/h̄〉 is nonzero. In each case, one
must compute the average over the Gaussian distribution of
the elements of the overlap matrix O and then sum the results.
In the limit of large Neff , we obtain

〈
F 2

nm

〉 = 〈Fnm〉2 + 2

N2
eff

Neff∑
k=1

Neff∑
l(�=k)=1

|ωll(0)|2|ω(0)kk|2 + ϕ2

N2
eff

,

(A14)

and therefore Eq. (14), where

G ≡
√

2[Rinv(ω̂(0))]2 − 2
∑

l

|ωll(0)|4 + ϕ2,

and ϕ ≡ ∑
l

∑
k[|ωll(0)|2 + |ωkl(0)|2].

APPENDIX B: EQUILIBRIUM STATE 〈ρ(t)〉
In this Appendix we calculate the time average of the

reduced system density matrix given in Eq. (4). The result
is the state in Eq. (15) that was shown that corresponds to
the equilibrium state of the central system in the semiclassical
regime. We begin by expanding the conditional unperturbed
operators Û

†
m and Ûn as in Eq. (A2) and inserting these into

Eq. (4) to obtain

ρ̂(t) =
∑
n,m

∑
l

Anme− i
h̄

(
nml )t 〈l|ω̂(0)|l〉|m〉〈n| , (B1)

where 
nml ≡ εn − εm + E
(n)
l − E

(m)
l and E

(m)
l are the

quasienergies of the unperturbed conditional evolution
operator Ûm. Taking the time average defined in Eq. (9) the
only nonzero terms are those where 
nml = 0, which for a
nondegenerate spectra {εn} only happens when n = m. So, we
obtain

〈ρ̂(t)〉 =
∑
n,m

Anmδnm

∑
l

〈l|ω̂(0)|l〉|m〉〈n|

=
∑

n

Ann|n〉〈n|, (B2)

taking into account that Tr[ρ̂(0)] = 1.
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