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Pattern formation in a thread falling onto a moving belt: An “elastic sewing machine”
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We study the dynamics of instability and pattern formation in a slender elastic thread that is continuously fed
onto a surface moving at constant speed V in its own plane. As V is decreased below a critical value Vc, the steady
“dragged catenary” configuration of the thread becomes unstable to sinusoidal meanders and thence to a variety
of more complex patterns including biperiodic meanders, figures of 8, “W,” “two-by-one,” and “two-by-two”
patterns, and double coiling. Laboratory experiments are performed to determine the phase diagram of these
patterns as a function of V , the thread feeding speed U , and the fall height H . The meandering state is quantified
by measuring its amplitude and frequency as functions of V , which are consistent with a Hopf bifurcation. We
formulate a numerical model for a slender elastic thread that predicts well the observed steady shapes but fails to
predict the frequency of the onset of meandering, probably because of slippage of the thread relative to the belt.
A comparison of our phase diagram with the analogous diagram for a thread of viscous fluid falling on a moving
surface reveals many similarities, but each contains several patterns that are not found in the other.
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I. INTRODUCTION

Slender threads, ropes, wires, cables, and rods of elastic
material are ubiquitous in nature, in industry, and in the built
environment: Examples include spiderwebs, vines and creep-
ers, tree trunks and branches, telephone cables, electrical wires,
reinforcement rods for concrete, ropes used by mountaineers
and sailors, sewing thread, etc. The utility of all these objects
depends on their ability to deform without breaking. When
the forcing is weak, the resulting deformations are small and
can be described by the standard textbook theory of linear
elasticity. Under stronger forcing, however, slender elastic
bodies can become unstable to large and complex deformations
that are described by geometrically nonlinear equations, even
if the material continues to obey Hooke’s law [1]. Examples of
such behavior include the kinking of telephone cables during
laydown [2], the supercoiling of chain macromolecules such
as DNA [3], helix hand reversals in plant tendrils [4], and the
steady coiling of a rope falling onto a surface [5,6].

In this paper we study experimentally and theoretically a
system that exhibits a particularly rich spectrum of elastic
instability and pattern formation: a slender elastic thread
falling onto a belt moving at constant velocity in its own
plane. The stitchlike character of the patterns laid down
by the thread on the belt leads us to call this system the
“elastic sewing machine,” by analogy to the previously studied
“fluid mechanical sewing machine” in which the falling
thread is a viscous fluid [7–9]. While our primary interest
is fundamental, we note that both the elastic and fluid sewing
machines can be regarded as idealized single-filament models
for the “spunbonding” process of nonwoven fabric production,
wherein a multitude of molten polymer filaments become
entangled and solidify as they fall onto a moving screen [10].

Our study begins with systematic laboratory experiments to
determine the phase diagram of the stitch patterns in the space
of the thread feeding speed U , the fall height H , and the belt
speed V . We also quantify the amplitude and frequency of the
meandering pattern that corresponds to the first bifurcation

from the steady state as V decreases. Next, we propose
a numerical model for the falling thread and compare its
predictions of steady-state shapes and meandering frequencies
with our experimental observations. Finally, we compare our
phase diagrams with those of the related phenomena of steady
elastic coiling and the fluid-mechanical sewing machine.

II. EXPERIMENTAL PROCEDURE

Our experimental setup is shown in Fig. 1. A silicone thread
with a diameter d = 2a = 1 mm and density ρ = 1830 kg m−3

was wound onto a spool, which was rotated by an electric motor
to feed the thread downward at a speed U = 8–30 cm s−1. The
thread passed first through a fixed ring of inner diameter 6 mm
and then fell onto a moving belt 5–90 cm below the ring. The
belt was made of paper 21 cm wide looped over two cylinders
driven by an ac motor at constant speed V (1.5–50 cm s−1).
The speeds U and V were measured to within a few percent
by putting ink marks on the spool and the belt and taking
movies.

To measure the Young’s modulus E of the thread, we first
eliminated its residual intrinsic curvature by suspending it
with a weight attached to its lower end. We then measured
the downward deflection y of the free ends of horizontally
clamped pieces of thread with different lengths L, and used
least-squares regression against the analytical prediction y =
ρgL4/(2a2E) of the linear theory of elastic rods to infer
E = 5 ± 1 MPa [11].

III. EXPERIMENTAL OBSERVATIONS

For fixed values of the feed rate U and the fall height H , we
observe three distinct regimes as the belt speed V decreases:

(1)“Catenary” regime (V > U ): When V significantly
exceeds U , the thread slips continually relative to the belt, and
exhibits a steady catenary shape [Fig. 2(a)]. The position of the
contact point where the thread first touches the belt is nearly
constant in time. When V exceeds U by several cm s−1, the
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FIG. 1. (Color online) Experimental setup. A silicone thread was
wound onto a wheel, which was rotated by an electric motor to feed
the thread at velocity U through a guide ring and thence onto a belt
a distance H below moving at constant speed V . The center of the
guide ring is located 4 ± 1 cm from the rightmost (upstream) edge of
the horizontal part of the belt.

F = 4450 μN

-65 μN -201 μN

(a)

(b) (c) (d)

FIG. 2. (Color online) Photos of the thread (black lines) in side
view, with H = 20 cm and U = 10 cm s−1. The vertical scale at
the right-hand side of each image is in cm. The belt is moving from
the right-hand side to the left-hand side, and the guide ring is visible
at the top of each image. (a) Catenary state (V = 15.7 cm s−1).
(b) Steady heel (V = 10.3 cm s−1). (c) Onset of meandering (V =
10.0 cm s−1). (d) Meandering (V = 9.5 cm s−1). The dashed white
lines are the numerically predicted shapes that best fit the observed
shapes of the thread [not calculated for (d) because the thread is
unsteady]. The arrows in (b) and (c) indicate where the axial state of
stress changes from extensional (above) to compressional (below).
The numerically predicted force F exerted by the belt on the thread
(positive in the direction of belt motion) is indicated.
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FIG. 3. Dragout distance (measured from the center of the guide
ring) as a function of the belt velocity V , for H = 20 cm and
U = 10 cm s−1.

contact point is typically located a few tens of cm downstream
from the guide ring, and its position is nearly independent of V

(Fig. 3, right-hand side). As V decreases, however, the contact
point moves progressively closer to the point below the guide
ring (Fig. 3, left-hand side).

(2)“Steady heel” regime (V ≈ U ): For values of V that only
slightly exceed U , the thread develops an inflexion point where
its curvature changes sign, and has the form of an upstream-
facing heel [Figs. 2(b) and 2(c)]. The contact point is typically
within a few cm of the horizontal position of the guide ring
[Fig. 2(c)].

(3)“Stitching” regime (V < U ): When the belt speed V

decreases below U , the thread’s motion becomes unsteady, and
produces a variety of complex patterns on the belt depending
on the value of V . The first pattern to appear is a meandering
state in which the contact point traces a sinusoidal path
[Fig. 2(d) and Figs. 4(b)–4(d)]. A further decrease of the belt
speed gives rise to new patterns, including biperiodic meanders
[Figs. 4(e)–4(f)], W patterns [Fig. 4(g)], figures of 8 [Fig. 4(h)],
ampersands (&) [Fig. 4(i)], W-by-8 patterns [Fig. 4(j)], “two
by one” [Fig. 4(k)], “two by two” [Fig. 4(l)], and double coiling
[Fig. 4(m)]. Finally, at the lowest belt speeds a translated
coiling pattern is observed [Fig. 4(n)], corresponding to the
last stage before stationary coiling on a motionless (V = 0)
surface. Several transient or semirandom patterns were also
observed, especially at high values of U and V (Fig. 5).

To understand in more detail the systematics of the observed
stitch patterns, we performed two series of experiments in
which the control parameters U and H , respectively, were held
fixed. In the first series, U = 8 cm s−1 while H was varied in
the range 5–90 cm and V in the range 1.5–8.5 cm s−1. The
resulting phase diagram in the H -V plane is shown in Fig. 6.
The states observed are controlled primarily by V . In order
of increasing V , the dominant states are translated coiling
(V = 1.5–3.0 cm s−1), figures of 8 (V = 3.0–5.5 cm s−1),
meandering plus double meandering (V = 5.0–6.5 cm s−1),
and meandering alone (V = 7.0–7.5 cm s−1). The W state
is seen only for V = 4.0–5.5 cm s−1, while the two-by-one
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FIG. 4. Observed patterns of the thread on the belt. U = 8 cm s−1

for all patterns except (i) and (j), for which U = 30 cm s−1. The values
of (H , V ) are indicated below for each case. (a) Steady catenary
(35 cm, 8 cm s−1). (b) Meandering (70 cm, 7.5 cm s−1). (c)
Meandering (10 cm, 5.5 cm s−1). (d) Meandering (10 cm, 4 cm s−1).
(e) Biperiodic meanders (45 cm, 6 cm s−1). (f) Biperiodic meanders
(10 cm, 5.5 cm s−1). (g) W pattern (30 cm, 4.5 cm s−1). (h) Figure of
8 (15 cm, 3 cm s−1). (i) Ampersand (&) pattern (20 cm, 8 cm s−1).
(j) W by 8 (20 cm, 15 cm s−1). (k) Two by one (30 cm, 3 cm s−1).
(l) Two by two (30 cm, 3 cm s−1). (m) Double coil (40 cm, 2 cm s−1).
(n) Translated coiling (10 cm, 2 cm s−1).

and double 8 states are observed only when V = 3.0 cm s−1.
Irregular patterns are seen at large heights H = 90 cm when
V � 5.0 cm s−1. Finally, when V � 8 cm s−1, the thread has
a steady catenary shape.

In the second series of experiments we fixed H = 20 cm
and varied U (8–50 cm s−1) and V (2–50 cm s−1) to obtain
a phase diagram in the U -V plane (Fig. 7). For all values
of U , meandering is the first state to appear when V drops
below U , and translated coiling is the last state seen before
V diminishes to zero. For intermediate values of V , however,
the states observed depend strongly on U . The W pattern
first appears at U = 8 cm s−1 and V = 4 cm s−1, and the
range of V it occupies gradually expands as U increases up
to 40 cm s−1. A similar expansion of range is observed for
the irregular states, which first appear at U = 30 cm s−1 and
V = 7 cm s−1 and become progressively more dominant as U

increases. States observed at only a single value of U include
double meandering (U = 8 cm s−1), double coiling (U =
30 cm s−1) and W by 8 (U = 30 cm s−1.) In many of these
experiments, two or more states distinct states succeed each
other in time, each persisting for several oscillation periods
before giving way to the next. The same is true for many of
the experiments in series 1.

10 cm
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(f)
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FIG. 5. Transient and semirandom patterns, mostly at high U

and V . The values of H , U , and V are given for each case.
(a) 20 cm, 50 cm s−1, 7 cm s−1. (b) 20 cm, 50 cm s−1,
11 cm s−1. (c) 30 cm, 8 cm s−1, 2.5 cm s−1. (d) 30 cm, 8 cm s−1,
2 cm s−1. (e) 20 cm, 90 cm s−1, 55.1 cm s−1. (f) 20 cm,
90 cm s−1, 55.1 cm s−1. (g) 20 cm, 90 cm s−1, 31 cm s−1. (h) 20 cm,
90 cm s−1, 31 cm s−1.

To quantify further the meandering state, we measured its
amplitude, frequency, and wavelength as a function of the belt
velocity V for fixed values of H = 20 cm and U = 10 cm s−1.
The amplitude (Fig. 8) decreases with increasing V and van-
ishes when V = U . The solid curve in Fig. 8 is the best-fitting
Landau amplitude formula A = √

(Vc − V )/(μVc) [Ref. [9],
Eq. (4)], and has Vc = 10.0 cm s−1 and μ = 0.015 cm−2.
The good fit to the experimental observations is consistent
with the interpretation that the onset of meandering is a
Hopf bifurcation. Moreover, both the meandering frequency f

(Fig. 9) and the meandering wavelength λ (Fig. 10) decrease as
V decreases. The propagation of the pattern at speed V requires
f λ = V , which is roughly satisfied for our experiments
(Fig. 11).
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FIG. 6. (Color online) Phase diagram in the H -V plane for
U = 8 cm s−1. The states are shown in Figs. 4 and 5.

016219-3



MEHDI HABIBI, JAVAD NAJAFI, AND NEIL M. RIBE PHYSICAL REVIEW E 84, 016219 (2011)

U (cm/s)

60

40

20

0

V
(c

m
/s

)

20

30

10

0
10 20 30 40 45 50

FIG. 7. (Color online) Phase diagram in the U -V plane for H =
20 cm. The states are shown in Figs. 4 and 5. The vertical black bar
at U = 38.6 cm s−1 indicates the transition between the gravitational
(G) and inertial (I) regimes of steady coiling (Fig. 12). Note the
difference of vertical scale between the left-hand and right-hand parts
of the figure.

IV. NUMERICAL MODEL

We now try to understood some of our experimental
observations using a numerical model for a falling elastic
thread. We assume that the thread is inextensible, and that
it has zero residual curvature in its natural (undeformed) state.
We further assume that it is linearly elastic, i.e., that the
bending moment within it is directly proportional to the local
curvature of the centerline. However, because the deformation
of the thread is large and not known in advance, the governing
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FIG. 8. Amplitude of meandering as a function of the belt
speed V , for H = 20 cm and U = 10 cm s−1. The solid line
is A = √

(Vc − V )/(μVc) with Vc = 10.0 cm s−1 and μ = 1.5 ×
10−2 cm−2.
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FIG. 9. Frequency of meandering as a function of the belt
speed V , for H = 20 cm and U = 10 cm s−1.

equations are geometrically nonlinear even though the elastic
constitutive law is linear. The required equations are those of
the Kirchhoff theory of elastic rods [1,11], and are written
down explicitly in Appendix A. In principle, they can be
used to answer three questions: (1) What are the possible
steady-state shapes of a thread falling on a moving belt? (2)
Under what conditions are those shapes unstable to small
perturbations? And (3) if a steady solution is unstable, what
is its finite-amplitude behavior far beyond the instability
threshold? In this paper we consider only questions (1)
and (2), leaving (3) for future work.

The steady shape of the thread depends on ρ, E, a, H ,
U , and V . Of these parameters, the first five appear explicitly
in either the governing equations or the boundary conditions
satisfied by the thread (Appendix A). The belt speed V , by
contrast, appears nowhere explicitly, and in particular not in
the boundary conditions at the contact point, where one might
expect it. The reason is that the thread is an inextensible elastic
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FIG. 10. Wavelength of meandering as a function of the belt
speed V , for H = 20 cm and U = 10 cm s−1.
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FIG. 11. Product of the meandering frequency and wavelength as
a function of the belt speed V , for H = 20 cm and U = 10 cm s−1.
The dashed line is f λ = V .

object which can slip relative to the belt, so that its velocity
at the contact point need not equal V . Instead, the role of the
belt speed is to control (in concert with other factors such as
the thread’s elasticity) the horizontal frictional force F that
the belt exerts on the thread. The parameter F , rather than V ,
therefore appears explicitly in the boundary conditions at the
contact point. Unlike V , however, F cannot be measured in our
experiments, and so we treat it as an unknown free parameter.
The dependence of F on V is discussed further in Appendix B.

Figures 2(a)–2(c) show the steady shapes (white dashed
lines) predicted numerically for three different vaues of F for
a thread with H = 20 cm, U = 10 cm s−1 and the experimental
values of ρ, E, and a. The values of F indicated were chosen
to give the best fit of the numerically predicted shapes to
the shapes observed experimentally (black lines). The shapes
were calculated assuming that the thread is clamped at the
guide ring, but the results are hardly different if a freely
hinged condition is assumed, as will be seen below. When
F = 4450 μN, the thread has a catenary shape, and the axial
stress within it is extensional everywhere. The upper part of the
thread becomes progressively more vertical as F diminishes.
As F decreases further and changes sign, the thread develops
a heel-shaped structure in which elastic bending stresses are
important [F = −65 μN and −201 μN; Figs. 2(b) and 2(c)].
The axial stress in the lower part of the thread [below the white
arrows in Figs. 2(b) and 2(c)] is then compressive, which is a
necessary condition for instability.

We now apply the numerical model to analyze the linear
stability of the steady states determined above, using the
method described in Appendix A to determine the complex
growth rate σ of an infinitesimal perturbation. The marginally
stable state is determined by varying F until Re(σ ) = 0, at
which point Im(σ ) ≡ 2πf should correspond to the observed
frequency f at the onset of meandering. Unfortunately, the
agreement with our experimental measurements is poor. For
the case H = 20 cm and U = 10 cm s−1, for example, the
measured onset frequency is fobs ≈ 0.56 Hz (Fig. 9). By
contrast, the stability analysis predicts fnum = 1.37 Hz if
the thread is assumed to be clamped at the guide ring, and
fnum = 1.34 Hz if it is hinged there. Moreover, the predicted
marginally stable steady state does not match well the observed
shape of the thread when meandering begins. For example,
the predicted marginally stable state for the clamped case
has F = −74 μN, whereas the observed one is best fit with
F = −201 μN [Fig. 2(c)]. We speculate that these discrepan-
cies may be due to slippage of the thread relative to the belt.

Next we discuss the connection of our experimental
observations with the related phenomenon of steady coiling
of an elastic thread falling onto a motionless surface. This
comparison is motivated by the close analogy that has
previously been demonstrated between viscous fluid threads
falling on motionless (V = 0 [13–18]) and moving (V > 0)
surfaces [7–9,19]. In particular, for given values of the flow
rate, viscosity, and fall height, the frequency of steady viscous
coiling with V = 0 is nearly identical to the onset frequency of
meandering when V = Vc, indicating that the boundary layers
in which the bending stresses are concentrated have similar
structures in both cases [8,19].

A complete phase diagram for steady elastic coiling was
determined by Ref. [6] as a function of the dimensionless
fall height Ĥ = H (ρg/d2E)1/3 and the dimensionless feed
rate Û = U (ρ/d2g2E)1/6 (Fig. 12). Coiling can occur in
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FIG. 12. (Color online) Phase diagram for steady elastic coiling
in the space of dimensionless fall height Ĥ = H (ρg/d2E)1/3 and
dimensionless feed rate Û = U (ρ/d2g2E)1/6 [6]. The different
coiling regimes are indicated: elastic (E), gravitational (G), inertial
(I), and the whirling-string and whirling-shaft subdivisions of the
inertial regime. The ranges of values of Ĥ and Û for the experiments
in this paper are indicated in red.
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three different regimes: (1) elastic (E), in which both gravity
and inertia are negligible relative to the elastic forces in the
deformed thread; (2) gravitational (G), wherein the elastic
forces are balanced by gravity; and (3) inertial (I), in which
the elastic forces are balanced by inertia. The inertial regime
is further divided into a “whirling string” regime in which the
upper part of thread has negligible bending resistance, and a
“whirling shaft” regime in which the centrifugal and elastic
bending forces are in balance. For comparison, Fig. 12 also
shows (in red) the values of (Ĥ ,Û ) for our elastic sewing
machine experiments. Most of these fall in the gravitational
(G) regime. In particular, this includes all the experiments
of Fig. 4, indicating the remarkable variety of patterns that
can be obtained even when inertia is negligible. By contrast,
all the experiments in Fig. 5 except Figs. 5(c) and 5(d) are
in the inertial regime, which is consistent with the transient
and/or semirandom character of the observed patterns. We note
also that the boundary between the gravitational and inertial
coiling regimes for H = 20 cm (vertical black bar in Fig. 7)
corresponds well with the significant appearance of irregular
patterns.

V. COMPARISON WITH THE “FLUID MECHANICAL
SEWING MACHINE”

In conclusion, we compare the behavior of our experimental
system with that of a thin thread of viscous fluid falling onto a
moving belt. This system was first studied experimentally by
the authors of Ref. [7], who observed that the falling thread
became unstable to a meandering instability when the belt
speed V dropped below a critical value Vc that depended on the
fall height, the flow rate, and the fluid viscosity. For V < Vc,
the authors of Ref. [7] found that the thread traced out a
variety of complex “stitch” patterns, many strongly resembling
those of our Fig. 4. They also proposed a mathematical
model for the catenary state of the thread neglecting bending
forces, and showed that the criterion for the nonexistence
of the solution corresponded fairly well with the observed
onset of meandering. A more complete mathematical model
incorporating bending forces was presented by the authors
of Ref. [8], who showed that its predictions for the onset of
meandering agreed closely with experimental observations.
Improved experiments were performed by the authors of
Ref. [9], who determined a complete phase diagram of the
patterns as a function of V and H for a particular choice of
the flow rate and the viscosity and derived generic amplitude
equations that can be used to model the transition from
meandering to more complicated patterns.

Despite the similar geometries of the elastic and fluid
sewing machines, there are several significant differences.
First, a viscous thread falling from a sufficient height is
strongly stretched by gravity, so that its axial velocity U (s)
increases downward from the injection point. The natural
free-fall velocity Ufree of the thread at a distance H below the
injection point therefore increases with H , whereas Ufree ≡ U

is constant for an elastic thread. Second, a viscous thread
must satisfy the no-slip condition at the moving belt, even
though Ufree is not in general equal to the belt speed V . A
viscous thread adjusts to the difference either by stretching (if
V > Ufree) or by buckling (if V < Ufree), whereas an elastic

thread slips relative to the belt if V > U . Third, the forces that
resist the bending of a viscous thread are proportional to the
rate of change of the curvature of the thread’s axis, rather than
to the curvature itself as for an elastic thread.

The recognition that H is essentially a proxy for Ufree for a
viscous thread permits us to make some illuminating qualita-
tive comparisons between our elastic U -V phase diagram (7)
and the viscous H -V phase diagram (Ref. [9], Fig. 3). In the
remarks that follow, we refer to small (large) values of H in
the viscous phase diagram as “small (large) values of U” to
emphasize the analogy with the elastic case.

As V is decreased to its critical value Vc, the first bifurcation
is almost always to the meandering state for both viscous and
elastic threads. The only exception is for viscous threads at
high U , for which double meanders sometimes appear first. At
the other extreme of very small V , translated coiling is nearly
always observed, except for viscous threads at high U for
which the pattern is irregular. In between these two extremes,
the two phase diagrams have some striking similarities. The
figure of 8 is the dominant pattern at low values of U and for
values of V intermediate between those where meandering
(higher V ) and translated coiling (lower V ) occur, and is
not observed for intermediate values of U . Second, double
coiling and the W pattern are rare and are confined to a
narrow intermediate range of values of U . Finally, irregular
patterns make their first appearance at intermediate values of
U and become progressively more dominant (i.e., are observed
over a wider range of values of V ) as U increases. However,
there are also some significant differences. First, the figure
of 8 reappears at high values of U for viscous threads, but
apparently not for elastic ones. Second, double meanders are
seen only for low U for viscous threads, but only at high U

for elastic threads. Finally, some patterns are common in one
case and rare or nonexistent in the other. Patterns observed
only for viscous threads include bunched meanders, braids,
and slanted loops (Ref. [7], Fig. 4). By contrast, patterns such
as the ampersand, W by 8, two by one, and two by two (Fig. 4)
exist only for elastic threads. Some of these differences may
be due to the fact that viscous and elastic threads behave
very differently during self-contact, which is surface tension
dominated in the former case but frictional in the latter.

A final point of comparison between the elastic and fluid
cases is the dependence of the meandering amplitude A

on the belt speed V . Our Figs. 8 and 4 of Ref. [9] show
that A = √

(Vc − V )/(μVc) for both elastic and fluid threads,
where Vc is the critical belt speed and μ is a Landau coefficient.
In the fluid case, the experimentally inferred value of μ is
well predicted by a simple kinematic model due to Ref. [9],
which is based on the assumption that the absolute speed
of the meandering contact point relative to the belt always
equals Vc. This model predicts μ = (ωc/2Vc)2, where ωc

is the angular frequency of meandering at onset. To judge
whether this prediction matches our observations, we use
the data from the experiments with H = 20 cm and U =
10 cm s−1. The critical belt speed is Vc = 10 cm s−1 for this
case, and Fig. 9 gives ωc = 3.44 s−1. The kinematic model
then predicts μ = 0.0296 cm−2, approximately twice the value
(0.015 cm−2) determined by fitting the amplitude data of Fig. 8.
Again, we suspect that this discrepancy may be due to slip of
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the thread relative to the belt, an effect that does not exist in
the fluid case.
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APEENDIX A: DETAILS OF THE NUMERICAL MODEL

Consider a thin elastic thread with constant radius a, cross-
sectional area A ≡ πa2, and moment of inertia I ≡ πa4/4.
Let s be the arclength coordinate along the thread’s axis, and
consider the portion of the thread extending from the guide
ring (s = 0) to its point of contact s = �(t) with the moving
belt, where t is time. Let ei be Cartesian unit vectors in the
laboratory frame, defined so that e3 is upward and the belt
moves in the e1 direction. Let x(s,t) be the position of the
thread’s axis, d3(s,t) be the unit vector tangent to the axis,
and d1(s,t) and d2(s,t) ≡ d3(s,t) × d1(s,t) be orthogonal unit
vectors in the plane of the thread’s cross section. The local
orientation of the basis di relative to the laboratory basis ej

is described by the direction cosines dij ≡ di·ej . While dij

can be written in terms of the familiar Eulerian angles, it is
more convenient for numerical purposes to use the four “Euler
parameters” q0, q1, q2, and q3 [Ref. [14], Eq. (2.2)].

The rates of change of x and di along the thread’s axis are

x′ = d3, d ′
i = κ × di , (A1)

where κ ≡ κi di is the curvature vector and primes denote
differentiation with respect to s. In the following, Latin
subscripts (e.g., i) take on values 1, 2, or 3, Greek subscripts
(e.g., α) take on values 1 or 2, and summation over repeated
subscripts is implied. The elastic force acting on each cross
section of the thread is N(s,t) ≡ Ni di , and the vector of
bending (M1,M2) and twisting (M3) moments is M(s,t) ≡
Mi di . Conservation of momentum in the thread requires

ρAr̈ = N ′ + Aρg, (A2)

where r̈ is the acceleration of the thread’s axis and g is the
gravitational acceleration. Conservation of angular momentum
requires

M ′ = −d3 × N, (A3)

where the (small) effect of inertia has been neglected. Finally,
the constitutive relations for the bending moments Mα are

Mα = EIκα. (A4)

Now in view of (A4), the d3 component of (A3) becomes
simply M ′

3 = 0. Because no twist is applied to either end of
the thread, this implies M3 = 0 for all s.

Consider now the steady state of a thread dragged by a
moving belt. The thread’s axis is confined to the plane x2 = 0,
and its local inclination from the horizontal can be described

by a single angle θ̄(s), or equivalently by the Euler parameters

q̄1 = − cos

(
θ̄

2
+ π

4

)
, q̄3 = − sin

(
θ̄

2
+ π

4

)
, (A5a)

q̄0 = q̄2 = 0. (A5b)

Here and henceforth, an overbar indicates that the variable in
question pertains to the steady state. The sixth-order system
of equations governing this state is

x̄ ′
1 = cos θ̄ , x̄ ′

3 = sin θ̄ , θ̄ ′ = κ̄2, (A6a)

N̄ ′
1 = −κ̄2N̄3 + ρgA cos θ̄ + ρAκ̄2U

2, (A6b)

N̄ ′
3 = κ̄2N̄1 + ρgA sin θ̄ , κ̄ ′

2 = − N̄1

EI
. (A6c)

The appropriate boundary conditions depend on whether
the thread is assumed to be clamped (β = 0) or hinged (β = 1)
at the guide ring, and are

x̄1(0) = x̄3(0) = (1 − β)

[
θ̄ (0) + π

2

]
+ βκ̄2(0) = 0, (A7a)

x̄3(�) + H − a = θ̄ (�̄) = κ̄2(�̄) = 0. (A7b)

The condition κ̄2(�̄) = 0 is the “rolling” condition required for
the contact point to move relative to the belt [20].

The six boundary conditions (A7) are sufficient for the
system (A6) only if the thread’s length �̄ is known. This,
however, is not the case for the sewing machine configuration,
for which �̄ is determined by the axial force N̄3(�̄) ≡ F applied
by the belt to the thread at the point of contact. Figure 2
shows numerical solutions of (A6) and (A7) obtained for three
different values of F using a continuation method implemented
by the software package AUTO-07P [21].

Next, we examine the stability of the steady solutions
described above to small perturbations. Two distinct (and
uncoupled) modes of instability are possible: an “in-plane”
mode in which the thread is confined to the plane x2 = 0,
and an “out-of-plane” mode in which it is not. Here we
consider only the out-of-plane mode, which corresponds to
the meandering instability observed in our experiments. The
nonzero variables for this mode are x̂2, q̂0, q̂2, N̂2, and κ̂1, where
carets indicate that the variables are perturbation quantities.
The linearized equations they satisfy are

x̂ ′
2 = d̂32, κ̂ ′

1 = N̂2/(EI ), (A8a)

2q̂ ′
0 = −q̄1κ̂1 − κ̄2q̂2, 2q̂ ′

2 = q̄3κ̂1 + κ̄2q̂0, (A8b)

N̂ ′
2 = N̄3κ̂1 + ρgAd̂23 − ρA(U 2κ̂1 + 2Uσd̂32 + σ 2x̂2),

(A8c)

where σ is the exponential growth rate of the perturbations
and

d̂32 = 2(q̄3q̂2 − q̄1q̂0), d̂23 = 2(q̄1q̂0 + q̄3q̂2). (A9)

The appropriate boundary conditions are

x̂2(0) = (1 − β)q̂0(0) + βκ̂1(0) = q̂2(0) = 0, (A10a)

κ̂1(�̄) = 0, (A10b)

σ x̂2(�̄) + Ud̂32(�̄) = 0, (A10c)
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FIG. 13. Force on the thread as a function of dragout distance
X (upper scale) and belt speed V (lower scale) for H = 20 cm and
U = 10 cm s−1. F (X) was calculated numerically as described in
Appendix A, assuming that the thread was clamped (solid line) or
hinged (dashed line) at the guide ring. The points F (V ) are obtained
by eliminating the variable X between the solid line and the points in
Fig. 3. The vertical black bar at the upper right-hand side indicates
the largest value of X observed in this set of experiments.

where (to repeat) β = 0 if the thread is assumed to be clamped
at the guide ring and β = 1 if it is hinged. Condition (A10b)
states that there is no bending moment at the contact point,
and (A10c) is the x2 component of the no-slip condition.
Equations (A8) and (A10) constitute a linear eigenvalue
problem for the complex growth rate σ , which we solved using
the method of Ref. [17]. For a given steady-state solution, this
method yields the spectrum of values of σ and the associated
eigenmodes [x̂2(s),q̂0(s),q̂2(s),N̂2(s),κ̂1(s)]. Once a value of
σ with Re(σ ) > 0 is found, a marginally stable mode is
found using a continuation procedure, wherein the steady-state
solution and the associated eigenmodes are gradually changed
by varying F until Re(σ ) = 0.

APEENDIX B: FORCE ON THE DRAGGED THREAD

Because the thread can slip relative to the belt, it is of interest
to examine how the horizontal force F on it depends on the belt
speed V in the steady-state (dragged catenary) configuration.
Because F cannot be easily measured, an indirect procedure is
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FIG. 14. Friction coefficient f (S) in (B1), determined from the
experiments with H = 20 cm and U = 10 cm s−1.

required. Our approach was to eliminate the dragout distanceX
between the experimentally measured function X(V ) and
the function F (X) predicted theoretically using the model
described in Appendix A, assuming that the thread is clamped
at the guide ring. Figure 13 shows the results for the
measured values of X(V ) from Fig. 3. The force F increases
from values near zero when V = U = 10 cm s−1 to an
asymptotic value F∞ ≈ 5000 μN for V > 12.5 cm s−1. For
comparison, the dashed line shows F (X) calculated assuming
a hinged thread at the guide ring. The difference is very
small.

We now propose that the function F (V ) in Fig. 13 is an
example of a more general law of the form

F = πa2Lρgf (S), S = V − U

U
(B1)

where L is the length of part of the thread in contact with the
belt, πa2Lρg is its weight, and S is the dimensionless rate of
slip of the thread relative to the belt. It is well known that the
variable S controls dynamic friction in mechanical systems
such as automobile tires on roads [22], and that the friction
coefficient f (S) is highly nonlinear in general. Figure 14 shows
f (S) for the experiments with H = 20 cm and U = 10 cm s−1,
calculated from (B1) with L = L0 − X, where L0 = 0.69 m
(Fig. 1) and X(V ) is given by Fig. 3. The curve strongly
resembles the force versus slip curves of Ref. [22], which
increase linearly for small S and saturate to a nearly constant
value for S > 0.3.
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