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Isochronal chaos synchronization of delay-coupled optoelectronic oscillators
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We study experimentally chaos synchronization of nonlinear optoelectronic oscillators with time-delayed
mutual coupling and self-feedback. Coupling three oscillators in a chain, we find that the outer two oscillators
always synchronize. In contrast, isochronal synchronization of the mediating middle oscillator is found only
when self-feedback is added to the middle oscillator. We show how the stability of the isochronal solution of any
network, including the case of three coupled oscillators, can be determined by measuring the synchronization
threshold of two unidirectionally coupled systems. In addition, we provide a sufficient condition that guarantees

global asymptotic stability of the synchronized solution.
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I. INTRODUCTION

When systems are coupled, their interaction often leads to
correlations in their dynamics. This is true even for coupled
chaotic oscillators, where an exchange of signals that are a
function of the oscillator’s internal states can lead to identical
chaotic trajectories [1-3].

Typically, coupling oscillators together introduces time
delays because of the finite propagation speed of the exchanged
signals. This is particularly true for optical and optoelectronic
devices that operate at technologically relevant radio frequen-
cies of several GHz.

For unidirectionally coupled systems, coupling delays
impose no additional obstacles to chaos synchronization and
a large body of experimental research exists that demonstrates
identical chaotic dynamics of two coupled photonic systems
[4,5]. In contrast, for mutually coupled systems or networks
with feedback loops, the presence of such propagation delays
can pose fundamental challenges to synchronization. Never-
theless, experimental investigations using laser systems have
shown that, in addition to lag and anticipatory synchronization
[6-9], isochronal (or zero-lag) synchronization is possible
[10-13]. In this case, somewhat counterintuitively, chaotic
units synchronize without any relative time delay, although
the transmitted signal is received with a large time lag. It is
not immediately obvious what conditions lead to isochronal
synchronization, either of parts of a network or the entire
network. This is the question we address in this paper.

Detailed investigations of chaos synchronization of two
nominally identical mutually delay-coupled semiconductor
lasers showed that, in such a system, the isochronal solution
exists but is unstable and therefore not observable [6-8,14].
Instead “achronal” synchronized behavior is found, where the
two lasers show similar but nonidentical behavior and where
they are delayed with respect to each other by the coupling
time. Under detuned operation, the laser with higher optical
frequency leads the dynamics, while for zero detuning the two
lasers spontaneously switch leader and laggard roles [6,7,15].
Achronal synchronization and leader-laggard switching has
also been demonstrated using mutually coupled fiber ring
lasers [16,17].
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It has been found that stable isochronal synchronization
can be achieved through the introduction of several incom-
mensurate time delays [18], delayed shared feedback coupling
[19], the inclusion of a mediating, yet unsynchronized, center
laser [13], and through the addition of self-feedback [10-12].
Experimentally, the stabilizing effect of self-feedback has been
demonstrated for the case of two incoherently [12] as well as
two coherently [11] coupled semiconductor lasers. In addition,
numeric calculations demonstrated the stabilizing effect of
self-feedback for three coupled fiber ring lasers and it has
been suggested to be a general phenomenon [10].

In this paper, we go beyond the case of two coupled
chaotic units and investigate the synchronization properties
of three mutually coupled optoelectronic oscillators, devices
that are known to generate fast high-dimensional chaos
[20,21]. We show that when a center unit with self-feedback
is introduced, thereby forming a chain of three coupled
oscillators, as described in Sec. II, not only are the outer two
oscillators always in isochronal synchrony (Sec. III), but the
entire chain can be synchronized for sufficient self-feedback
strength (Sec. IV). Since the chaotic dynamics and theoretical
description of our optoelectronic oscillators is different from
those of the semiconductor lasers used in most of the
previous research, our findings support theoretical arguments
suggesting that the stabilizing effect of self-feedback [10] and
the synchronization via a mediating center oscillator [22,23]
are general phenomena that are mainly a result of the network
structure and largely independent of the node dynamics. In
addition, we provide a sufficient condition that guarantees
isochronal synchrony. More importantly, we show in Sec. V
that the stability of the fully synchronized state of any network,
including the case of three mutually coupled oscillators, is
predicted by the dynamics of two unidirectionally coupled
systems.

II. EXPERIMENTAL SETUP AND MODEL

The experimental setup, shown in Fig. 1, involves three
mutually coupled optoelectronic oscillators in a chain con-
figuration. Each node in the chain consists of a nonlinear
device that maps an electronic input to an optical output. The
three-node delay-coupled network is formed by converting the
optical outputs to amplified, linearly filtered, and time-delayed
electrical signals that serve as inputs to the nonlinearities.
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FIG. 1. (Color online) Schematic of the experiment consisting
of three coupled optoelectronic oscillators: LD, laser diodes; PC,
polarization controllers; MZM, Mach Zehnder modulators; C, optic
circulators; OS, optical splitters; «, adjustable optic attenuators; t,
adjustable optical fiber delay lines; D, photodetectors; S, electronic
splitters; MD, modulator drivers. (Inset) Coupling architecture.

Oscillations arise due to the interplay of the nonlinear mapping,
filtering, and time delay.

In more detail, in each oscillator constant optical power
is provided by a continuous-wave 1.55 um fiber-coupled
semiconductor laser. The crucial nonlinear transformation is
performed by a LiNbO3; Mach-Zehnder modulator (MZM) that
maps a radio-frequency voltage applied to its ac-coupled input
port (Vs =4.5 V) to a time varying optical output. Taking
into account the amplification and saturation (Vg = 4.9 V)
of the inverting modulator driver (MD) (gain gyp = —23) at-
tached to the MZM rf-input port, the nonlinear transformation
can be described by the normalized output function [21]

2 2
hx] = cos(m +d tal?h[x]) cos(m) ’ 0
d|sin(2m)|
where d = 7 Vi /2Vy ¢ is a constant and x; = gmp Vi/ Vsar
denotes the dimensionless and scaled variable corresponding
to the measured output voltage. The bias m is set by applying
a dc voltage to a second port on the MZM. For all experiments
discussed in this paper, we bias to the half-transmission point
with positive slope, m = —m /4. For this bias, function (1)
simplifies to

sin(2d tanh[x])
2d ’

The optical output of each MZM is routed via circulators
(C) and an optical splitter (OS) toward the other MZMs. For
example, light exiting MZM, enters port one of circulator
C) and is routed to port three of circulator C,. The optical
power in the fibers is then converted to a voltage by broadband
amplified photodetectors (bandwidth 30 kHz—13 GHz). Half of
the resulting signals, denoted by V; (i = 1,2,3), is measured by
a 12-GHz real-time digital oscilloscope. The other half serves
as input to the modulator drivers, thereby closing the system.

The photodetectors are the main bandwidth limiting com-
ponents. Due to their ac coupling, they act as bandpass filters,
a fact that has to be taken into account when modeling the
optoelectronic oscillators [24,25]. Good agreement between
experiment and theory has been found when a simple two-pole
bandpass filter description of the linear frequency response is

hlx] = 2
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used, resulting in a second-order delay-differential equation
(DDE) model for the feedback system [20,21]. Adapting such a
model, with a high-(low-)frequency cutoff w, ~ 7 x 10'0 s~
(w_ ~ 2 x 10° s71), center frequency wy = Joro— =12 x
103 s~!, and bandwidth § ~ w,, one obtains the following
dimensionless set of coupled DDEs describing the dynamics
of a network of three oscillators:

3
(1) = A-z:() +bgo Y yihlx;t — 7l ()
j=1

Here, i € {1,2,3} labels the oscillators and the second-order
DDE for each is written in terms of two variables, z; =
(xi,y;) € R2, where Vi = w(z)/c? ft:) x;(£)d¢ [20,21]. In Eq. (3),
time is measured in units of the fast time constant associated
with the device component’s high frequency cutoff and is
defined as t = time x §. The overdot in Eq. (3) denotes
the derivative with respect to this dimensionless time and
7;; = T;;8 is the dimensionless propagation time of a signal
traveling from oscillator j to oscillator i. In the experiment,
the propagation times 7;; are adjusted using optical fiber
delay lines to an absolute precision given by our measurement
uncertainty of 0.1 ns. Relative to one another, the delays can
be matched to about 10 ps. The constant matrix A,

-1 -1
A= ,
oy
with small parameter € = w?/8* characterizes the bandpass
filter. The constant coupling vector b is b = (1,0)7, and the
scalar output function £ is given by Eq. (2). Note that & is
defined such that 4[0] = 0 and 0/4/0x[0] = 1, which implies
that x = y = 0 is a steady state solution of Eq. (3) and that
goYij is the gain a small signal of frequency wq experiences
when injected into system j and measured at the output of
system i. Tuning either the adjustable attenuators or the laser
powers, the magnitude of the coupling coefficients can be
varied between zero and one (0 < y;; < 1). For all data shown
in this paper, the maximum small signal gain was kept constant
for all links at a value of gy = 6.1. For this gain and a delay
time of 7 = 81.3 ns (r = 5622), a single oscillator with self-
feedback exhibits high-dimensional chaos [20,21,26].

The symmetry of the experimental setup implies that the
relevant synchronized solutions are the partially synchronized
solution, where the two outer oscillators exhibit identical
dynamics and the fully synchronized solution, where all three
oscillators behave identically.

III. CLUSTER SYNCHRONIZATION

The case where isochronal synchronization between the two
outer delay-coupled oscillators is achieved through relaying
their dynamics via a third mediating but unsynchronized
element was first discovered in a system of three semicon-
ductor lasers coupled via mutual optical injection by Fischer
et al. [13]. In the context of general networks of coupled
oscillators, this type of synchronization can be seen as the
simplest possible example of cluster synchronization [27].

In our experimental system of coupled optoelectronic
oscillators, we also observe cluster synchronization, in spite
of the fact that our setup exhibits dynamics that are quite

016213-2



ISOCHRONAL CHAOS SYNCHRONIZATION OF DELAY- . ..

c
=]
)
=
O
)
H]
O - T ! i
a 1 1 1 1 1 1 1 1 1
1 F
.2 [@ '@
d
0 ;0.5'
S | I
-0.2 - 0 T T

-300-200-100 0 100 200 300
At (ns)

1(|)0 1(|)2 1<|)4 1(I)6
Time (ns)

FIG. 2. (Color online) Experimental time series (a),(c),(e) and
cross-correlation plots (b),(d),(f) for three oscillators in a chain
without self-feedback. (a),(b) Oscillator 1 (black solid line) and 2
(blue dashed line), (c),(d) oscillator 3 (magenta solid line) and 2
(blue dashed line), and (e),(f) oscillator 1 (black solid line) and 3
(magenta dashed line) with a cross-correlation that has a maximum
of 0.99 at At = 0.

distinct from those of the semiconductor lasers used by
Fischer et al. [13]. An example of cluster synchronization
arising in our experiments is shown in Fig. 2 for a setup
where there is no self-feedback (y;; = 0), all delays are equal
with T;; = T = 81.3 ns (1;; = 5622), and the cross-coupling
strengths are balanced (v, = Y32 = 1 and y; = y23 = 1/2).
As seen in Figs. 2(e) and 2(f), the outer two oscillators are
synchronized perfectly without any time shift. In contrast,
no (identical) synchronization occurs between either of the
outer two oscillators and the mediating middle one [see
Figs. 2(a)-2(d)]. In this case, signals are most similar when
shifted by the coupling delay, as seen by the correlation peaks
at time shifts of +7'.

To analytically investigate synchrony between the outer two
oscillators, consider the difference

00 = 2 — T+ 1) — L223(), 4)
V32

where the delay 13, — 13 is the trivial time shift that arises if
the propagation times from the middle oscillator to the outer
oscillators are not perfectly matched and the factor y;,/y3; is
the trivial amplitude scaling that arises if the coupling strengths
of the links from the middle oscillator to the outer oscillators
differ. We consider the outer two oscillators to be isochronally
synchronized if » = 0, even for cases where the trivial time
shift is nonzero or the scaling factor is unequal to one. The
evolution of 7 is described by

() = An(o). (&)

Not only is (#) = 0 always a solution, but it is unconditionally
globally stable, because the matrix A, representing the filter,
has eigenvalues with strictly negative real parts. Thus the
outer two oscillators always synchronize. Neither the coupling
delays nor the coupling strengths need to be matched, despite
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the mutual coupling between the outer and the middle
oscillator. The only requirement is that the outer two systems
are identical.

For nondissipative coupling, as in our experiment, a
necessary condition for identical synchronization of the outer
oscillators is that each system without input is dissipative, i.e.,
its dynamics decays to z =0 for y;; = 0. This property is
necessary in order to allow systems that start with different
initial conditions to approach one and the same trajectory as a
function of time. For our optoelectronic oscillators, the internal
dynamics is not only dissipative but is that of a linear filter,
resulting in unconditional stability. Therefore, optoelectronic
oscillators are an especially simple case. For other systems,
such as optically coupled semiconductor lasers [13], where
the internal dynamics is described by a nonlinear dissipative
equation, the isochronal partial synchronized solution is
not unconditionally stable. Nevertheless, isochronal chaos
synchronization of the outer two systems is thought to be a
general phenomenon if the delays are sufficiently large [22,23].
The main idea is that synchronization can be expected if all
nodes of a network subgroup receive the same input signals and
if the nodes are known to exhibit generalized synchronization
[28,29] when driven by their own dynamics. This argument for
isochronal synchronization of a node subgroup assumes that no
essential change of the dynamic behavior arises due to mutual
coupling, which, unlike the driven case, allows an oscillator
on a particular network node to act back on itself after a time
of twice the coupling delay. The argument therefore relies on
short autocorrelation times of chaotic systems in combination
with long coupling delays and is not expected to apply directly
to periodic oscillations, where resonant effects have to be
taken into account [22]. In contrast, the unconditionally stable
optoelectronic oscillators synchronize not only for chaotic but
for any form of node dynamics.

IV. ISOCHRONAL SYNCHRONIZATION

Without any self-feedback, isochronal synchronization of
all three optoelectronic oscillators is never observed in our ex-
periments. However, if sufficient self-feedback is added to the
middle oscillator, we find stable isochronal synchronization of
the entire three-node network. This is shown in Fig. 3(a), where
for strong self-feedback (y,, = 0.9) the measured output of the
left outer oscillator is plotted versus the output of the middle
oscillator, resulting in a diagonal line, which indicates nearly
identical (chaotic) dynamics. The corresponding correlation
coefficient is C1, = 0.985.

In terms of the model, complete isochronal synchronization
occurs when s(¢) := z,(t) = z,(t) = z3(¢). This solution to
Eq. (3) exists if all time delays are identical and if the sum
of the input coupling strengths is identical for each oscillator,
i.e., if the coupling matrix with matrix elements y;; has unity
row sum for all rows.

Based on this row-sum condition, one would expect to
observe maximum correlation between the outer and the
middle oscillators for coupling strengths satisfying 1 = y»; +
v22 + y23. This is exactly what we find experimentally, as is
shown in Fig. 3(b), where the maximum of the correlation
curve coincides with the dashed line indicating the value of
y21 + V23 required by the row-sum condition.
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FIG. 3. Experiment with self-feedback, y, = 0.9: (a) Output
voltage V/(¢) vs V,(r) for matched delays and coupling coefficients
Y12 = 32 = 1 and y»; = y»3 = 0.05. (b) Correlation coefficient as a
function of the strength of the coupling to the middle oscillator from
the outer oscillators, y»; + 3.

Yet, even if the conditions for existence are met, the
synchronized solution is clearly not always stable. Thus we
address next the crucial question of stability of the isochronal
solution. To simplify the discussion we consider, without loss
of generality, the symmetric setup where y;» = y3, = 1, the
self-feedback strength of the middle oscillators is y»; = «, and
Y21 = ya3 = (1 —k)/2.

The experimental results for this setup are shown in Fig. 4(a)
as circles, where we plot the correlation coefficient of the
measured output of the left outer and the middle oscillator
for different self-feedback strengths «. It is seen that high
quality isochronal synchronization is found for self-feedback
strengths as low as « ~ 0.7. For smaller self-feedback, the
correlation rapidly drops. The range of « over which the
systems synchronize depends on the gain go. Generally, we
find narrower synchronization regimes for higher values of
g0, where larger gy also correspond to higher Lyapunov
dimensions of the chaotic attractor of a single system with
self-feedback.

Numerical simulations of the three oscillator network as
described by Eq. (3) yield qualitatively identical results to the
experiments, as seen in Fig. 4(b). Starting from random initial
conditions, all three oscillators synchronize for sufficiently
large «. The somewhat larger synchronization region, with a
lower bound of ¥ =~ 0.5 for the required self-feedback strength,
is expected because the simulations are free of noise and
parameter mismatches. Based on these results, we believe
that Eq. (3) provides a reasonably accurate model of our
experiment.
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FIG. 4. Correlation coefficient as a function of self-feedback
strength « for the mutually coupled three-oscillator network
(black circles) and unidirectionally coupled two-oscillator network
(gray triangles). (a) Experimental results; (b) numerics. In the
shaded region, the synchronized solution is globally asymptotically
stable.
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In the following, we use Eq. (3) to derive a global stability
bound and to show how to determine the critical self-coupling
strength.

When investigating isochronal synchronization of the three-
oscillator network analytically, it suffices to consider the
evolution of the difference between one of the outer oscillators
and the middle oscillator, e.g., A = z; — 7, because the outer
two oscillators will always synchronize, as shown in Sec. III.
This difference evolves according to

A=A A-bgyl —k)flxa(t —7),Au(t — )], (6)

where A = (A, A,) and the nonlinear function f is defined
as

Sflx2, Ayl = hlxo + Ayl — hlxa], )

with & given by Eq. (2). Utilizing the fact that f[x;,0] = 0 and
| flx2,Ax]] < |Ay|, one can apply a variation on the method
of Lyapunov-Krasovskii functionals (see the Appendix) to
show that the synchronized solution (A = 0) is globally
asymptotically stable if

11— — <« (8)
80
Here, gy > 1 is assumed, since for smaller values of gy no
oscillations exist that could be synchronized because the
steady-state solution for a single oscillator with self-feedback
is globally asymptotically stable [24,30]. For the value of gy
corresponding to the experiments, Eq. (8) implies « > 0.83.

It is seen in Fig. 4 that isochronal synchronization occurs
over the predicted range, yet the experimental and numerical
data also show that Eq. (8) is a conservative bound. As is often
the case, the global result does not provide a good estimate of
the synchronization threshold. Nevertheless, global stability
results are useful because they guarantee synchronization.

To obtain a tight bound on the required self-feedback
strength «, we consider the local stability of the synchro-
nization manifold, taking the usual stability criterion, which
requires that the maximum transverse Lyapunov exponent is
negative. The transverse Lyapunov exponents are calculated
based on solutions of the variational equation corresponding
to Eq. (6), which depends on the synchronized trajectory
Z,(t) = s(t). That is, one determines, for a synchronized pair of
outer oscillators, the rates of exponential growth of solutions
A(?) of the system of equations

2 =A -2 +bgoh[x(t — )], 9

A=A-A+obgh[x:(t — )ALt — 1), (10)

where o = —(1 — «). In this context, it is important to note that
although a negative maximum transverse Lyapunov exponent
of a typical chaotic trajectory is often found to coincide with
the experimentally observed threshold, it is not a sufficient
condition for stability of the synchronized solution, as, for
example, the basin of attraction might be small or bubbling
might occur [31,32]. We numerically calculated the largest
transverse Lyapunov exponent using the method first detailed
in [33], finding AT™ = —1.3 x 10~* ns~! for x = 0.48 and
AT = (0.8 x 10~* ns~! for k = 0.50. The exponent changes
sign for « slightly less than 0.5 in agreement with the direct
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(global) measure of synchronization quality given by the cross-
correlation coefficient [see Fig. 4(b)]. This demonstrates that
the local stability criterion in terms of the transverse Lyapunov
exponent correctly predicts the synchronization threshold.

V. ISOCHRONAL SYNCHRONIZATION
OF GENERAL NETWORKS

To connect our experiments on three coupled oscillators
to the case of general networks, we note that Eqgs. (9) and
(10) are also obtained when applying to Eq. (3) the master
stability function method [34]. In this method, a coordinate
transformation to the network eigenmodes is performed that
brings the coupling matrix into diagonal form with the result
that the stability of each network mode is described by a
decoupled equation identical to Eq. (10) with o replaced by oy,
the eigenvalue of the kth mode.! For any network of identical
elements, the master stability function method thereby neatly
divides the problem into a part that only depends on the
topology of the network, i.e., finding the network eigenvalues
oy, and a part that only depends on the particular chaotic system
athand, i.e., determining the master stability function, which is
nothing but the maximum transverse Lyapunov exponent as a
function of the complex parameter o. The fully synchronized
solution is stable if all transversal network eigenvalues fall
into regions where the master stability function is negative.
Here, transversal eigenvalues are all eigenvalues oy, except the
one associated with perturbations within the synchronization
manifold with corresponding eigenvector (1,1, ...,1).

For the case where the dynamics of a single network
element is described by a DDE, the numerical challenge
associated with the computation of the master stability
function can be drastically reduced for systems with large
delay because it was recently shown that, in this case,
the master stability function is rotationally symmetric [36].
The maximum transverse Lyapunov exponent only depends on
the magnitude of o. Assuming that the system is stable in the
absence of any time-delayed input (o = 0), the master stability
function is negative in a circular region around the origin with
some radius |o|.. This is true not only for chaotic dynamics
but also for periodic and steady state behaviors [30,36]. Thus,
for DDEs with large delay, it is sufficient to know the largest
Lyapunov exponent as a function of positive real-valued o (or
any other convenient radial line in the o plane).

For the three oscillator network studied in this paper, we find
that the spectrum of network eigenvalues contains one unity
eigenvalue with associated eigenvector (1,1, 1), corresponding
to perturbations within the synchronization manifold. These
perturbations grow exponentially due to the chaotic dynamics,
resulting in a positive largest Lyapunov exponent. The re-
maining eigenvalues are transversal eigenvalues. The second
eigenvalue is equal to zero and corresponds to perturbations of
the outer two oscillators with respect to one another, resulting
in a negative largest (transverse) Lyapunov exponent due to
the unconditional global stability, as discussed in Sec. III.

'For coupling matrices that are not diagonalizable, the master
stability function approach can still be applied, as shown, for example,
in [35].
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The third and final eigenvalue is o3 = —(1 — ) and this is
the relevant network eigenvalue determining the stability of
isochronal synchronization, in agreement with Eq. (10).

If the master stability function is rotationally symmetric,
the synchronization threshold should be the same if one
replaces the negative network eigenvalue 0 = o3 = —(1 — «)
by a positive one, 0 = 1 — k. We can test this experimentally
because such a replacement maps the problem onto that of
determining the synchronization region for a setup consisting
of two unidirectionally coupled oscillators with self-feedback.
In particular, considering Eq. (3) for two oscillators with
equal delays and coupling coefficients y;; = 1, Y10 =0, y»; =
k, and y» =1 —« yields a system of DDE’s for which
the solution corresponding to isochronal synchronization of
oscillator 1 (master system) and oscillator 2 (driven system)
exists and the equations determining the solution’s stability
are given by Eqgs. (9) and (10) with 0 = —(1 — «) replaced by
o=(1—k).

In Fig. 4(a), we show the results of such a two-oscillator
experiment as triangles. It is seen that the region of
isochronal synchronization exactly coincides with that of the
three-oscillator network. Beyond the synchronization region,
equations describing the dynamics of the mutually coupled
three-oscillator network and the unidirectionally coupled
two-oscillator setup are different and, therefore, one neither
expects nor finds a match of the cross correlation coefficients.
The experimental results are confirmed by the corresponding
numerical simulation shown in Fig. 4(b).

These results show that the theory predicting the rotational
symmetry of the master stability function in the limit of
infinite delays is applicable, in practice, to systems with
finite delay, such as the optoelectronic oscillators in this
experiment. What we have demonstrated here is an interesting
and useful consequence of the rotational symmetry of the
master stability function: one can predict the occurrence of
isochronal synchronization in any network of delay-coupled
identical oscillators based on the knowledge of synchroniza-
tion properties of one of the simplest possible setups—that
of two unidirectionally coupled oscillators with self-feedback.
For the case of the optoelectronic oscillators, our experiments
show the synchronization threshold to be |o|. &~ 1 — 0.7 =
0.3, which means that any larger network of such oscillators
will exhibit isochronal synchronization only if all transversal
network eigenvalues have a magnitude of |o}| < 0.3.

VI. CONCLUSION

In this paper, we have shown through experiments, nu-
merics, and analytic methods that isochronal synchroniza-
tion of three mutually coupled delay oscillators in a chain
configuration can be achieved by adding self-feedback to
the center unit, whereas without sufficient self-feedback only
the outer two oscillators synchronize. Furthermore, we have
demonstrated that isochronal synchronization of any network
can be predicted based on measurements of just two unidi-
rectionally coupled oscillators. This amazing simplification
is due to the symmetry of the master stability function [36]
for delay-coupled networks and relies on the assumptions that
identical dynamical systems are used as the network nodes, that
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all the delays are equal, and that the only tunable parameters
are the external coupling strengths.
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APPENDIX: GLOBAL STABILITY CONDITION

In this section, we derive the global stability bound given by
Eq. (8). The fully synchronized solution is stable if the steady
state solution of Eq. (6),1.e., A(¢) = 0, is stable. Writing Eq. (6)
in terms of its components, A = (A, A ), yields

Ay = Ay — Ay + 800 flnalt — 1), A — D),

Ay =€A,,

(AL)

where € < 1, f is defined by Eq. (7), and 0 = —(1 — k) is
the real-valued coupling coefficient.

To prove Eq. (8), we use an extension of the method of
Lyapunov-Krasovskii functionals due to Kolmanovskii and
Nosov (Theorem 5.7 and 5.8 in [37]). Although in this method
two functionals are required to establish asymptotic stability,
it has the advantage that it suffices to construct a Lyapunov-
Krasovskii functional with a nonpositive derivative.

As the Lyapunov-Krasovskii functional, we use

AZ '
V(t,A) = A2+ ?) +f Flxa(s), Av()Pds.  (A2)

The scalar, continuous, nondecreasing functions w;(r) =
r? and wy(r) = [(€)~' + ]2, which satisfy w;(0) =0 and
w;(r) > 0 for r > 0, provide bounds for the Lyapunov-
Krasovskii functional V,

w1 [le0)]] < V(1,9) < w2 [llp@)I],

with t > 1y, () € By, and tp € R.

In terms of notation, the argument ¢(6) is understood to
denote an element of the Banach space C = C ([—7,0],R?) of
continuous functions mapping the interval [—7,0] (r > 0) into
R2. The norm is defined as ||¢|| = SUp_,<p<o l9(0)|, where
| - | is the Euclidean norm in R2. The shorthand A, is used to
designate for each fixed ¢ the function in C given by A,(0) =
A(t +6),0 € [—1,0]. Finally, By denotes the closed ball of
radius H in the Banach space C,

(A3)

By = {p € C([—7,0],R?),d(0,9) < H},

where d(x,y) = ||x — y|| is the distance.

We note that Eq. (A3) holds in any ball By and that w, (1) —
oo as r — oo. This latter property is important because it is
used to establish that the asymptotic stability is global.

Next, we make the assumption that
(A4)

1 > golo| (assumption),

where the maximum gain gy is positive and real valued.
Furthermore, we can take gp to be larger than unity, gy > 1,
because otherwise the optoelectronic oscillators will exhibit
steady state behavior only [24] and A(¢) = 0 is true trivially.
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Under assumption (A4), the continuous functional ws(¢),
defined as

03(p) = — [1 — golo[1[¢2(0) + pi(—1)], (AS)

is nonpositive: w3(p) < 0. Writing x* as a shorthand for de-
layed variables, x* = x(¢ — 7), and taking the time derivative
of V(t,A,) with respect to the trajectories of Eq. (Al), one
obtains

V(t,A,)
= —(1— golo (A2 + f[x5, A7) — (A2 = flx2,AT?)

2
_< [eololf[x5,AaT] + -2 Ax>.

golo|

Utilizing the inequality | f [x2,A,]| < |A,]| yields the estimate
. 12 _
V(t,A) < —(1 = golo)(AF + [AL]) = @3(A)),

demonstrating that the Lyapunov-Krasovskii functional has a
nonpositive derivative: V(¢,A,) < @3(A;) < 0.

The above inequalities guarantee that system trajectories
hit the neighborhood of the zero set

Q@3 =0) = {¢ € By,w3(p) =0},

where the neighborhood E(u,p) € C([—7,0],R?) is defined
by

(A6)

E(u,p) ={p € By,d(¢,0) < p,u < lloll < H}.

For the case at hand, the set Q consists of elements A, =

[A(t+0),A,(t + 1" e C([—7,0],R?) with

At —1)=Ax1)=0 (A7)

and the definition of the neighborhood E(u, p) implies the in-

equalities |A,(1)] < p, |Ac(t — )] < p, and pu? < A (1)* <

H?. Although the set Q contains the origin, it does not coincide

with the origin. One therefore utilizes a second functional to
show asymptotic stability. Consider as the second functional

W(A) = Ax(DA (@), (AB)

which is seen to be bounded in any ball By. An upper bound

for the time derivative of W in E(u,p) is obtained by using
assumption (A4) and the inequality | f[x2, A, ]| < |AL],

W =—AAy— A} +ogof[x3.AL]A, + €A
< IALAy| = AT + |AL]|A, |+ €A]
< pH — u? + pH + ep?. (A9)

It is seen that, for all u € (0,H), we can choose a positive
p such that the time derivative of W is negative definite in
E(u,p) and therefore is integrally unbounded. For example,
using

(A10)

—H+ H?*+ep?/2
p= >0
€

016213-6
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in Eq. (A9) implies

W < —u?/2. (A1)

PHYSICAL REVIEW E 84, 016213 (2011)

The above inequalities are sufficient conditions, guaranteeing
that the fully synchronized state is globally asymptotically
stable (see Theorem 5.7 and 5.8 in [37]). The assumption
1 > golo| together with o = (1 — «) implies Eq. (8).
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