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Swift-Hohenberg equation with broken cubic-quintic nonlinearity
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The cubic-quintic Swift-Hohenberg equation (SH35) provides a convenient order parameter description of
several convective systems with reflection symmetry in the layer midplane, including binary fluid convection. We
use SH35 with an additional quadratic term to determine the qualitative effects of breaking the midplane reflection
symmetry on the properties of spatially localized structures in these systems. Our results describe how the
snakes-and-ladders organization of localized structures in SH35 deforms with increasing symmetry breaking and
show that the deformation ultimately generates the snakes-and-ladders structure familiar from the quadratic-cubic
Swift-Hohenberg equation. Moreover, in nonvariational systems, such as convection, odd-parity convectons
necessarily drift when the reflection symmetry is broken, permitting collisions among moving localized structures.
Collisions between both identical and nonidentical traveling states are described.
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I. INTRODUCTION

Recent studies of convection in binary fluids, both in
bulk mixtures [1,2] and in porous media [3], have identified
states of spatially localized convection that have been called
convectons [4]. Related states are also present in convection in
a magnetic field [4,5], in natural doubly diffusive convection
[6,7], and in Marangoni convection [8]. These states are time
independent and may form bound states called multipulse
convectons. In two-dimensional systems with a midplane
reflection symmetry, such as binary fluid convection, the mid-
plane symmetry is responsible for the presence of two types
of convectons with opposite parity: even-parity convectons
that are invariant with respect to spatial reflection R: x — —x
and odd-parity convectons, invariant under R followed by a
midplane reflection k:z — 1 — z. Convectons of both types
are present in a Rayleigh number regime called the snaking
or pinning region located in the subcritical regime of the
bifurcation diagram in which spatially periodic convection
coexists with the conduction state. The term snaking refers
to the back-and-forth oscillations of the convecton branches
within this region as the convectons grow in length by
nucleating new cells at either end. This process is captured
well by a model partial differential equation on the real line, the
Swift-Hohenberg equation, with competing cubic and quintic
nonlinearities (hereafter, SH35),

= ru— (1402 u + by’ — i’ (1)

Here, u(x,t) is a real-valued order parameter. The equation
defines an intrinsic length scale, here 27, and is completely
parametrized by the driving r and the cubic coefficient bs.
The SH35 has two symmetries, R:x — —x and x:u —
—u, completely analogous to the symmetries of two-
dimensional binary fluid convection. The equation has been
studied by a number of authors [9-11], and it is known
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that the snaking branches of even- and odd-parity localized
states are braided and connected by additional links called
rungs consisting of localized states with no parity. The
resulting branch structure has been called the snakes-and-
ladders structure of the snaking or pinning region [10]. Within
SH35, the asymmetric states are also equilibria. This is a
consequence of the variational (i.e., gradient) structure of the
equation. However, all such asymmetric states are known to
be unstable [10].

In the corresponding convection system, even-parity states
are necessarily time independent. This is a consequence of
their symmetry with respect to the symmetry R. In general,
even-parity states of this type may undergo secondary bifur-
cations with increasing amplitude that break this symmetry
producing a pair of symmetry-related asymmetric states. In
a translation-invariant system posed on the real line (or with
periodic boundary conditions in x), these states will, in general,
travel, with the direction of travel and speed determined by
the asymmetry. Bifurcations of this type are referred to as
parity-breaking bifurcations [12]. The bifurcations to the rung
states are pitchfork bifurcations of this type, implying that, in
nonvariational systems, the rung states will, in general, travel,
with a speed proportional to the square root of the distance
from the bifurcation. The odd-parity convectons, also present
in binary fluid convection, do not travel, however—these
states are time independent like the even-parity states. This
is a consequence of the symmetry x o R of these states,
which forces the drift speed to vanish. Thus, odd-parity
states also experience parity-breaking bifurcations leading to
drift, provided the marginally stable eigenfunction breaks the
symmetry « o R. These bifurcations are responsible for
the termination of the rung states within the snaking region
on the branch of odd-parity states.

The above discussion implies that it is possible to make
the odd-parity states drift by breaking the midplane reflection
symmetry « of the system. This can be achieved, for example,
by using different boundary conditions at the top and bottom of
the layer (on the velocity or temperature) or by incorporating
non-Boussinesq effects into the description of the problem.
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These effects include temperature and concentration depen-
dence of the transport coefficients or a quadratic dependence
of the density on the temperature or concentration. One may
also anticipate that the breaking of the symmetry « should
eliminate the distinction between the asymmetric rung states
and the odd-parity states. Breaking the symmetry « does not
destabilize the even states and implies that, in systems with
broken « symmetry, one may study collisions among almost
odd-parity states or among such states and the even-parity
states, which remain stationary. The present paper is devoted
to an exploration of these issues using Swift-Hohenberg-like
model equations to serve as a guide for future studies of
traveling convectons in binary fluid convection and related
systems.
We study two systems with this property, the equation,

U; =ru — (1 + 8?)214 + b31/l3 — w4 eu?, 2)
and the equation,
w=ru— (1402 u+bu’ —u’ +e@u)?. (3

Both equations contain a quadratic term that breaks the
symmetry x but respects the symmetry R; only one such term
is included, the dominant one in powers of the amplitude, since
its effects are believed to capture the essence of the breaking of
the k symmetry. Equation (2) continues to possess variational
structure implying that both the R-symmetric states and the
asymmetric states that result will continue to be stationary.
This fact has numerous advantages for tracing out the effects
of the symmetry-breaking term. However, in order to study the
associated drifts alluded to above, we also study Eq. (3). We
anticipate, and our computations confirm, that the replacement
of the term eu? by the nonvariational term e has qualitatively
similar consequences.

Throughout this paper, we set b3 = 2 and solve the problem
on a large domain with Neumann boundary conditions instead
of solving it on an infinite domain. The results are found to be
independent of the size of the domain provided the observed
pattern is located in the center of the domain, far from the
boundaries. All solutions are computed on the full domain,
despite the fact that even solutions can be computed on the
half domain and then reflected in x = 0 to find the solution on
the full domain.

The usual snakes-and-ladders picture for SH35, Eq. (1),
is shown in Fig. 1. There are three basic components to this
figure: a snaking branch representing even-parity solutions,
i.e., solutions invariant with respect to R, a snaking branch
representing odd-parity solutions invariant with respect to
k o R, and the rung states. The rung states connect the two
snaking branches, arising in pitchfork bifurcations close to the
saddle-node bifurcations on the snaking branches. Moving up
the snake, the saddle nodes themselves converge exponentially
rapidly to fixed values of the parameter r and do so from the
same side at both boundaries of the snaking region [13,14].
At the same time, the pitchfork bifurcations leading to the
rung states converge exponentially rapidly to the saddle-node
bifurcations [15,16].

Owing to the symmetry «, each snaking branch represents
two distinct solutions related by «. We refer to even solutions
with a maximum (minimum) in the center as Ly (Lj).
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FIG. 1. The snakes-and-ladders structure of the pinning region
—0.713 < r < —0.626 in SH35, Eq. (1), with b3 =2,¢ = 0.

Likewise, we refer to odd solutions with a negative (positive)
slope in the center as L > (L37/2). In addition, each rung in the
figure represents four distinct asymmetric states [11]. These
facts will prove useful in what follows.

The solution amplitude is defined in terms of its normalized
L, norm,

| L 1/2
A=|:z/0 uz(x)dxi| . 4)

The normalization is included in order to compare the
amplitude of localized states with that of the periodic state
(which would otherwise have infinite amplitude as L —
o0). However, because of the normalization, A vanishes for
localized states on an infinite domain. To avoid this problem,
all solution amplitudes quoted in the next two sections have
been calculated on adomain of length 407, i.e., 20 wavelengths
of the basic pattern.

II. NUMERICAL STUDY OF EQ. (2)

A. Small symmetry breaking

Equation (2) is variational, like Eq. (1), and has a Lyapunov
functional or free energy given by

L R | S
Flux)] = —/ { — ru’ + Z[(1+07)u]
0

L 2 2
1 1 1
— §6u3 — Zb3u4 + 6u6}dx. (®))

Thus, the evolution of the system follows u; = —L3F /Su, and
as aresult, all solutions evolve as t — oo toward local minima
of the energy functional F, i.e., to a time-independent state.

Figure 2 shows the solution branches in the snaking region
when the symmetry « of the problem is broken through setting
€ = 0.03 and compares the result with the snaking curves
corresponding to the k -symmetric case (¢ = 0), shown dashed.
A number of changes can be seen.

The even solutions continue to snake but are split into two
continuous branches. On the L branch, the solution profiles
continue to have maxima in the center. Sample profiles, at
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FIG. 2. As for Fig. 1, but with broken x symmetry, € = 0.03. The
snakes-and-ladders structure in the x-symmetric case € = 0 is shown
dashed. Solution profiles at the labeled saddle nodes are shown in
Figs. 3 and 4.

locations labeled (a)’—(d)’ in Fig. 2, are shown in Fig. 3. On
the L, branch, the solution profiles have minima in the center.
Sample profiles, labeled (a)—(d) in Fig. 2, are also shown in
Fig. 3. In contrast, the breaking of the x symmetry destroys
the odd parity of states L, L3z2, producing two distinct
asymmetric states A%, Each of these states comes as a pair of
states, related by the unbroken symmetry R, giving four asym-
metric states altogether. As a result, the odd-parity branch does
not split when € # 0 but instead breaks up into disconnected
parts. In view of their shapes, we refer to these disconnected
branches as S branches or Z branches. We first describe the
even states in more detail, before discussing the S and Z
branches.

When € = 0, the two even branches, L, and L, coincide,
and the corresponding profiles are related by the symmetry
k. This symmetry is broken when € % 0 and results in the
splitting of the Ly and L, branches. For |e| < 1, the splitting
is on the order of |€|'/? (cf. Ref. [17]) and is most visible at
each saddle node. As a result of the splitting, every second
saddle node on the L, branch moves outward relative to the
€ = 0 branch while the corresponding saddle nodes on the
L, branch move inward. The opposite occurs at the saddle
nodes in between. This behavior takes place along both the
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FIG. 3. Solution profiles u(x) at the saddle nodes of Fig. 2. The
profiles (a)—(d) are from the L, branch while (a)'—(d)’ are from the
L, branch.

left and the right boundaries of the snaking region. As a result,
there are now four values of r at which the folds on these
branches accumulate, r = —0.7274 and r = —0.6987 on the
leftand r = —0.6293 and r = —0.6231 on the right. Thus, the
broken « symmetry leads to an increase in the overall width
of the snaking region. Moreover, since the solutions on the
Ly, L, branches remain even, the parity-breaking bifurcations
near each saddle node remain pitchforks and continue to be
responsible for the bifurcation of spatially asymmetric states
from these branches. Thus, each rung in the diagram is split
into two branches, one of which forms a part of an S branch
while the other forms a part of a Z branch, each of which
continues to represent a pair of asymmetric localized states
related by the symmetry R.

Specifically, the solution labeled (a) at the right boundary
of the snaking region is an L, solution that results from an
outward displacement of the saddle node, while the next saddle
node on the right, labeled (c), is displaced inward. The solution
(c) has a pair of extra down cells on either side, implying that
the fronts in (c) are mirror images of those in (a). Therefore, it is
necessary to proceed one more wavelength up the snake before
one recovers a solution resembling (a) but with a full extra
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wavelength on either side of the structure. Similar evolution
takes place along the Ly branch. We see that the L solution
(a) is displaced inward, while the next L state above, labeled
(c), is displaced outward. This time, proceeding up the Lg
branch from state (a)’ to state (c)’ results in the addition of a
pair of up cells, one on each side, while the down cells saturate
in amplitude. In proceeding from (c)' to (e)’, not shown, the
structure adds a pair of down cells on either side while the
existing up cells saturate.

These observations can be interpreted in terms of nucleation
of new cells, either up cells or down cells, at the front and
back of the localized structure as one follows each branch.
This nucleation takes place at the left boundary of the snaking
region, where the cells bounding the localized structure are
weakest. For example, a down cell is nucleated at (b)’ on
the outside of a reduced strength up cell, while an up cell is
nucleated at (d)’ on the outside of a reduced strength down
cell; by the time one reaches the right boundary at (c)’, the
reduced strength up cells have grown to full strength, and
the new down cells have grown to half strength. Because
of the weakness of the cells in the nucleation region, this
region is affected the most by the symmetry breaking and,
hence, exhibits the largest splitting. Which way a branch shifts
depends on whether one is adding cells that are favored by
the symmetry breaking in which case the saddle node shifts
outward, or cells that are opposed by the symmetry breaking
in which case the saddle node shifts inward. For sufficiently
small €, the resulting shifts are equal and opposite for the
Ly, L, branches. A similar discussion applies at the right
boundary, although the magnitude of the shift is reduced. This
is a consequence of the fact that the symmetry breaking has a
smaller effect on fully developed cells. All shifts are reversed
when the sign of € is reversed.

Figure 4 shows the solution profiles at saddle nodes on
the disconnected S and Z branches. As already mentioned, the
odd-parity branch does not split when € # 0 butinstead, breaks
up into disconnected parts. This is a direct consequence of the
fact that once € # 0, the resulting states have no parity. As a
result, the pitchfork bifurcations, present near each saddle node
when € = 0, are unfolded, resulting in a continuous transition
between states resembling Ly /23,2 and one or other of the
states AT on the former rung states. Figure 2 shows that these
reconnections result in two types of branches of asymmetric
states, S branches [e.g., (b)—(ii)—(iii)—(c)], and Z branches [e.g.,
(a)—-(1)'—(i1)—(b)']. The S branches provide connections from
an Lo, or L, branch back to itself, while the Z branches
provide interconnections between the Ly and L, branches.
The folds on these branches all align with the inner folds on
the Ly, L, branches, i.e., at r = —0.6987 and r = —0.6293.
In contrast to the even branches, all folds on the L > and L3 /»
branches are displaced slightly inward when € # 0, and this
is so both at the left and the right boundaries of the snaking
region. This is because adding an up cell at one end of an
odd-parity state and a down cell at the other generates an
intermediate saddle-node displacement.

States on the S and Z branches, such as (i) and (i), are
related by approximate x symmetry. Comparison of profile
(1) in Fig. 4 with the image of (iii) under R shows that, in
proceeding upward from one S branch to the next, one up cell
and one down cell are added to the solution profile, i.e., one
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FIG. 4. Solution profiles u(x) at the saddle nodes of the discon-
nected branches in Fig. 2. The profiles (i)—(iv) are from S branches
while (i)'—(iv)’ are from Z branches.

extra wavelength. The same process occurs for the Z branches,
for example, between (i)’ and the image of (iii)’ under R.
Figures 3 and 4 also allow us to trace the evolution of the
profiles along the S and Z branches. For example, in proceeding
from profile (b) to profile (c) along the connecting S branch,
we see that, between (b) and (ii), the up and down cells at the
left shrink while those at the right both grow. Between (ii) and
(iii), the cells at both ends grow, while between (iii) and (c),
the cells at the left grow while those at the right shrink. The net
effect of these changes is to increase the amplitude of the cells
at either end, without changing the internal structure of the
solution. In contrast, when proceeding from (a) to (b)" along a
Z branch, we see that, between (a) and (i), the cells at the left
grow while those at the right shrink. Both sets grow between
(1)’ and (ii)’ while between (ii)’ and (b)’, the cells at the left
continue to grow while those at the right slightly shrink. The
net effect of these changes is to add one wavelength to the
structure, thereby turning an L, state into an L state.

In all cases, the length of the localized structure changes
by one wavelength as one proceeds up the snaking structure in
Fig. 2 from one fold to the next like fold.
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FIG. 5. (Color online) Evolution of a Z branch with €. The central
segment of each Z branch is stable while the upper and lower segments
each have one real unstable eigenvalue.

B. Increased symmetry breaking

Figure 5 shows the effect of increasing the strength € of the
symmetry-breaking term on the width and shape of a particular
Z branch of asymmetric states. The end points of each curve
correspond to its termination on the L and L, branches. Thus,
the end points are proxies for the location of the outermost
saddle-node bifurcations while the saddle nodes define the
boundaries of the inner snaking region. As shown in Fig. 5,
as € increases, the saddle nodes annihilate each other and so
gradually straighten the Z shape into a monotonic curve.

The stability of the Z branch carries over from the € = 0
case. The upper and lower segments are unstable with one
positive real eigenvalue, a consequence of the instability of
the rung states when € = 0. However, the central segment is
stable (when it exists) since this part of the curve is always the
remnant of a stable segment of an L, (L35 /2) branch.

As € is increased, the S branches shrink in size as shown
in Fig. 6 and disappear for € > 0.2. All solution profiles
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FIG. 6. (Color online) Evolution of an S branch with €. For
€ > 0.20, S branches no longer exist. All states on these branches
are unstable, with one real unstable eigenvalue on the sections with
positive gradient and two real unstable eigenvalues on the sections
with negative gradient.
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FIG. 7. Snaking region at € = 0.1. One Z-shaped rung and an
S-shaped rung are included, taken from Figs. 5 and 6, respectively.

on S branches are unstable. As before, the upper and lower
segments have a single real unstable eigenvalue, but this time,
the central segment has two real unstable eigenvalues. This is
a consequence of the fact that these segments are created from
unstable segments of the Ly /> (L3z2) branch when € = 0.

Stability properties along the snaking branches L, L, also
carry over from the € = 0 case: The segments of either branch
sloping up from left to right are stable while the remaining
segments are unstable. The cumulative effect of these changes
is shown in Figs. 7 and 8.

III. NUMERICAL STUDY OF EQ. (3)

In this section, we examine the corresponding properties
of the nonvariational system (3). As the solutions may now
drift, we seek stationary solutions in a moving frame, i.e.,
u(x,t) = u(&) with £ = x — ct and solve

0=ru— (1 + 852)214 + b3u3 -+ 6(351/{)2 + cozu, (6)
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FIG. 8. Snaking region at € = (0.5. One Z-shaped rung, now
straightened, is included, the same as shown in Fig. 5. For this value
of €, S branches are no longer present.
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FIG. 9. Snaking region for Eq. (3) when € = 0.01, including all
S and Z branches.

where c is treated as an (nonlinear) eigenvalue and is calculated
as part of the solution. The symmetry R takes solutions u(&; ¢)
into solutions u(—§&; —c).

Figures 9—12 show that the symmetry breaking has essen-
tially the same effect on the ¢ = 0 snaking branches as in the
variational case, and that with increasing €, the S branches of
asymmetric states gradually disappear while the Z branches
gradually straighten. Thus, the net outcome of this behavior
is to eliminate every second saddle node, both at the left and
the right boundaries of the snaking region, and to replace the
single snaking branch of even-parity states by a pair of braided
Lo, L, branches.

As in the variational case, solution stability carries over
from SH35. As a result, the parts of the snaking curves
sloping upward from left to right are stable while all other
solutions are unstable. No oscillatory bifurcations have been
found, although for € = 0.3, complex conjugate pairs of L
eigenvalues approach the imaginary axis close to the saddle
nodes. We mention that, in the generic situation, the interaction
of a saddle-node bifurcation with a parity-breaking bifurcation
is expected to generate oscillations [18] and such oscillations
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FIG. 10. Snaking region for Eq. (3) when € = 0.03, including all
S and Z branches, for comparison with Fig. 2, also computed for
€ = 0.03.
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FIG. 11. Snaking region for Eq. (3) when € = 0.1, including all
S and Z branches, for comparison with Fig. 7. The drift speed on
the S branches passes through zero, while that along the Z branches
maintains a constant sign.

are indeed present in the Swift-Hohenberg equation with
sufficiently large nonvariational terms [19].

Figure 13 shows the S and Z branches of asymmetric states
extracted from Fig. 9 for ¢ = 0.01. As before, the end points
are proxies for the outermost saddle nodes within the snaking
region while the interval between the saddle nodes defines
the inner snaking region in Fig. 9. The branches are drawn
using distinct line types to facilitate comparison with Fig. 14
showing the drift speed c along these branches. Comparison of
the figures reveals that the drift speed passes through zero along
the S branches but remains of one sign along the Z branches.
The reason for this is simple to understand. When proceeding
from a left saddle node upward to a right saddle node, the cells
at either end of the localized structure strengthen, thereby
monotonically increasing the drift speed. However, along
segments that extend upward from a right saddle node to a
left saddle node, the incipient nucleation counteracts the drift
as the asymmetry of the structure starts to reverse, and the
drift must pass through zero before it starts building up past

Z branches A

Solution amplitude

034} L,
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FIG. 12. Snaking region for Eq. (3) when € = 0.3. The S branches
are now absent while the Z branches have straightened into rung
states.
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FIG. 13. (Color online) S and Z branches of asymmetric states
from Fig. 9 for ¢ = 0.01.

the left saddle node. Thus, the speed c¢ changes sign along
any branch that follows a segment of odd-parity states with
a negative slope, i.e., on S branches. In contrast, the speed
will be monotonic on any branch involving a segment with a
positive slope, i.e., Z branches. Drift speeds are expected to
decrease with increasing length of the localized state as the
cells at either end that produce the drift become a smaller and
smaller fraction of the state. This prediction is consistent with
the computed maximum drift speeds in Fig. 14, e.g., the red
(solid) and blue (dashed) curves in the figure.

IV. COLLISIONS OF TRAVELING LOCALIZED STATES

In this section, we explore the dynamics associated with
the interaction between localized states of Eq. (3). All states
are taken from stable sections of the solution branches at r =
—0.65 and € = 0.1. We study, in turn, the interaction between
two identical localized states traveling in opposite directions
(head-on collision) and the interaction between two different
localized structures selected from different Z branches but at
the same value of r. When considering collisions between
different structures, we describe separately the case in which
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FIG. 14. (Color online) Drift speeds along the S and Z branches
shown in Fig. 13. Line styles are consistent between these figures. The
speeds reverse along S branches but are monotonic along Z branches.
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FIG. 15. (a) A head-on collision between two identical localized
states # and Ru at r = —0.65 and € = 0.1, shown in the form of a
space-time plot. When far apart, each pulse drifts with speed 4.2 x
1073, Solution profiles are separated by 500 time units. (b) Evolution
of the solution amplitude A, computed on the full domain of length
80sr. The final state is a stationary even-parity localized state.

the structures are moving in the same direction and the case
in which they move in opposite directions. We also consider
collisions between an asymmetric traveling localized state and
an even-parity stationary state.

We start with a head-on collision between an asymmetric
state and its image under R, initially far apart, treated as an
initial value problem. Far apart, the drift speed of each state
is ¢ = 4.2 x 1073, The collision generates a steady localized
structure of even parity whose length exceeds the sum of the
lengths of the individual traveling pulses. Figure 15(a) shows
the details of the collision in a space-time plot, while panel
(b) shows the amplitude .4, computed over the domain length
L = 80, as a function of time. The evolution is nonmonotonic
as the approaching pulses alternately reinforce one another
and suppress one another. The coalescence is very rapid and
is accompanied by a noticeable overshoot before the solution
relaxes to the final steady state.

In Fig. 16, we show an asymmetrical collision starting from
two different asymmetric states, both at r = —0.65 and with
opposite speeds. The longer state has drift speed 3.1 x 1073,
i.e., although it has larger amplitude, it is, in fact, slower.
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FIG. 16. (a) Interaction of two different localized states at r =
—0.65 and € = 0.1, taken from the stable region of neighboring Z
branches in a space-time plot. Solution profiles are separated by
500 time units. (b) Evolution of the solution amplitude .4, computed
on the full domain of length 80z. The final state is a stationary
even-parity localized state.

Despite its asymmetry, the collision once again creates an
even-parity stationary state that is wider than the sum of the
lengths of the individual pulses. As in the preceding example,
this appears to be a result of constructive interference wherein
each pulse provides a sufficient perturbation to its neighbor
to bump the smaller interior peaks up to the amplitude of the
competing periodic state.

Figure 17 shows a collision between the two pulses in
Fig. 16, but this time traveling in the same direction. The final
state is an asymmetric traveling state whose length is larger
than the sum of the individual lengths and, therefore, whose
speed is much less than the individual speeds.

Figure 18 shows the two possible results when an asym-
metric state collides with a stationary symmetric solution. In
each case, the resulting state is longer than the sum of the
initial profiles, with a pair of extra peaks formed in the center.
Two possible outcomes have been identified, depending on the
outermost fronts, i.e., the fronts not involved in the collision.
When these fronts are alike (i.e., related by an approximate R
symmetry), the final state is stationary and even [Fig. 18(b)].
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FIG. 17. As for Fig. 16, but now with both localized states
traveling in the same direction, with the faster pulse behind the slower
pulse. The resulting state is asymmetric and, as a result, continues to
travel, albeit at a much slower speed. Successive solution profiles are
separated by 2000 time units. (b) Evolution of the solution amplitude
A, computed on the full domain of length 807.

In contrast, when these fronts are unlike (i.e., related by an
approximate k o R symmetry), the final state is asymmetric
and continues to drift [Fig. 18(a)].

V. DISCUSSION AND CONCLUSIONS

Homoclinic snaking in systems with reflection symmetry
k differs in a fundamental way from that present in non-
symmetric systems [11]. As shown in Fig. 19, the Lg,,
Ly 237/ branches in the symmetric case snake with double
the frequency of the L , branches in the nonsymmetric case.
This is a consequence of the fact that, in symmetric systems,
the solutions add half a wavelength on either side in passing
from a saddle node to the next saddle node above, while in
nonsymmetric systems, a full wavelength is added on either
side during a similar oscillation. Thus, when the symmetry «
is broken, the resulting deformation of the snakes-and-ladders
structure in Fig. 1 must be such as to: (i) create two distinct
braided branches of even states from the original even snaking
branch, (ii) eliminate every second back-and-forth oscillation
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FIG. 18. Collision of a pulse from the asymmetric branch with
different stationary states, (a) an L, state and (b) an L, state. In
both cases, € = 0.1 and r = —0.65. Solution profiles are separated
by 1000 time units. In (a), the final state is asymmetric and continues
to travel, albeit at a much slower speed. In case (b), the final state is
symmetric and so is stationary.

of the branch together with the corresponding rung states, and
(iii) replace the snaking odd-parity states and the remaining
rung states by monotonic branches connecting the two braided
even-parity branches.

], [

@ ., ®) ;

FIG. 19. (Color online) Comparison of the snakes-and-ladders
structure of the pinning regions in (a) SH23, viz., u, =ru — (1 +
02)%u + bou* — u?, and (b) SH35, Eq. (1), together with sample Ly
profiles. The figure shows that, to generate a localized state of a
given length, the L, branch executes twice as many back-and-forth
oscillations in case (b) than in case (a). Parameters: (a) b, = 1.8 and
(b) b3 = 2. Reproduced with permission from Ref. [20].
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In this paper, we have studied this process in the Swift-
Hohenberg equation with competing cubic-quintic nonlin-
earities (SH35). Our computations reveal that breaking the
symmetry « splits the branch of even states Ly, into two
branches by shifting consecutive L, saddle nodes alternately
inward and outward relative to the x-symmetric case and
likewise for L, but out of phase with the L\ saddle nodes. At
the same time, the L /5 3,/2 saddle nodes are all shifted inward,
and the odd-parity states reconnect with the asymmetric states
on the rungs in the snakes-and-ladders structure owing to
the destruction of the parity-breaking bifurcations on the
L2372 branch. These reconnections result in two different
disconnected branches of asymmetric states. Of these, the S
branches provide connections from one even-parity branch
(Lo or Ly) to itself, while the Z-shaped branches provide
connections between Ly and L, . With increasing asymmetry,
the S-shaped connections shrink to zero, while the Z-shaped
connections gradually straighten out and produce monotonic
runglike connections between L and L. Thus, for sufficiently
large symmetry breaking, the snakes-and-ladders structure re-
sembles that familiar from the Swift-Hohenberg equation with
competing quadratic-cubic nonlinearities (SH23) [17]. The
above process is independent of the nature of the symmetry-
breaking term used and represents one of three types of snaking
behavior identified in Ref. [15] on the basis of geometrical
arguments. Its presence here is an inevitable consequence of
the breaking of the k symmetry, a fact that sheds new light on
the occurrence of this process in physical systems.

We have emphasized that the breaking of the symmetry
k via nonvariational terms results, in general, in localized
structures that drift. These structures are asymmetric and arise
both from asymmetric rung states and from odd-parity states
where the odd parity has been broken. Since the interaction
between localized structures falls off exponentially with
their separation, almost any nonvariational symmetry-breaking
perturbation will destroy a bound state of odd-parity localized
structures and will lead to drift of the individual pulses. We
have examined various types of collisions of such pulses.
These collisions lead, in general, to structures whose length
exceeds the sum of the individual lengths (amalgamation),
and these may be either stationary or drifting depending on
the profiles (and speeds) of the individual pulses. Since short
structures travel faster than long ones, the resulting collisions
differ qualitatively from those common in systems supporting
solitary waves in which the large amplitude wave usually
travels faster than a small amplitude wave. In our case, the
shorter, faster pulses do not have enough “momentum” to
destroy the longer, slower pulse, in contrast, for example,
to pulses described by coupled complex Ginzburg-Landau
equations [21,22].

When the symmetry R is broken instead of «, the snakes-
and-ladders structure is also destroyed. Burke et al. [23]
show, using SH23, that, in this case, the snakes-and-ladders
structure breaks up into a stack of figure-eight isolas. Each
isola consists of asymmetric states with a particular length, and
all such states drift. Outside of the pinning region, nucleation
of new cells competes with the drift of the structure leading
to asymmetric nucleation. In the present problem, similar
behavior is associated with convectons that drift because of the
broken k symmetry, and once again, asymmetric nucleation
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is the result. However, to the right of the pinning region,
repeated nucleation leads to longer and longer structures with
a corresponding decrease in drift speed. Thus, the asymmetry
between the nucleation fore and aft gradually decreases with
increasing time. The opposite occurs to the left of the pinning
region where cells are destroyed asymmetrically, and the
asymmetry gradually increases with time.

We mention that S-shaped and Z-shaped secondary and
tertiary branches are common in snaking scenarios. For
example, such branches are generated in SH35 when periodic
boundary conditions are replaced by Neumann or Dirichlet
boundary conditions [24], a fact likely due to the loss

PHYSICAL REVIEW E 84, 016204 (2011)

of discrete translation symmetries. Such branches are also
present in the snaking of multipulse states in systems with
midplane reflection symmetry [3] since the presence of a
second pulse breaks the « symmetry of the first pulse.
Finally, similar structures, with identical stability properties,
are associated with two-dimensional structures in SH35 as
well [25].
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