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Clustering of extreme and recurrent events in deterministic chaotic systems
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We study the nontrivial clustering properties of extreme or recurrent events in the context of deterministic
chaotic systems. We find that correlations between return times of such events can depend nonmonotonically on
the threshold used to define the events, which leads to counterintuitive behavior. In particular, the distribution
of the conditional return intervals can indicate clustering as well as repelling of extreme events for the same
condition but different thresholds—in sharp contrast to what has been observed for stochastic processes with
long-range correlations as well as for independent and identically distributed random variables. This has important
implications for the time-dependent hazard assessment of extreme events, indicating that possible threshold
dependencies should always be taken into account.
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I. INTRODUCTION

Extreme events are an important theme in various areas
of science because of their typically devastating effects on
society and their scientific complexities [1,2]. In particular,
the ever-increasing economic and human losses from natural
hazards underscore the urgency for improving understanding
of extreme events to develop effective strategies to reduce their
impact. The classic approach to studying the probability of
extreme events has been to assume independent and identically
distributed (IID) event sizes. This has led to a powerful
statistical theory (see, e.g., Refs. [3–5]), which has been
successfully applied in many cases. The latter is also related to
the fact that some parts of the theory—for example, the limit
distributions of block maxima—can be extended to a wide
class of dependent stationary time series [6,7].

Aside from the distribution of block maxima, another very
useful and practical indicator for hazard assessment is the
distribution of return intervals between well-defined extreme
events. For time series of IID events, the Poisson process
associated with events above a fixed threshold gives rise to the
well-known exponential return interval distribution and, in par-
ticular, independent return intervals [8]. For (long-range) cor-
related stochastic processes frequently encountered in nature,
however, the return intervals are typically not independent.
Besides, the distribution is often no longer exponential and
a number of distributions have been put forward, depending
on the data set, such as γ distributions and power laws with
stretched exponential tails [9–15]. Artificially generated long-
range correlated stochastic signals have been studied in detail
[16–19], and some progress has been made toward a theoretical
understanding of return intervals in (long-range) correlated
series [20–23], but the overall picture is far from complete.

Here, we focus on the statistical properties of return
intervals in deterministic chaotic systems like the logistic map.
In contrast to the IID case or stochastic processes with long-
range correlations, it has been recently shown that the principal
signatures of such deterministic dynamics in the statistics
of extreme or recurrent events and their return intervals
give rise to novel and distinct properties [24,25]. We extend
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these findings here by showing that the clustering of extreme
events due to nontrivial correlations in the return intervals can
depend sensitively on the threshold used to define extreme
events, even switching from clustering to repelling of extreme
events and back. Here, nontrivial clustering corresponds to a
tendency—which is higher than expected from the distribution
of return intervals alone—that return intervals are similar to
the previous one, while repelling corresponds to an alternating
behavior in the return times; namely, large values have a
tendency to be followed by small values and vice versa.
In particular, we show that the conditional return interval
distributions, i.e., the distributions of those return intervals
that follow immediately a preceding return interval of a given
size in the series of the return intervals, vary qualitatively with
threshold. Due to these variations, the conditional mean return
intervals exhibit nonmonotonic effects that render it impossible
to make a time-dependent hazard assessment independent of
the applied threshold to define extreme events as recurrences
to a finite interval. Thus, our findings clearly indicate that one
should always investigate the influence of the applied threshold
on the properties of the return times and on measures used for
time-dependent hazard assessment.

II. FULLY DEVELOPED CHAOS

A prime example of an iterated map system xn+1 = f (xn)
that exhibits fully developed chaos and is particularly simple
is the one-dimensional tent map, which we will consider here.
It is defined on the unit interval 0 � x � 1 as

f (x) = 1 − |1 − 2x|. (1)

The corresponding natural density is given by ρ(x) = 1. Note
that a large class of maps conjugate to the tent map exists. One
particularly important example is the logistic map [26].

In the context of such an iterated map system, we consider
extreme events as threshold exceedances for a fixed threshold
xth or equivalently as recurrences to the interval [xth,1]. This
leaves us with two possible variants of a precise definition
of extreme events: Either all extreme events only consist of
a single extreme value, or extreme events are defined as a
continuous sequence of values above xth. The former case
is particularly suitable in the context of intrinsically discrete
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THOMAS SCHWEIGLER AND JÖRN DAVIDSEN PHYSICAL REVIEW E 84, 016202 (2011)

processes, for which it is more appropriate to consider two
subsequent values above xth as separate events. In the latter
case, extreme events are simply peak over threshold events,
which is typically more suitable for continuous processes.
While we focus here on the first convention—also used in
Ref. [17]—we obtain qualitatively similar results for the
second convention. In terms of the return intervals rk between
subsequent extreme events, one direct consequence of this
choice is that any positive integer value is possible.1

To test for the existence of nontrivial clustering or repelling
of extreme events,2 we numerically analyzed the iterated map
system given by Eq. (1) and estimated the autocorrelation
function Cxth (l) of the series of return intervals rk for various
threshold values xth.3 For stationary processes as the one
considered here, the autocorrelation function is defined by

Cxth (l) = Exth

[(
rk − r̄xth

)(
rk+l − r̄xth

)]

σ 2
xth

, (2)

where Exth [· · ·] stands for the expectation value for a given
threshold value xth. The variable l is commonly called “lag”
and refers to the (discrete) separation between the return
intervals whose relationship should be investigated. As shown
in Figs. 1 and 2, Cxth (l) displays nonmonotonic dependence
on both the threshold value and the lag l. This behavior
is fundamentally different from the behavior observed for
stochastic systems with long-range correlations [17] or IID
signals. In particular, Figs. 1 and 2 imply that one can
observe clustering or repelling of extreme events as well as
independent occurrences of extreme events depending on the
chosen threshold value. For example, the alternating behavior
of the autocorrelation function for xth = 0.698 indicates that
large return intervals tend to be followed by small ones and
vice versa, which corresponds to repelling of extreme events.

By knowing the possible Markov partitions of the tent
map, we can predict that the autocorrelation function must be
identically zero for certain threshold values. This follows from

1For the alternative definition of extreme events, the minimum return
interval is two.

2As already mentioned above, clustering corresponds to a
tendency—which is higher than expected from the distribution of
return intervals alone—that return intervals are similar to the previous
one, while repelling corresponds to an alternating behavior in the
return times; namely, large values have a tendency to be followed by
small values and vice versa. Extreme events are defined as threshold
exceedances; each single exceedance is interpreted as a separate
extreme event.

3For the actual simulation, the logistic map was used. The logistic
map given by f (y) = 1 − 2y2, − 1 � y � 1 is conjugate to the tent
map. The transformation is given by y = − cos(πx). Simulating the
logistic map instead of the tent map allows us to generate longer
sequences. In a direct simulation of the tent map, a fast convergence
to a periodic orbit or a fixed point would occur (every rational number
finally converges to a periodic orbit; clearly we can only represent
rational numbers with a computer). After the simulation of the logistic
map had been performed, a back-transformation was applied so that
the results are valid for the tent map. The statistical results for the
autocorrelation function have been obtained numerically by averaging
over 106 return intervals.
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FIG. 1. (Color online) Autocorrelation coefficient of the sequence
of return intervals of extreme events as a function of threshold
values xth for different lags l. The curves belonging to the different
lags are marked by different symbols [l = 1: (red) squares; l =
2: (green) circles; l = 3: (blue) reverse triangles; l = 4: (cyan)
diamonds]. Nonmonotonic dependence on both threshold and lag can
be observed. The vertical lines represent some of the threshold values
for which all coefficients must be zero (see text for a discussion).

the fact that if [xth,1] is a single cell of any Markov partition,
i.e., if the occurrences of extreme events are recurrences
to a Markov cell, then successive recurrence times must be
independent of each other. It is known that a partitioning of
the unit interval into K equal intervals ([(n − 1)/K,n/K],n =
1, . . . ,K) is Markovian [27]. Therefore, the intervals [(K −
1)/K,1] represent cells of a Markov partition, which implies
that the autocorrelation function for threshold values of the
form (K − 1)/K,K ∈ N, must be zero. Some of these values
are represented by vertical lines in Fig. 1. Note that the lines
would get dense for threshold values close to 1.

It is also important to realize that the cells of the Markov
partition are in general not “lumpable,” or in other words, the
union of two or more cells of one given Markov partition will
in general not be a single cell of another Markov partition [25].
This means that successive return intervals will in general not
be independent of each other even for rational threshold values
of the form (K − n)/K,K ∈ N,n ∈ N,(K − 1) > n > 1. The
nonvanishing autocorrelation function for some of these values
is evident from Fig. 1.
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FIG. 2. (Color online) Autocorrelation function of the sequence
of return intervals of extreme events for two different threshold values
representing clustering and repelling of return intervals, respectively.
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FIG. 3. (Color online) The figure shows the conditional proba-
bility Pxth (r|r0) divided by the unconditional probability Pxth (r) as a
function of r/r̄xth (return interval in units of the mean return interval).
For all data sets we chose r0/r̄xth = √

2. Data for the threshold
values xth = 0.293 (triangles), xth = 0.529 (squares), xth = 0.646
(diamonds), xth = 0.717 (reverse triangles), and xth = 0.764 (circles)
are presented. The results have been obtained numerically from a data
set with 109 return intervals per threshold value.

The autocorrelation function of the series of return intervals
has a direct influence on the probability, Pxth (r|r0), of finding a
return interval r conditioned that the preceding return interval
was of a certain length r0. This distribution is a convenient tool
often used for time-dependent hazard assessment. In Fig. 3 the
ratio of the conditional to the unconditional return interval
distribution Pxth (r|r0)/Pxth (r) is shown for various threshold
values. If this ratio is identically 1, then the observation of
a return interval of length r0 has no predictive power for
the direct subsequent return interval. In all cases shown,
we have fixed r0 such that r0/r̄xth = √

2, where r̄xth is the
average return time for a given xth. In agreement with the
results obtained for the autocorrelation coefficient Cxth (1) (see
Fig. 1), we get qualitatively different curves for the different
threshold values. The condition r0/r̄xth = √

2 means that we
condition on a return interval r0 that is larger than the mean
return interval. Therefore, in the case that repelling of extreme
events occurs, the conditional probability should be bigger than
the unconditional for small return intervals and smaller than
the unconditional for large return intervals (i.e., we should
get a decaying curve in Fig. 3). On the other hand, when
clustering of extreme events occurs—large (small) intervals
tend to be followed by large (small) ones—the curve should
be increasing. Consequently, if the threshold value corresponds
to a negative C(1) (repelling of extreme events), then a falling
curve is expected. For threshold values corresponding to a
positive C(1), on the other hand, we should get a rising curve.
This is fully confirmed by the results presented in Fig. 3.

The behavior shown in Fig. 3 is fundamentally different
from what has been observed for stochastic processes with
long-range correlations [17] or IID processes. In particular,
the figure illustrates that no universal scaling law of the
form Pxth (r|r0) = (1/r̄xth )fr0/r̄xth

(r/r̄xth ) exists, which has been
proposed for stochastic processes [17]. The existence of
such a scaling law would imply that all data points in the
graph would lie on a single curve, which is clearly not the
case.
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FIG. 4. (Color online) The figure shows the conditional mean
return interval r̄xth (r0) in units of the unconditional mean return
interval r̄xth vs the condition r0/r̄xth . The same threshold values as
in Fig. 3 have been used. The results have been obtained numerically
from a data set with 109 return intervals per threshold value.

The absence of such a scaling law is actually a consequence
of the properties of the unconditional distribution of return
intervals Pxth (r) and the form of the autocorrelation coefficient
Cxth (l = 1). Similar to what has been recently shown for related
quantities4 in deterministic systems [25,28], Pxth (r) is not
smooth as a function of the threshold value but undergoes
abrupt changes at a discrete set of values (not shown). This
prevents the existence of a scaling law of the form Pxth (r) =
(1/r̄xth )f (r/r̄xth ), which was also proposed for long-range cor-
related stochastic processes [17]. Moreover, Pxth (r|r0) together
with Pxth (r) fully determines the autocorrelation coefficient,
since by definition [Eq. (2)],

Cxth (l = 1) =
∑

r0
Pxth (r0)

(
r0 − r̄xth

)∑
r Pxth (r|r0)

(
r − r̄xth

)

σ 2
xth

.

(3)

As can be clearly seen from Eq. (3), the existence of a unique
scaling law for Pxth (r|r0) is incompatible not only with the
lack of smoothness of Pxth (r), but also with the nonmonotonic
threshold dependence of the autocorrelation function (see
Figs. 1 and 2), assuming that finite size effects can be neglected.

A related tool often used for time-dependent hazard
assessment is the conditional mean return interval r̄xth (r0),
which is defined as r̄xth (r0) = ∑∞

r=1 rPxth (r|r0). In Fig. 4,
r̄xth (r0) is shown for five different threshold values. In all
cases, the dependence on the previous return interval r0

agrees with the results for the autocorrelation function (see
Fig. 1). For the threshold value of 0.717, for example, the
autocorrelation function exhibits a repelling of extreme events
and in particular the autocorrelation coefficient for lag 1 is
negative. Therefore, short return intervals should on average
be followed by long return intervals, and long return intervals
should on average be followed by short return intervals. This is
indeed confirmed by the results for the conditional mean return

4In Ref. [25], first exceedence times instead of return intervals were
investigated, while [28] used the second convention to define extreme
events discussed above.
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FIG. 5. (Color online) Like Fig. 3 but for the cusp map and
r0/r̄xth = 0.6. Data for the threshold values xth = −0.0954 (triangles),
xth = 0.1056 (squares), xth = 0.2254 (diamonds), and xth = 0.5101
(reverse triangles) are presented. The results have been obtained
numerically from a data set with 2 × 109 return intervals per threshold
value.

interval, since it decreases monotonically with r0 (reverse
triangles in Fig. 4). For the threshold value of 0.764 on the
other hand, the autocorrelation coefficient Cxth (1) is positive,
which indicates that clustering of extreme events should occur.
Indeed, we find that the conditional mean return interval
increases monotonically with r0 (circles in Fig. 4).5

III. INTERMITTENT CHAOS

The results in Figs. 3 and 4 show that estimating conditional
occurrence probabilities of extreme events in deterministic
systems can depend sensitively on the choice of the threshold
value used to define extreme events. To get a complete
picture, one has to explicitly consider different threshold
values. The importance and generality of these findings is
further emphasized by the fact that they are not specific to the
tent map and maps conjugate to it. In particular, we obtain
qualitatively similar results for maps exhibiting a different
form of deterministic chaos namely intermittency. This is
evident from Figs. 5 and 6, which show the conditional
occurrence probability and the conditional mean return interval
of extreme events, respectively, for the cusp map. This map is
defined as f (x) = 1 − 2

√|x|, − 1 � x � 1. In contrast to the
tent map, the autocorrelation function of the return intervals
for the cusp map is not well-defined. This is due to the fact
that the variance of the distribution of return intervals in the
cusp map is infinite for all threshold values −1 < xth < 1
[29]. Despite this, clustering and repelling of extreme events
can occur, depending on the threshold. This follows from
Figs. 5 and 6. Thus, we expect that many deterministically
chaotic systems exhibit strong qualitative changes in statistical

5Note that even though we get a monotonic dependence of the
conditional mean return interval on r0 for all considered threshold
values in case of the tent map, this property does not hold true for all
deterministic systems. For the cusp map, for example, a nonmono-
tonic behavior was observed (see Fig. 6), which should be related to
nonlinear effects.
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FIG. 6. (Color online) Like Fig. 4 but for the cusp map. The same
threshold values as in Fig. 5 have been used. The results have been
obtained numerically from a data set with 2 × 109 return intervals per
threshold value.

measures typically used for time-dependent hazard assessment
if the threshold used to define extreme events is varied. In
particular for the distribution of conditional return intervals,
the same condition can have qualitatively different effects
depending on the threshold.

IV. CONCLUSIONS

It is important to realize that our findings are to a
certain extent specific to the definition of extreme events as
recurrences to finite intervals. In the limit of vanishing intervals
corresponding to asymptotically rare events, analytical results
exist for a large number of dynamical systems. For example,
it is known that for piecewise expanding maps with certain
properties, the unconditional distribution of return intervals
approaches an exponential form [30,31]. Moreover, successive
return intervals are independent from each other such that
asymptotically rare events can be treated within the classic
framework of IID processes. The main objective of our study,
the tent map, belongs to this class of dynamical systems.
However, many other chaotic systems, including some in-
termittent maps [32], show a different asymptotic behavior.
In practical situations, one is always interested in extreme
events, which have a finite probability of occurrence. Thus,
deviations from the behavior expected for asymptotically
rare events—if known at all—can become important. As we
showed here, such deviations can be significant and indeed
lead to counterintuitive behavior.

To summarize, our findings prove that some of the standard
tools used for time-dependent hazard assessment of extreme
events can sensitively depend on the exact threshold values
used to define extreme events if the underlying deterministic
dynamics is chaotic. In particular, this sensitive dependence
can lead to diametrically opposed results, namely, from a clus-
tering to a repelling of extreme events and vice versa. This is in
sharp contrast to idealized situations like IID random variables
and stochastic processes with long-range correlations, which
are often considered in the context of extreme events and which
do not exhibit any nonmonotonic threshold dependencies.
Expectations built on such simple stochastic models can, thus,
be misleading for time-dependent hazard assessment in real
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world situations. Our results constitute a proof of principle
that one should always investigate the influence of the applied
threshold on the properties of the return times and on mea-
sures used for time-dependent hazard assessment of extreme
events.
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