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Interplay between structure and dynamics in adaptive complex networks:
Emergence and amplification of modularity by adaptive dynamics
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Many real networks display modular organization, which can influence dynamical clustering on the networks.
Therefore, there have been proposals put forth recently to detect network communities by using dynamical
clustering. In this paper, we study how the feedback from dynamical clusters can shape the network connection
weights with a weight-adaptation scheme motivated from Hebbian learning in neural systems. We show that
such a scheme generically leads to the formation of community structure in globally coupled chaotic oscillators.
The number of communities in the adaptive network depends on coupling strength c and adaptation strength r .
In a modular network, the adaptation scheme will enhance the intramodule connection weights and weaken
the intermodule connection strengths, generating effectively separated dynamical clusters that coincide with the
communities of the network. In this sense, the modularity of the network is amplified by the adaptation. Thus,
for a network with a strong community structure, the adaptation scheme can evidently reflect its community
structure by the resulting amplified weighted network. For a network with a weak community structure, the
statistical properties of synchronization clusters from different realizations can be used to amplify the modularity
of the communities so that they can be detected reliably by the other traditional algorithms.
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I. INTRODUCTION

Many real-world systems from nature to society can be
described by complex networks [1,2]. These networks often
exhibit topological characteristics that are far from random,
such as small-world and scale-free properties. Also, many
networks display modular structure, in which network nodes
are linked together in tightly knit communities, or modules,
between which there are only looser connections [3]. This
property has been observed in many systems, including social
and biological networks [3,4]. Such a community structure
can play concrete functional roles. For example, in a food
web, communities reveal the subsystems of an ecosystem [5].
Thus, it is important to study community structure for complex
dynamical systems.

Most of the previous studies on community networks have
been focused on developing methods to identify community
structure [3–12]. In particular, there have been several propos-
als to use synchronization and dynamical clustering to detect
communities [14–17]. This is based on the understanding that
structure plays a fundamental role in shaping various dynamics
of complex systems [18–20]. In addition to detection of a
community using synchronization, the impact of community
on dynamics has received a great deal of attention. For
example, it was found that [21] the dynamics exhibits a
hierarchical modular organization in complex cortical brain
networks. In a gradient clustered network, in which the sizes
of the clusters are distributed unevenly, the synchronizability
of the network is determined mainly by the properties of the
subnetworks in the two largest clusters if the gradient field is
sufficiently strong [22]. For a multimodular network (allowing
nodes to simultaneously belong to two or more communities),
the dynamical behavior is enhanced in each interface of the
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graph modules, so the overlapping structure can be identified
by a careful monitoring of the synchronization process [23].

Recently, there have also been a few attempts to study how
and why communities emerge in complex networks [24,25].
For example, it has been shown that (unweighted) modular
configurations emerge from multiconstraint optimization, e.g.,
minimizing the average path length and the total number of
links while maximizing robustness against perturbations in
node activity [24]. Community topology can appear by adding
links, where the weights are generated dynamically according
to a local search of the developing topology [25].

However, the investigations on topological models for the
emergence of community and the impact of community on
dynamical clusters do not take into consideration an important
ingredient in many realistic network systems. Many real-world
networks are interacting dynamical entities with an interplay
between dynamical states and network topology, which are
so-called adaptive networks (AN’s) [26,27]. In the past few
years, models of AN’s have been presented and investigated
[26,28–31]. For instance, Ref. [26] has investigated adaptive
changes of coupling strength due to a local synchronization
property in heterogeneous networks. Reference [28] has
proposed a traffic-driven adaptive model of weighted tech-
nological networks, where the traffic and topology mutually
interact. Reference [29] has studied consensus formation by
considering adaptive rewiring of links according to a similarity
of views. Here, it is natural to expect that the adaptive
mechanism has an influence on the formation of community
structure.

Large-scale social networks are known to satisfy the “weak
links” hypothesis [32] with the implication that links within
communities are strong whereas links between them are weak
[25]. That is to say, when taking the weights into consideration,
the modularity of the network will be larger. In this paper,
we propose a simple but generic adaptive model in which the
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scheme of weight adaptation motivated from Hebbian learning
in neural systems can lead to a weighted community structure
during the course of the adaptive evolution. The strengths of
connection are enhanced if the links are within the community
and are weakened if the links are between the communities, and
gradually the network is broken into synchronization clusters.
In this way, the modularity is amplified by the adaptation
scheme so that the resulting weighted network can evidently
exhibit the community structure of the original network.
Therefore, there exists a potential application of the adaptive
scheme: in networks with weak communities, this adaptation
scheme can first amplify modularity and then efficiently
detect the weighted communities by combining the statistical
properties of the synchronization clusters with the established
methods, such as the Potts [10], signal [11], weighted extremal
optimal (WEO) [12], weighted Girvan-Newman (WGN) [7]
algorithms, and so on. In this paper, we adopt the traditional
and more precise [11] WGN method.

The paper is organized as follows. We introduce the
adaptive model in Sec. II. In Sec. III, we show that the model
generically generates modular structure in globally coupled
chaotic oscillators. In Sec. IV, we show that the model can
be used to amplify modularity efficiently for the detection of
communities.

II. ADAPTIVE MODEL

We consider N coupled identical chaotic oscillators

ẋi = F(xi) + c

K

N∑
j=1

AijWij [H(xj ) − H(xi)], (1)

where F(x) is the dynamics of individual oscillators, H(x) is
a coupling function, and c is the coupling strength, which is
normalized by the average degree K of the network. Aij is the
adjacency matrix (Aij = 1 or 0) and Wij (i �= j ) is the weight
of the connection from node j to node i (Wij � 0).

In the adaptive network, the weight is not static, but evolves
with time due to the feedback from the synchronization
dynamics. We adopt an adaptation scheme motivated from
Hebbian learning in neural systems: the coupling strength
between two nodes is strengthened if synchronization occurs
between them [30,33]. Also, we consider that the growth of the
weight is limited because the coupling strength cannot increase
indefinitely [30,34]. With the above consideration, the weight
dynamics is given by

Ẇij = −Wij + e−r�ij , (2)

where �ij = |xi − xj | is the state distance between nodes
i and j , and r > 0 is an adaptation parameter. When r is
large, the weight evolution is sensitive to the synchronization
properties. When r approaches zero, the connection weights
will be uniform in the network and will take an asymptotic
value Wij = 1.

We can expect that such a scheme will lead to the
formation of heterogeneous connection strengths: when two
nodes synchronize better, the connection will be strengthened
to improve the synchronization further, while two nodes with
weak synchronization may be effectively decoupled due to
reduced coupling weight and become even more independent

in dynamics. In community networks, such a scheme is
expected to make the communities more pronounced, therefore
it could amplify the modularity.

III. EMERGENCE OF COMMUNITY STRUCTURE
IN A GLOBALLY COUPLED NETWORK

OF CHAOTIC OSCILLATORS

To gain insight into the emergence of modularity,
we consider a globally coupled chaotic Rössler oscil-
lator: x = (x,y,z) and F(x) = [−0.97y − z,0.97x + 0.15y,

z(x − 8.5) + 0.4]. In addition, H(x) = x = (x,y,z) is adopted.
The main results, however, do not depend on the particular
properties of the chaotic oscillator and coupling function.

In the following, we present the results of our numerical
simulations of the adaptive network. In the simulations, we
use the fourth Runge-Kutta method to integrate Eqs. (1) and
(2) with time step 0.01. The number of nodes N is set to 100,
though the results described below are qualitatively similar
for larger systems except for a longer computing time. The
system starts with initial values randomly chosen from the
chaotic attractor, and initial weight Wij = 0.1 for all links.

The formation of community structure in the adaptive net-
work can be quantified by modularity. A weighted modularity
QW

m for the possible number of communities, m, is introduced
in [7],

QW
m = 1

2S

∑
ij

(
Wij − sisj

2S

)
δ(mi,mj ), (3)

where the δ function δ(u,v) is 1 if u = v and 0 otherwise,
si = ∑

j Wij is the total weight of node i, S = 1
2

∑
ij Wij is

the sum of all the connecting weights in the graph, and mi is
the community to which node i is assigned. The modularity
is a property of a network and a specific proposed division of
that network into communities [7]. Its high values correspond
to good divisions of the weighted network into communities.
Therefore, we can calculate the number of communities M

of the best division by maximizing the modularity QW
m as

QW . In this section, we adopt the WGN algorithm [7] to find
communities of the adaptive network.

From the results of our simulations, we find that community
structure can emerge during the time evolution to achieve
complete synchronization eventually. Figure 1(a) displays the
maximal modularity QW and the corresponding number M

of communities as a function of evolutionary time. Here, we
apply the WGN method to the resulting weighted network
at every time interval 50. It is seen that a modular structure
appears quickly and changes immediately to another modular
structure. This indicates that the evolution at the beginning is a
fast transient process, which is mainly due to the transient
formation of small effective synchronization clusters [see
Fig. 1(b)] due to initial conditions. Later on, such small clusters
merge to form larger clusters, which can persist for quite a
long time. Here, we focus on such a persistent community
structure. The snapshots in Figs. 1(c) and 1(d) show that the
network is split into groups with strong couplings within
groups and weaker couplings between groups, effectively
forming communities.
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FIG. 1. Evolution of the maximal weighted modularity QW and
the corresponding number of communities M as a function of time
t in the globally coupled adaptive network (a) and gray-scale plots
of the resulting weights Wij at different time t = 250 (b), t = 2000
(c), and t = 10 000 (d). Here the node index is resorted as I and J

according to communities. The parameters are c = 1.0 and r = 1.2.

In our adaptive model, there are two important parameters:
the coupling strength c, which determines the overall strength
of the interactions between the nodes, and the adaptation
parameter r , which controls the adaptive dynamics of weights
and reflects adaptation strength. Now we investigate the
dependence of the number of communities M on the two
parameters c and r at a given time t = 500.

As shown in Fig. 2, the number of communities M

decreases as coupling strength c becomes larger for a given r ,
because the oscillators achieve larger-scale synchronization at
stronger couplings. This result is consistent with the effect of
the coupling strength on the formation of an ordered phase in
globally coupled maps [30]. As c increases to a large enough
value, the community structure will disappear (M = 1). In
Fig. 2, we show that for a given c, the community structure
emerges (M > 1) when r is larger than a threshold value. The
network will form a larger number of communities when r

increases further, because now the connection weight is very
sensitive to different synchronization levels according to the
adaptive scheme in Eq. (2).

FIG. 2. Phase diagram of the number of communities M in the
r-c plane. Data are averaged over 20 independent runs.

IV. COMMUNITY AMPLIFICATION BY ADAPTIVELY
DYNAMICAL CLUSTERING

Motivated by the above observations of the emergence of
community structure from the adaptive model, we expect
that the adaptation scheme can amplify the modularity in
community networks. In the adaptive process, the connecting
weights within a community could be increased, but the con-
necting weights among communities reduced. Consequently,
as the weights Wij adaptively evolve, the module structure
can be amplified by the resulting weighted network and
the network dynamical state can emerge into clusters of
synchronized elements (i.e., “cluster synchronization” state) in
accordance with the underlying community structure present
in the network. The adaptation scheme in Eq. (2) shows that
there are two fixed points of weight values:

Wij =
{

1 (�ij = 0),

0 (�ij � 0).
(4)

During the course of achieving cluster synchronization, the
intracluster weights will approach 1 while intercluster weights
will approach 0. However, the fixed point Wij = 0 is unstable,
and the network can eventually achieve a complete synchro-
nization state. Therefore, we can judge whether the system
has achieved the state of effective synchronization clusters by
monitoring the following quantity:

σ = 1∑
ij Wij

∑
ij

Wij�ij , (5)

which will take a small value, because either Wij or �ij

will be quite small for such a state. In our simulations, the
cluster synchronization is considered to be achieved when σ

reaches 10−7.
To study the amplification of modularity, we consider a

random unweighted community network model [35]: N nodes
are classified into M groups, each group having n = N/M

nodes. Within any group, each pair of nodes is connected with
probability ps , and between groups, the nodes are connected
with probability pl . In this paper, we take N = 200, M = 4,
and ps = 0.6, respectively. Clearly, the network with pl < ps

has four communities. As pl increases from small values,
the resulting community structure becomes progressively
weaker and the networks pose greater challenges to the
community-detecting algorithms. The networks are simulated
with the chaotic Rössler oscillators. We start with the same
initial weights Wij (0) for all the connections. Throughout this
section, Wij (0) is set to 0.1 in an unweighted network, but
the results described below are quite similar for other values
of Wij (0) in the region (0,1). The nonconnecting weights
are always kept at 0 during the course of evolution. So, a
corresponding initial weighted network structure is given by
the matrix W0, which has the same community structure and
modularity of the unweighted community network (matrix
A). Starting from random initial conditions on the chaotic
attractors, the weighted network evolves without adaptation
at a weak-coupling strength c0 = 1.0 for some time tr = 250,
so that the system can relax to weakly clustered synchroniza-
tion states. Then the network begins the adaptive evolution
according to Eq. (2) with a certain stronger value of c.
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FIG. 3. The case of a strong community network with pl = 0.1.
The initial weight matrix W0 (a) is compared to the resulting weight
matrices (b), (c), and (d) of three realizations from random initial
conditions. Here the parameters are c = 11 and r = 8.

For the strong community structure, we show in Fig. 3
that the resulting weighted network can well amplify the
original community structure when cluster synchronization
is achieved: the connection weights Wij within the community
are much stronger than those between communities. Indeed,
the modularity QW

m of the resulting networks becomes much
larger than that of original network W0 by using the WGN
method [Fig. 4(a)]. The best partition at maximal modularity
of the resulting weighted network can recover the network
communities correctly, as seen in Fig. 4(b) by the fraction
of correctly identified nodes, R � 1. In this paper, we use
a quite harsh definition for the fraction R as in Ref. [6]:
“We find the largest set of vertices that are grouped together
in each of the known communities. If we put two or more
of these sets in the same group, then all vertices in those
sets are considered incorrectly classified. Otherwise, they
are considered correctly classified. All other vertices not in the
largest sets are considered incorrectly classified.” Interestingly,
for each given partition with m communities, we find that
the modularity QW

m of the weighted network from adaptation
is linearly related to the corresponding modularity QA

m of
the underlying unweighted network [Fig. 4(c)], with an
amplification ratio ∼1.5 for all the three realizations shown
here. Here QA

m is obtained by applying Eq. (3) to the network
adjacency matrix A for the corresponding partitions obtained
from the weighted networks from adaptation.

For the network with strong enough communities, the
amplification of modularity may not be necessary for the
detection of the community, because the Girvan-Newman
(GN) method can already identify the community correctly
using the original matrix A. However, the situation becomes
quite different for networks with weak communities. An
example is shown in Figs. 5 and 6. In this case, the communities
are so weak [Fig. 5(a)] that the WGN method cannot find
any partition with significant modularity: QW

m for W0 is very
small for all partitions [Fig. 6(a)]. However, the adaptation
process can lead to clearly clustered networks: the connection
weights within the communities become clearly stronger

FIG. 4. (Color online) Amplification of modularity in a network
with strong communities at pl = 0.1. (a) The modularity QW

m of
the resulting weight matrices in Figs. 3(a)–3(d) as a function of the
possible number of communities m. (b) The fraction of R of nodes
correctly classified into the underlying community. (c) The modu-
larity QW

m of all the partitions from the resulting weighted network
vs the corresponding modularity QA

m of the underlying unweighted
network A = (Aij ) for the same partitions.

than those between the communities [Figs. 5(b)–5(d)].
Consequently, the modularity is significantly larger [Fig. 6(a)],
and the communities reflected by the weighted networks from
adaptive synchronization are consistent with the underlying
topological partitions, as seen by the linear amplification of
the modularity QW

m from the corresponding QA
m [Fig. 6(c)].

For some realizations [Figs. 5(b) and 5(d)], the communities
can be reliably detected using the resulting weighted network,
with the maximal R � 1 [Fig. 6(b)]. But for some other
realizations, two or more communities can appear to be
in a big community in the resulting weighted networks
[e.g., Fig. 5(c)], corresponding to lower QW

m and R in
Figs. 6(a) and 6(b).

These results suggest a new way to improve the detection of
weak communities by amplification of the modularity. Since
the adaptive scheme depends on the parameters c and r , we can
obtain realizations of weighted networks with various c, r , and
random initial conditions. Applying the WGN method to each
weighted network, we can get one partition of the network into
communities. We can compute the modularity QA from the
original matrix A for this partition. The partition is a better one
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FIG. 5. The same as in Fig. 3, but for a weak community network
with pl = 0.20.

if QA is larger. For all the realizations, we can get a distribution
of QA. Now we can select those “good” weighted networks
with QA > Qth and build a new matrix P = (Pij ) to measure
the probability Pij that nodes i and j are found to belong
to a common community among these “good” realizations.
Of course, Qth cannot be larger than the maximal modularity
Qpl

for the known communities of the underlying network

FIG. 6. (Color online) The same as in Fig. 4, but for a weak
community network at pl = 0.20 [as Fig. 5(a)].

FIG. 7. Detection of weak community (pl = 0.25) by amplifying
the modularity using the matrix P = (Pij ) at various thresholds
Qth = 0.0 (a), Qth = 0.08 (b), and Qth = 0.11 (c). (d) The fraction
R of nodes classified correctly as a function of threshold Qth. Data of
probability Pij are measured over 50 independent runs with uniformly
randomly chosen 4 < c < 10, 8 < r < 58, and initial conditions.

A = (Aij ). Examples of the matrices P at various threshold
values Qth are shown in Fig. 7 for community structure with
pl = 0.25, even weaker than that in Figs. 5 and 6. We can
see that the weak community structure of the original network
is significantly amplified in P , especially for large enough
thresholds, because in these selected realizations, a pair of
nodes from a common community in the underlying network
will appear with high probability in the same community of
the resulting weighted networks due to enhanced connection
strength by adaptation. Now applying the WGN method to this
amplified matrix P , we can detect the community reliably, as
seen by the increasing R as a function of the threshold Qth.
Note that R is already a good value R > 0.7 for Qth = 0 while
the WGN method directly applied to the original network gives
R ≈ 0.21. For larger Qth, the cost we have to pay in this
procedure is that we need to generate more realizations to
allow enough realizations with QA > Qth.

A systematic examination of the performance of the
amplification by our adaptation scheme is shown in Fig. 8,
where we plot the fraction R of nodes correctly assigned
to the four known communities as a function of pl in the
original community networks. For comparison, we also show
the performance of the GN algorithm [7] directly applied to the
original network matrix A = (Aij ). Our adaptive amplification
scheme performs well, correctly identifying more and more
fractions of nodes as the threshold Qth increases. Therefore,
for any given weak community network, its community
structure can be identified to some extent by applying a certain
traditional method to the resulting matrix P if we select a
suitably large threshold for enough computing time.

To further test the performance of our amplification scheme,
we have considered a large number of computer-generated
random graphs with known community structure, as in
Refs. [6,15]. Each graph consists of N = 128 nodes divided
equally into four communities. Each node has on average
Zin links belonging to the same community and Zout links
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FIG. 8. The fraction R of nodes correctly identified by our
adaptive amplification with different relative thresholds Qth/Qpl

,
where Qpl

is the corresponding modularity for the division of four
known communities of the network with intercommunity connection
probability pl . R obtained by applying the GN algorithm to the
original network A = (Aij ) is also given for a comparison. Data of
probability Pij are measured over 50 independent runs with uniformly
randomly chosen 4 < c < 10, 8 < r < 58, and initial conditions.

belonging to different communities, where Zin and Zout are
chosen so that the average degree Zin + Zout = 16. As Zout

increases, the resulting community structure becomes weaker
and thus harder to detect. To comparatively evaluate the
performance of our amplification scheme, we first show the
results of several existing methods in Fig. 9(a), adapted from
Ref. [15]. In Fig. 9(b), we report our results by using the
amplification scheme. It is found that, as the threshold Qth

increases, the performance of our adaptation scheme can
approach that of the best methods reported in Fig. 9(a),
such as the OCR-HK [15] and simulated annealing (SA) [8]
algorithms.

FIG. 9. (Color online) The fraction R of nodes correctly identified
as a function of Zout for computer-generated graphs described in
Refs. [6,15] by using existing standard methods, such as GN [7],
opinion changing rate (OCR) [15], the Newman Q optimization
fast algorithm [6], opinion changing rate by Hegselmann-Krause
(OCR-HK) [15], and the simulated annealing algorithm [8] (a)
(adapted from Ref. [15]), and our adaptation scheme for different
thresholds Qth (b). Data of probability Pij are measured over
50 independent runs with uniformly randomly chosen 4 < c < 10,
8 < r < 58, and initial conditions in (b).

(a) (b)

FIG. 10. (a) The histogram of the modularity QA for the partitions
obtained from 500 weighted network realizations obtained from
the adaptive process with uniformly randomly chosen 4 < c < 10,
0 < r < 5, and initial conditions in the “karate club” network of
Zachary. (b) The modularity QA for the partitions obtained from P of
various thresholds Qth by using our adaptive scheme in the Zachary
network. Data of probability Pij are measured over 50 independent
runs with uniformly randomly chosen 4 < c < 10, 0 < r < 5, and
initial conditions.

Except for the above two types of computer-generated
random networks with known communities, we have also
applied our amplification scheme to a real-world network,
namely the Zachary network [36]. We can obtain realizations
of weighted networks by using the adaptation scheme with
various c, r , and random initial conditions. Applying the
WGN method to each weighted network, we get one partition
of the network into communities. Then, we compute the
modularity QA from the original matrix A for this partition.
For all the realizations, we get a distribution of QA, as shown
in Fig. 10(a). Obviously, most of the realizations have a
modularity QA ∼ 0.39, indicating that the resulting dynamical
clusters by using our adaptation scheme can effectively reflect
the community structure of the Zachary network. According
to the distribution, we can choose a suitably large threshold
to build the matrix P = (Pij ) for amplifying the modularity
and then gain better partitions by using the WGN method
for P . As shown in Fig. 10(b), we detect communities with
higher modularity QA as the increase of threshold Qth. Even
in the absence of threshold (i.e., Qth = 0.0), our adaptation
scheme can also detect a better partition with modularity
QA = 0.3921, which is larger than QA = 0.3810 obtained
using the Newman Q-optimization method [6] and the signal
method [11]. Furthermore, we gain QA = 0.4187 at Qth =
0.4, which is approximately equal to the largest QA = 0.4188
obtained using the extremal optimal algorithm [12] among
the reported results using other methods in the literature, such
as Pujol-Béjar-Delgado (PBD) (QA = 0.3937) [13], OCR-HK
(QA ∼ 0.40) [15], and extremal optimal (EO) (QA = 0.4176)
reported by Ref. [13]. This result strongly indicates that
our adaptive amplification scheme works well in the real
community network.

Finally, we have applied our adaptation scheme with the
Hebbian learning rule to a real-world neural system, namely
the cortical brain network of a cat [37], which is a weighted
and directed network. This system possesses a small number
of clusters that approximately agree with the four functional
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FIG. 11. (Color online) (a) The cortical network of a cat. A node
represents a functional region of the cortex and a link represents
the existence of fiber projection between two regions. The different
symbols represent different connection weights: 1 (sparse: black
◦), 2 (intermediate: blue •), and 3 (dense: red ∗). The network is
organized into four topological communities [38] that broadly agree
with the four functional cortical subdivisions, i.e., visual (V), auditory
(A), somato-motor (SM), and fronto-limbic (FL). The functional
subdivision of the networks is indicated by the dashed lines. (b)
The partition into six communities by applying the WGN method
directly to the matrix in (a).

cortical subdivisions, i.e., visual cortex (V), auditory (A),
somato-motor (SM), and fronto-limbic (FL) [38], shown
as Fig. 11(a) for the weighted coupling matrix W0. The
modularity of this functional subdivision is QW0 = 0.363. If
we apply the WGN method directly to the matrix W0, we
can obtain a partition with modularity QW0 = 0.342, which is
roughly consistent with the functional subdivision [Fig. 11(b)].

For the weighted network, all the weights were first normal-
ized against the maximal weight before applying our scheme.
The resulting normalized weighted network W0 has the same
community structure and modularity of the original weighted
network. Then, we implemented the adaptive dynamics on
the normalized weighted network W0 with various c and r

to obtain weighted network realizations, and we applied the
WGN algorithm to these networks to obtain the community
partition for each of the realizations. We can compute for these
partitions the modularity QW0 based on the original network
matrix W0. The distribution of QW0 shown in Fig. 12(a) has
a similar meaning to that in Fig. 10(a), and displays several
peaks. The multimodal distribution reflects different groups of
realizations where many nodes from a functional subsystem
(e.g., V) can merge with many nodes from other subsystems
to form various combinations of big communities, and it is
related to heterogeneous communities in the brain network.
We note that such a multimodal distribution does not exist in
our previous network models with homogeneous communities
(results not shown). Therefore, the distribution could be used
to infer qualitatively the complexity of community structure,
which will be addressed in future work. According to the
distribution of QW0 in Fig. 12(a), we can choose a suitably
large threshold Qth to build the matrix P = (Pij ) and detect
the community structure using the WGN method for P . As
shown in Fig. 12(b), the modularity QP of the matrix P

increases with Qth. Figure 12(c) shows that the modularity QW0

for the partitions obtained from the matrix P also increases
with Qth. QP > QW0 demonstrates again the amplification of

FIG. 12. (Color online) (a) The histogram of the modularity QW0

for the partitions obtained from 2000 weighted network realizations
obtained from the adaptive process with uniformly randomly chosen
4 < c < 10, 8 < r < 58, and initial conditions. (b) The modularity
QP of the matrix P = (Pij ), obtained by applying the WGN algorithm
to P corresponding to various thresholds Qth. (c) The modularity
QW0 and number of communities M for the partitions obtained from
P of various thresholds Qth by using our adaptation scheme in the
cortical brain network of a cat. Red dot-dashed line: modularity
QW0 = 0.363 of the functional subdivision in Fig. 11(a). Blue dashed
line: modularity QW0 = 0.342 of the partition in Fig. 11(b) obtained
directly by the WGN method on the cortical network of a cat. (d) The
partition into three communities at Qth > 0.3. Data of probability Pij

are measured over 200 independent runs with uniformly randomly
chosen 4 < c < 10, 8 < r < 58, and initial conditions.

modularity by the adaptation process. In a range of Qth, the
partitions obtained using our method have a modularity QW0

larger than the one obtained by applying the WGN method
directly [blue dashed line in Fig. 12(c), QW0 = 0.342], but
slightly below the modularity of the functional subdivision
in Fig. 11(a) [37] [red dot-dashed line in Fig. 12(c),QW0 =
0.363]. The number of communities ranges from three to five.
Interestingly, with larger Qth, we find a partition with three
communities [Fig. 12(d)] whose modularity QW0 = 0.372 is
larger than the functional subdivision in Fig. 11(a).

These results show that the WGN method, when applied to
the cat cortical network directly, may not find the partition
with maximal modularity. This difficulty may result from
a special hierarchical modular organization in this system.
There are hub nodes that form a hypercommunity overlapping
on the four functional subsystems V, A, SM, and FL, which
is of special importance for information integration of the
system [39]. These brain regions from the hypercommunity are
involved into multimodal functional performance [21,40]. Our
adaptive dynamics provides a way to explore many possible
combinations of brain regions from functional subsystems
into different communities. Such rich combinations could be
of functional relevance during particular cognitive processes
when particular subsystems [e.g., A and FL in Fig. 12(d)]
are required to be integrated for certain advanced information
processing. We will study this problem in more detail in the
context of the capacity and complexity of this complex network
to support various forms of functional performance [41].
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V. CONCLUSION

We study the emergence and amplification of modularity
in adaptive networks in which the connection strength is
enhanced due to synchronization between the oscillators, moti-
vated by the Hebbian learning rule in neural networks. If a pair
of nodes synchronize better, the connection weight is likely
increased to improve the synchronization further. On the other
hand, for weakly synchronized pairs, the connection weight
has higher probability to decay and this makes the oscillators
effectively decoupled. In globally coupled networks, such
initial fluctuations in synchronization can lead to the formation
of effectively disconnected modules during the transition
to complete synchronization. In community networks, the
effective synchronization clusters become correlated with
the underlying network community. More importantly, the
resulting weighted network amplifies the modular structure
of original network due to strong intramodule connections
and weak intermodule connections. Therefore, by introducing
statistical properties of synchronization clusters from different
realizations of the network, the weak community structure
can be identified to some extent, even if it is too weak to
be detected efficiently by using the traditional algorithms.
Moreover, our numerical experimental results indicate that 50
realizations satisfying the threshold condition can be enough
to stably amplify community structure. For the networks with
high heterogeneity (e.g., a network benchmark model [42],
characterized by the high heterogeneity in the distributions of
node degrees and community sizes), our adaptation scheme can
also produce dynamical clusters reflecting effectively the un-

derlying community structure (results not shown). However, if
we introduce statistical properties for different realizations, the
amplification of community structure cannot be realized well.
This is because even with similar modularity, the community
structures of the resulting realizations can be very different
from each other due to high heterogeneity. In summary,
our investigation not only sheds light on the interaction and
coevolution of structure and dynamics in complex network
systems, but also provides a scheme to improve the detection
of weak modular organization by adaptively amplifying the
modularity.

Our study has also demonstrated that the Hebbian-like
learning scheme can generically generate synchronization
clusters and modular networks, indicating that such a dynam-
ical scheme from the plasticity of synapses plays an important
role in generating and maintaining the pronounced modular
organization in neural systems [43]. In particular, the adaptive
scheme may provide a useful tip for the understanding of
the mechanism of spontaneous neuronal activity in the form
of synchronized bursting events with several subgroups in
developing cultured neuronal networks [44], which is an un-
addressed fundamental issue regarding cellular mechanisms.
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