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Avalanches, precursors, and finite-size fluctuations in a mesoscopic model of amorphous plasticity
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We discuss avalanche and finite-size fluctuations in a mesoscopic model to describe the shear plasticity of
amorphous materials. Plastic deformation is assumed to occur through series of local reorganizations. Yield stress
criteria are random while each plastic slip event induces a quadrupolar long-range elastic stress redistribution.
The model is discretized on a regular square lattice. Shear plasticity can be studied in this context as a depinning
dynamic phase transition. We show evidence for a scale-free distribution of avalanches P (s) ∝ S−κ with a
nontrivial exponent κ ≈ 1.25 significantly different from the mean field result κ = 1.5. Finite-size effects allow
for a characterization of the scaling invariance of the yield stress fluctuations observed in small samples. We
finally identify a population of precursors of plastic activity and characterize its spatial distribution.
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I. INTRODUCTION

While traditionally described in continuum mechanics by
constitutive laws at macroscopic scale, it has progressively
appeared in the last two decades that the mechanical behavior
of materials was not as smooth and regular as anticipated.
In particular crack propagation in brittle materials and plastic
flow in crystalline solids have been shown to exhibit jerky
motion and scale-free spatiotemporal correlations [1–3].

Beyond its obvious fundamental interest, the understanding
of intermittence and intrinsic fluctuations in mechanics of
materials and their consequences at macroscopic scale is
of direct importance for engineering applications: Among
other examples a quantitative assessment of risk of failure
would allow us to better determine security margins that
stay rather uncontrolled (and often overestimated); and a
theoretical understanding of finite-size effects would allow us
to model the mechanical behavior of small pieces, a question
of crucial interest with the rapid technological development
of MEMS and NEMS (Micro- or Nano- Electro-Mechanical
Systems).

Concepts such as avalanches and criticality have thus
been increasingly used in that context to describe and model
fracture and plasticity. In particular, the paradigm of the
depinning transition has been shown to be extremely appealing
to model such nonlinear phenomena at mesoscopic scale
[4–10]. Such a formalism indeed naturally captures the com-
petition between the disorder of local thresholds (toughness
for crack propagation, yield stress for plastic deformation)
and elastic interactions that couple local mechanical events
(crystallographic slip, crack advance). A critical threshold
naturally emerges at macroscopic scale that separates a static
phase (crack propagation or plastic deformation stops after
a finite excursion) from a mobile phase (free propagation or
deformation). As usual, this dynamic phase transition can be
characterized by a set of critical exponents.

While crystalline plasticity or crack propagation rely
on rather solid grounds (theory of dislocation and linear

elastic fracture mechanics, respectively), the understanding
of plastic deformation in amorphous materials such as oxide
or metallic glasses is still in its infancy. In the absence
of crystalline lattice, plasticity seems to originates from a
series of very local structural rearrangements [11,12]. Beyond
this first level of description, any local reorganization has
to be accommodated by the surrounding elastic matrix and
induces internal stress [13–15]. These local plastic events
thus do not occur independently but in a strong correlated
way.

We recently introduced a mesoscopic model of plasticity in
amorphous materials [16]. Following an earlier work [9] we
developed a scalar discrete model on a regular lattice with a
random yield stress. The local slip occurring when the shear
stress satisfies the plastic criterion is accompanied by an elastic
stress redistribution of quadrupolar symmetry [17,18], which
corresponds to the elastic response of the surrounding matrix
to this Eshelby-like plastic inclusion [19]. Although originally
due to the quadrupolar symmetry of the elastic interaction,
one recognizes in this short description the two ingredients of
a depinning model: a random threshold field and an elastic
interaction.

In a previous paper [16] we focused on the competition
between localization and diffusion that naturally emerges
from the peculiar symmetry of the elastic interaction. Some
directions being favored, plastic deformation forms shear
bands that span the entire lattice. This localization is, however,
not persistent, and after they grow to the size of the system,
shear bands tend to diffuse throughout the lattice. In particular
we could find evidence for anisotropic strain correlations that
are strikingly similar to those recently observed in an atomistic
study of a binary Lennard-Jones glass under compression
[20,21].

In the present paper, a particular focus is given to the critical
properties of the model. We recall in Sec. II the definition of the
model and its salient properties. Avalanches are quantitatively
characterized in Sec. III. Finite-size fluctuations close to the
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critical point are analyzed in Sec. IV. Characterization of
avalanche precursor sites is discussed in Sec. V. Section VI
concludes this paper.

II. BRIEF DESCRIPTION OF THE MODEL

A detailed description of the model can be found in
Ref. [16]. Let us simply summarize here the main points.

We consider an elastically homogeneous material in plane
deformation geometry under shear. Discretization is performed
on a square lattice with biperiodic boundary conditions at a
scale that is larger than the size of a typical rearrangement.
This scale is to be large enough to allow the use of continuum
elasticity and to neglect elastic inhomogeneities. At a large
scale, we impose a pure shear load σxx = −σyy and σxy = 0.

A simplification consists of assuming that local rearrange-
ments induce an elementary plastic shear with the same
symmetry as the macroscopic imposed macroscopic shear.
We thus consider neither volumetric change nor orientation
disorder for the shear principal axis at the microscopic scale.
Consequently, although the model is based on a genuine
two-dimensional (2D) elastic description, the tensorial nature
of the stress σ and strains ε plays no role. Scalar (equivalent)
stress σ ≡ σxx − σyy and strain ε ≡ εxx − εyy can be defined.
The latter scalar stress (resp. strain) component will be called
“stress” (resp. “strain”) for simplicity in the following. The
criterion for yielding characterizes the local configuration of
atoms, and hence will display some variability. A local yield
threshold for each discrete site x as σγ (x) is introduced; this
quantity will be treated as a random variable in what follows.
For all sites, the same statistical distribution will be used,
chosen for simplicity as a uniform distribution over the interval
[0; 1]. The specific form of this distribution plays no role in
the scaling features addressed below.

The stress σ is a sum of the externally applied stress �ext and
the residual stress σres induced by the previous rearrangements
of other regions of the system. Thus, the local scalar yield
criterion for site x can be rewritten as

�ext + σres(x) = σγ (x), (1)

where σγ is the local yield stress. Here and in the following we
use upper (lower) case symbols for macroscopic (microscopic)
quantities.

Once this criterion is satisfied at site x, the material
experiences there an incremental slip η increasing the local
plastic strain: εp(x) → εp(x) + η. Similarly to the yield
thresholds, the slip value η is drawn randomly from the uniform
distribution, [0; d] if not otherwise stated. As shown in Fig. 1(a)
this local slip induces in turn a quadrupolar elastic stress
redistribution [16–18] σres(r,θ ) → σres(r,θ ) + η cos(4θ )/r2.

In order to account for the local structural change that
occurred, the local yield stress is renewed by drawing a new
(uncorrelated) random value for σγ (x). It is assumed that there
is no persistence in the local yield stress.

Quasistatic driving conditions are considered, using ex-
tremal dynamics; i.e., the imposed external loading �ext is
tuned at each time step, t at the current yield stress value, �c,
such that only one site can slip at a time:

�ext(t) = �c

= min
x

[σγ (x) − σres(x)]

= σγ (x∗(t)) − σres(x∗(t)), (2)

where x∗(t) is the extremal site at time t . Note, however, that
“time,” t , is used here as a simple way of counting and ordering
events. On average, time is simply proportional to the total
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FIG. 1. (Color online) (a) Map of the quadrupolar elastic interaction G used in the model. The discretization is performed in Fourier space,
and a inverse Fourier transform gives in the direct space the Green function satisfying the biperiodic boundary conditions of the problem.
(b) Map of cumulated plastic activity obtained for an averaged cumulated plastic strain 	εp = 0.01 taken at εp = 1.0 (strain is expressed in
arbitrary (infinitesimal) units). A clear localization of the plastic deformation is observed. Note that this localization behavior is nonpersistent
(see Ref. [16] for details on the competition between localization and diffusion of the plastic deformation).
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plastic strain imposed on the system, 〈εp〉 = tdL−2/2. The
plastic strain field is thus simply

εp(x,t) =
t∑
1

η(t)δ(x − x∗(t)). (3)

In Ref. [16] we discussed the mechanical behavior of
this model, and in particular we could make evidence for
anisotropic plastic strain correlations, signaling the formation
of shear bands as illustrated in Fig. 1(b), which, however, were
not persistent and diffused throughout the system over long
times. Under application of shear, a transient hardening stage
was observed before the shear stress eventually saturates. This
original phenomenon in the context of amorphous materials
(in crystalline material hardening is usually associated with
dislocation pinning by impurities or dislocation interactions)
was interpreted as a consequence of the progressive exhaustion
of the weakest sites of the system (reminiscent of self-
organized critical systems). Plastic strain fluctuations were
shown to exhibit a nontrivial scaling: Its standard deviation
ρ(εp) grows as ρ(εp) ∝ εα

p with α ≈ 0.75 in the transient
regime, and, in the stationary regime, the power spectrum
of plastic strain was shown to exhibit an anisotropic scaling
S(q,θ ) ∝ a(θ )q−α(θ) with α(θ ) obeying a quadrupolar-like
symmetry. In particular, in the direction of the shear bands,
we obtained απ/4 ≈ 1.7.

III. AVALANCHE BEHAVIOR

As discussed above, while intermittence and avalanches
were first identified in earthquake dynamics, biological evo-
lution [22], or magnetism [23,24], in recent years researchers
have also shown their interest for the framework of mechanics
of materials.

In the context of plasticity of crystalline materials, a
significant amount of results have been obtained over the
last decade (see, e.g., the comprehensive review by Zaiser
about scale invariance in plastic flow [2]). Acoustic emission
measurements performed on ice or metal monocrystals have
shown a power-law distribution of the energy P (E) ∝ E−κ

with κ ≈ 1.6 for ice [25] and κ ≈ 1.5 for hcp metals and alloys
[26]. The case of polycrystal is somewhat more complex since
not only a grain-size-related cutoff appears in the avalanche
distribution but the power-law exponent is also significantly
lowered [25]. Performing nano-indentation measurements on
Nickel monocrystals, Dimiduk et al. found evidence for a
scale-free intermittent plastic flow and estimated κ ≈ 1.5–1.6
[27].

Very recently analogous analysis could be performed
on metallic glass samples. Sun et al. [28] measured the
distributions of stress drops occurring in the strain stress curve
for various metallic glass samples under compression. Scale-
free distributions were observed with a power-law exponent
κ ∈ [1.37–1.49].

Various models have been designed that capture this
avalanche behavior in plasticity at least from a qualitative
point of view. Dislocation dynamics [1] and phase field [2]
models have, for instance, been used in that purpose in the
case of crystal plasticity. In the same context, Moretti and
Zaiser [2,29] developed at mesoscopic scale a model very

similar to the one presented here since it integrates some
local yield randomness. A significant difference stems from
their account of short-range interaction between dislocations
moving on close slip planes. This local elastic interaction
thus adds up and competes with the long-range interaction
ensuring compatibility. This model was then used to analyze
slip avalanches in crystal plasticity [30], and a scale-free
behavior was obtained with a power-law exponent κ = 1.5.

Special attention was given to the cutoff of the scale-free
behavior, which could be associated to the finite stiffness of a
testing machine and to the hardening behavior of the material.
Recently Salman and Truskinovsky presented a model based
on coupled Frenkel-Kontorova chains from which they could
derive an integer-valued automaton [31]. In both versions of the
model the dissipated energy was shown to exhibit power-law
avalanches with the same exponent κ = 1.6.

In the field of amorphous plasticity, most numerical results
were obtained using atomistic methods. Recently, in the
framework of deformation of two-dimensional Lennard-Jones
model glasses, Maloney and Robbins [20,21] obtained a linear
dependence of the mean avalanche size with system size.
Lemaitre, Caroli, and Chattoraj looked at the rate and termal
dependence of the avalanches distribution [32,33] and showed
that the athermal avalanche dynamics remain essentially
unperturbed.

In a kinetic Monte Carlo study at mesoscopic scale,
Homer et al. [34] identified different (stress- and temperature-
dependent) correlation behaviors of shear transformation
zones leading either to an avalanche-like behavior or to an
homogeneous flow. Still at mesoscopic scale, apart from the
earlier version of the present model that considered antiplane
geometry, mean-field models [35] have been developed by
Ben-Zion, Dahmen, and collaborators in the following of a
model designed by Ben-Zion and Rice to capture earthquakes
dynamics [36]. Again this class of models is very close to the
one presented here with a significant difference concerning the
elastic interaction, which is assumed to be mean field. These
models predict a universal scale-free avalanche distribution
with a power-law exponent κ = 1.5.

A. Definition and scale-free behavior

While avalanches are rather easily defined experimentally
or in real-dynamics simulations, they need to be reconstructed
from the fluctuating force signal in the case of depinning
models driven through the extremal dynamics rules [37,38].
Following Ref. [38], avalanches are defined by introducing a
small but nonzero stiffness k in the external driving as illus-
trated in Fig. 2(a) where the bold line of slope −k represents
the external driving stress. With the increasing plastic strain
the external stress is decreased linearly by a quantity k	t ,
where 	t is the number of iteration steps from the avalanche
initiation. As soon as the driving stress drops below the current
critical value σc, the avalanche stops. The external spring is
then loaded up to σc and triggers a new avalanche. Far from
being artificial, this procedure naturally mimics the effect of
the finite stiffness of an experimental testing machine, or the
elasticity of the medium surrounding the active site [30].
Based on the latter argument, the thermodynamic limit of a
large-scale separation between that of the STZ, and that of the
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FIG. 2. (Color online) (a) Sketch of the current yield stress (as obtained in extremal dynamics) (symbol ◦) and of the external stress when
the system is coupled to a spring of constant k. Avalanches are defined as the intervals where the external stress remains larger than the yield
stress. A new avalanche is initiated at the next maximum yield stress after arrest. (b) Distributions of avalanche sizes P (S,k) for a system of size
L = 256 and (from right to left) different values of spring constants k = 3 × 10−6, 10−5, 3 × 10−5, 10−4. A power-law behavior P (S,k) ∝ S−κ

of exponent κ ≈ 1.25 (dashed line) is observed with a cutoff increasing as the spring constant decreases.

medium is reproduced for a vanishing stiffness, i.e., as for an
ideal stress-controlled experiment. One may also note that an
ideal strain-controlled experiment would be obtained for
an infinite stiffness.

The present definition size of avalanches S = 	t should not
be confused with the duration of an avalanche measured in real
time. The underlying extremal dynamics gives no information
about real time scales. The size S of an avalanche is, however,
directly related to the strain εS experienced by the medium
through εS = S〈η〉/L2 where 〈η〉 is the average of the random
incremental local slip η.

The avalanche size distributions P (S,k) corresponding to
various stiffness values k are shown in Fig. 2(b). We obtain
a scale-free behavior over a domain bounded by a stiffness-
dependent cutoff (the lower the stiffness the larger the scaling
domain). Up to the cutoff size S∗ avalanche distributions
follow a power law of exponent −κ with κ = 1.25 ± 0.05 over
three decades. This excludes the mean field value κ = 1.5 as
observed in mean-field models.

The present estimate κ = 1.25 ± 0.05 is also different from
the results obtained on the dislocation-based models by Zaiser
et al. [29,30] and by Salman and Truxskinovsky [31], who
observe larger values of the scaling exponent κ = 1.5–1.6. The
most salient difference between these models and the present
one is their account of short scale interactions between dislo-
cations, absent in the present model. We note, however, that
recent results [39,40] obtained in yet a different framework,
the propagation of an interfacial crack front, recently show
avalanches with the very same exponent κ = 1.25 as in the
present model. This observation may be far more than a simple
coincidence. Indeed, as shown above, most of the plastic
events occur along the directions at ±π/4 along which the
Eshelby elastic interaction obeys the same spatial dependence
in 1/r2 as the long-range elastic interaction characteristic of
the interfacial crack growth. The latter model may then be
viewed as a ultimate one-dimensional reduction of the present
model of amorphous plasticity.

B. Avalanche cutoff

As discussed in Ref. [30] we thus could check that the
introduction of a Gaussian cutoff allows us to obtain reasonable
fits of the full set of data:

P (S) ∼ 	S−κ exp

[
−

(
S

S∗

)2]
. (4)

This gives us the opportunity to test the dependence of the
avalanche cutoff S∗ on the “machine stiffness” k. Note here
that in the framework of extremal dynamics, obtaining a
size-independent mechanical behavior (stress versus strain)
requires the change of variable ε = t/L2 to be performed,
with t being the avalanche size as above defined. Similarly,
this leads to rewrite the stiffness as k = K/L2, K being an
elastic constant independent of the system size. Looking at
Fig. 3(a), which displays the dependence of the avalanche
cutoff size, this allows us to distinguish between two scaling
regimes depending on whether the elastic constant K is smaller
or larger than K∗ = 1:

S∗ ∝
{

L/K for K < K∗

L/
√

K for K > K∗ . (5)

In both cases we recover that the avalanche cutoff scales
linearly with the system size L, consistent with results by
Zaiser and Nikitas [30]. As illustrated in Fig. 4, a closer
look at the spatial structure shows that the avalanches are
highly anisotropic, and once again we recover the quadrupolar
symmetry of the elastic interaction. For large values of K ,
avalanches remain mainly one-dimensional, while for lower
values of K , two-dimensional-like patterns start to appear.
One recovers here the competition between localization (at
short times) and diffusion (at longer times) as discussed in
Ref. [16].
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FIG. 3. (Color online) (a) Scaling of the avalanche cutoff S∗ vs the rescaled stiffness K = kL2. The cutoff S∗ scales linearly with the
system size L but exhibits either an inverse or an inverse square root dependence on the stiffness K depending on K is lower or larger than
the characteristic stiffness K∗ = 1. (b) Mean avalanche size 〈S〉K dependence on system size L for stiffness values K = 10−3, 10−2, 10−1, 1.
The simulation data are shown as symbols while the analytic expression Eq. (6) provides the continuous curves. The dash-dotted lines show
the apparent scaling associated with these different cases. The apparent scaling exponents are very dependent on the stiffness value.

C. Typical size of avalanches

With this knowledge about the avalanche cutoff the typical
size 〈S〉 of an avalanche can thus be estimated:

〈S〉≈
∫ S∗

1 s1−κ ds∫ S∗
1 s−κ ds

≈ κ − 1

2 − κ

(L/Kυ)2−κ − 1

1 − (L/Kυ)1−κ
, (6)

where κ ≈ 1.25, υ = 1, or υ = 1/2 depending on whether
K < K∗ or K > K∗.

In Fig. 3(b), we displayed the average avalanche size 〈S〉
versus the system size L for several values of the elastic
constant K . Numerical results are well reproduced by the
analytical equation (6). Note that as soon as the elastic
constants approaches K∗ = 1, the apparent scaling can be very
different from the naive scaling obtained at very large sizes K

or low values of K: 〈S〉 ∝ (L/E)β where β = 2 − κ ≈ 0.75.
The value of the machine stiffness in experimental testing is
thus prone to affect the apparent scaling of the typical size
of avalanches. Albeit the quality of the fits to power laws is
quite satisfactory, we believe that the apparent dependence of
the exponent with k is the mere reflection of the corrections,

which can be rationalized by the above argument. The present
results should be compared with those obtained by Maloney
and Lemaı̂tre [13] who measured an an average avalanche
size 〈S	t 〉 ∝ L on Lennard-Jones two-dimensional model
glasses under quasistatic shear and with those of Lemaı̂tre and
Caroli [41], 〈S	t 〉 ∝ L or L0.3 for a mean-field model based
on an effective mechanical noise accounting for the elastic
interactions.

IV. CRITICAL THRESHOLD AND FINITE-SIZE
FLUCTUATIONS

As discussed in the introduction, the rapid development
of micro- and nano-electromechanical systems is a strong
motivation for the understanding of their mechanical behavior.
In such systems the ratio between the “micro-” size (grain
domain, etc.) and the “macro-” system size is low, and strong
fluctuations are expected from piece to piece.

In that context, the present modeling of amorphous plas-
ticity as a depinning phenomenon is of high interest. As any
phase transition, the depinning transition exhibit finite-size

(a) (b) (c)

FIG. 4. Maps of cumulated plastic activity during avalanches obtained with stiffness values (from left to right) K = 10−1, 100, and 101 for
a system of size L = 256. The avalanche sizes were measured to be S = 1616, 324, and 81, respectively.
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FIG. 5. (Color online) (a) Distribution P (�c) of the current yield stress �c sampled over time. The macroscopic yield stress �∗ is given
by the maximum of the distribution. (b) Representation in semilogarithmic coordinates of the conditional distributions P (�c,�) such that the
next slip event is located at a distance � from the current point. P (�c,�) can be interpreted as the distribution of yield stress fluctuations for a
subsystem of size �. (c) Dependence of the width w of the distributions P (�c,�) vs its mean value 〈�c(�)〉 for different �. The linear behavior
obtained for large values of � allows to estimate the asymptotic yield limit �∗ through extrapolation to w = 0.

effects that can be quantitatively characterized with the help
of critical exponents.

In contrast to usual studies of criticality, the present context
invites us to focus on the critical threshold rather than on the
critical exponents. While the former is reputed of low interest
since it depends on the microscopic details, it gives us here
the yield stress value at macroscopic scale. The fluctuations
of this threshold for finite systems will thus directly give the
expected fluctuations of the yield stress for small pieces.

We develop below a study of finite-size effects that follow
the lines of previous works about the depinning of elastic
lines [42].

As defined in the description of the model, each elementary
zone is characterized by a local plastic criterion σc(x) =
σγ (x) − σres(x) (where x refers to the spatial location) that can
be separated in two contributions: σγ corresponds to the yield
threshold of the local structure in absence of internal stress;
σres is the internal stress induced by the successive plastic
reorganizations that have occurred in the material. For each
configuration of the system, a loading that does not trigger
any local slip event obeys �ext < �c = minx σc(x) and the
macroscopic yield stress is then defined as the maximum value
of this macroscopic load over the whole set of configurations,
�∗ = max �c; when the external stress lies below that value,
�∗, plastic deformation will eventually stop after a finite strain,
while above it the material can flow indefinitely. To recast
this definition in the previous language of avalanches, the
macroscopic yield stress is the one that corresponds to the
existence of an infinite-size avalanche at vanishing stiffness
k = 0.

The distribution of these current yield stress values P (�c)
is shown in Fig. 5(a). Note that �c can take here negative or
positive values since it is associated with a fluctuating part of
the material properties. (Changing the material yield limit will
trivially translate both the distribution and the critical threshold
�∗.) The same distribution is shown in Fig. 5(b) in logarithmic
scale. The entire distribution depends on the local yield stress
distribution, here a uniform distribution, and hence has no
specific value. However, close to its maximum, the distribution
contains only information relative to macroscopically pinned

or quasipinned configurations. Hence the behavior of the
distribution close to the maximum stress contains generic
features that are difficult to extract from such a graph.

To isolate those universal features, it is proposed to part the
distribution into conditional probability distribution functions
depending on a characteristic that signals that the configuration
is close to pinning. We chose the distance � between successive
slip events as a clear indication of such a pinned configuration.
P (�c,�) is introduced as the fraction of the initial distribution
P (�c) such that the plastic event occurred at a distance � from
the previous one. This trick gives us a simple way of analyzing
finite-size effects. Indeed, writing that plastic activity has to
move by a distance � simply means that over a domain of
extension �, the system has reached a pinned configuration.
P (�c,�) thus gives direct access to the distribution of effective
thresholds for systems of size �. We observe that the larger the
distance (the system size), �, the narrower the distribution
P (�c,�) and the closer its center from the maximum of
the distribution P (�c). This observation is rationalized in
Fig. 5(c), where the width of these conditional distributions
is plotted against their mean. We obtain a linear behavior, i.e.,
these two quantities obey the same scaling. In particular, this
means that extrapolating this linear behavior to a zero width
(which would be obtained for an infinite system) allows us to
give a precise estimate of the critical threshold �∗.

The precise knowledge of the critical threshold gives us
the opportunity to characterize not only the scaling behavior
of the finite-size fluctuations of the yield stress but also of
the distance between the mean yield stress and the critical
threshold. The two scaling behaviors are displayed in Fig. 6.
We see that for a typical size � both the width w(�) of the yield
stress fluctuations and the distance to threshold �∗ − �c(�)
obey the same scaling:

w(�) ∝ �−b; �∗ − �c(�) ∝ �−b with b ≈ 0.94. (7)

The macroscopic yield stress is hampered by finite-size
systematic corrections roughly inversely proportional to the
system size. While in the context of elastic line depinning,
a similar power-law correction was observed, the exponent b
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FIG. 6. (Color online) (a) The difference between the asymptotic macroscopic yield stress �∗ and the mean yield stress 〈�c(�)〉 vs distance
�, for a system of size L = 256. A power-law fit of exponent b ≈ 0.94 is shown as a dotted line. (b) Plot of the standard deviation of depinning
stress w as a function of the distance �, for a system of size L = 256. A similar power-law fit of exponent b ≈ 0.94 is shown as a dotted line.

could be related to the roughness exponent [42], but in the
present case, we could not build a similar scaling relation.

V. PLASTIC PRECURSORS

As discussed in Ref. [16], the plastic strain obeys a strong
anisotropic scaling resulting from the quadrupolar symmetry
of the elastic stress redistribution. Most of the plastic events
occur consecutively to a previous plastic event located along a
direction at ±π/4 (maximum shear directions).

However, it appears that only a tiny fraction of the sites
are prone to slip. It is possible to distinguish these precursory
sites when looking at the full distribution of the local plastic
thresholds σc(x). Such distributions are displayed in Fig. 7(a)
for different system sizes. The dashed vertical line at the

abscissa of the critical threshold σ ∗ allows us to separate two
populations. The left part corresponds to the weakest sites of
the lattice. For one particular configuration, the weakest site
gives the current yield stress �c. The right part corresponds
to the subcritical sites, their local threshold being larger
than the critical value �∗ they are unconditionally stable.
For one configuration, however, not only the weakest site
but also a few others can be characterized by a overcritical
local threshold, i.e., σc(x) < �∗. They are thus very likely to
initiate a slip event and hence can be termed “precursors.” A
scaling analysis of this population is of interest. It is clear
from Fig. 7(a) that the fraction of precursors decreases when
the size L of the system increases. The Fig. 7(b) shows the
size dependence of this population in logarithmic scale. We
obtain P [σc(x) < �∗] ∝ L−s with s ≈ 1.34. This scaling can
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FIG. 7. (Color online) (a) Distribution of individual depinning stress P (σc(x)) for different system sizes L = 8, 16, 32, 64, 128, and 256.
The dotted line indicates the macroscopic yield threshold �∗: The overcritical part (σc < �∗) depends on L (in contrast to the subcritical one).
(b) The relative weight of the overcritical part P (σc < �∗) is observed to scale as a power law of the system size. P (σc < �∗) ∝ L−s with
s ≈ 1.34.
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FIG. 8. (Color online) Maps of cumulated plastic activity during avalanches obtained with stiffness values K = 1 for a system of size
L = 256. The colored symbols indicate the location of precursors just before the avalanche takes place. Red upward triangles are part of the
avalanche; green and blue symbols are not part of the avalanche, but at the end of the latter green dots are still overcritical while blue downward
triangles are no longer over-critical, they have been healed during the avalanche.

be interpreted as the fact that these precursory sites live on a
fractal support of dimension dF = 2 − s ≈ 0.66.

The identification of a set of precursors can be illustrated
graphically. In Fig. 8 we superimposed the plastic activity ob-
served during avalanches with the set of identified precursors
(represented as colored symbols) just before the avalanche
take place. One can clearly see that avalanches indeed initiate
from some of these overcritical sites. One also observes a
striking intermittence of this population, which can fluctuate
from one to a few tens. It is of interest to follow the fate
of these precursors during the avalanche. The red upward
triangle indicate sites taking part in the avalanche. Blue and
green symbols indicate sites not taking part of the avalanche,
but at the end of the latter, green dots are still overcritical
while blue downward triangles are no longer overcritical. This
possibility of healing is a specificity of the present model.
Indeed, in contrast to the case of a depinning front where elastic
coupling does not change sign, the quadrupolar interaction
is positive or negative depending on the direction and thus
has either a stabilizing effect (overcritical sites are sent back
in the subcritical part of the distribution) or a destabilizing

effect. However, the presence of greens dots indicate that not
all overcritical sites are exhausted during an avalanche. Only
late plastic events will be initiated there. A large part of the
dynamics of the model is thus related to this population of
precursors, which seems to encode a long-term information.

VI. CONCLUSION

The present mesomodel of amorphous plasticity, based on
the competition between a local yield stress randomness and
long-range elastic interaction allowed us to obtain nontrivial
results about avalanche statistics and finite-size effects. In
particular, the exponent reported here for the scale-free
avalanche distribution, κ ≈ 1.25 is significantly different from
the mean-field value (3/2). This suggests that a faithful account
of the elastic stress redistribution due to local restructuring
is indeed a crucial ingredient in the modeling of amorphous
plasticity to capture faithfully collective effects. Although
original due to this quadrupolar interaction, the present model
can still be discussed in the framework of the depinning
transition. This allowed us to track the finite-size fluctuation
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and systematic size effect of the macroscopic yield stress. In
addition, a set of precursory sites of having a fractal support
has been identified.
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