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In this paper the effects of inter-community links on the synchronization performance of community networks,
especially on the competition between individual community and the whole network, are studied in detail.
The study is organized from two aspects: the number or portion of inter-community links and the connection
strategy of inter-community links between different communities. A critical point is found in the competition of
global network and individual communities. Increasing the number of inter-community links will enhance the
global synchronizability but degrade the synchronization performance of individual community before this point.
After that the individual community will synchronize better and better as part of the whole network because
the community structure is not so prominent. The critical point represents a balance region where the individual
community is maximally independent while the information transmission remains effective between different
communities. Among various connection strategies, connecting nodes belonging to different communities
randomly rather than connecting nodes with larger degrees are the most efficient way to enhance global
synchronization of the network. However, the dynamical modularity is the reverse case. A preferential connection
scheme linking most of the hubs from the communities will allow rather efficient global synchronization while
maintaining strong dynamical clustering of the communities. Interestingly, the observations are found to be
relevant in a realistic network of cat cortex. The synchronization state is just at the critical point, which shows
a reasonable combination of segregated function in individual communities and coordination among them. Our
work sheds light on principles underlying the emergence of modular architectures in real network systems and
provides guidance for the manipulation of synchronization in community networks.
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I. INTRODUCTION

Communities exist ubiquitously in all kinds of networks
[1–3], and synchronization on community networks is of great
importance in biological and social networks. To date, the
synchronization property of community networks has been
well studied. It has been shown that the sparsity of connections
between different communities hinders the global synchro-
nization of complex networks [4–6]. Factors that affect the
synchronization of community networks have been intensively
studied, and strategies that can achieve global synchronization
have been proposed [7–10]. Synchronization transition pro-
cess of community networks has also been studied [11,12].
Utilizing synchronization to detect community structure has
attracted a great deal of attention recently [13–17]. Moreover,
the dynamical modules of networks with and without clear
communities have also been studied in detail [18–22]. Very
recently, a class of small-world networks with spatial and
network modularity were obtained by evolving the arrange-
ment of nodes in space and their corresponding network
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topology [23]. Besides, some other interesting topics, such as
the synchronization interfaces and overlapping communities
in complex networks, were also studied [24].

Most of the previous studies on synchronization in com-
munity networks were based on various community network
models rather than on real-world networks. Recently, in
the context of the balance of functional segregation and
integration in neural systems, we defined a complexity measure
of the synchronization state of networks that enables both
segregation and integration, and we found that heterogeneous
degree distribution and community structure support high
complexity [22]. More interestingly, we found that the cortical
network of cats (which has four communities) has optimal
complexity compared to various rewired networks. However,
the dynamical mechanism underlying these observations is not
known yet.

The analysis in the present work will elucidate this dynami-
cal mechanism through a detailed study of the synchronization
state of community networks from two levels: global network
and individual community. Interestingly, we observe a phe-
nomenon that has been ignored in the study of synchronization
of modular network: competition between these two levels.
This competition has great relevance to real-world community
systems: functional segregation requires independency of
individual communities from the others through coordination

016109-11539-3755/2011/84(1)/016109(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.016109
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synchronization within community, but weak interference
between communities (weak global synchronization), while
integration requires strong enough coordinations between
communities (strong global synchronization). We believe that
there is an optimal balanced point for community networks,
and the structure of real-world community systems could be
close to such a critical point. In this paper, we identify the
critical point by investigating the change of synchronization
of community and global network as a function of modularity.
We are pleased to find that the cat cortical network is at this
critical point.

Another interesting problem that long has been neglected
is that even at the same modularity the connection strategy of
inter-community links (links connecting nodes belong to dif-
ferent communities) could greatly affect the synchronization
property of community networks, which will be intensively
studied in this paper. This work is organized as follows: In
the next section, we introduce the dynamical equation of each
node and the community network model. In Sec. III, we discuss
the competition between the individual community and the
whole network induced by the number of inter-community
links. The effects of the connection strategy of the inter-
community links on the competition will be discussed in
Sec. IV. Then we study the synchronization competition of cat
cortical network. We will give our discussion and conclusion
in the last section.

II. DYNAMICAL EQUATION AND COMMUNITY
NETWORK MODEL

To investigate the synchronization on complex networks,
dynamical systems are often taken as nodes and the couplings
between different systems are the links; thus the dynamical
equation of each node in a complex network with N nodes is

ẋi = F(xi) − σ

〈k〉
N∑

j=1

Gij H(xj ), i = 1, . . . ,N, (1)

where ẋ = F(x) is the individual dynamics, σ is the overall
coupling strength, 〈k〉 is the average degree of undirected
or average in-degree of directed network, H(x) is the output
function, and Gij is the element of coupling matrix. In our
simulations, if node i is coupled by node j , Gij < 0, otherwise
Gij = 0, and the diagonal element Gii = −∑N

j=1,j �=i Gij to
ensure the sum of the elements in a row is 0 so as to
make the synchronization manifold an invariant manifold. In
much previous work, the global network synchronizability
was measured by the eigenvalues of the coupling matrix
without calculating the iteration of oscillators on the networks
according to the master stability function [25,26]. In this paper,
we study not only the global network synchronizability but also
the individual community synchronization performance; thus
the master stability function is insufficient to our study, so we
take the Rössler oscillator as a dynamical node to fulfill our
simulation:

ẋ = −y − z,

ẏ = x + ay, (2)

ż = b + z(x − c),

where a = 0.2, b = 0.2, and c = 7.0. We take the output
function H(x) = (x,0,0). In Secs. II and III, all the links are
unweighted and the coupling matrix is Laplacian matrix; i.e.,
Gij = −1 (node i and j are connected) or Gij = 0 (node
i and j are not connected) for off-diagonal elements, and
Gii = ki for diagonal elements. The correlation between each
pair of nodes cij is calculated to measure the synchronization
performance, and the average correlations of all pairs of nodes
in the whole network CN and that of pairs in a community CC

are taken as the measure of the synchronization performance
of the global network and individual community, respectively.

To implement our study effectively, we design the following
community network model: Take m networks as subnetworks
to generate a community network and these subnetworks
will be the communities, then rewire the intra-community
links (links connecting nodes within the same community)
to inter-community links with various strategies, which will
be discussed in detail. When more and more inter-community
links emerge, the modularity will decrease gradually till the
network becomes a homogeneous one.

We follow Refs. [27,28] to quantify modularity of a network
with m communities as

Q =
m∑
l

(
ell − a2

l

)
, (3)

where al = ∑m
k elk and elk is the fraction of total strength

of the links in the network that connect the nodes between
the communities l and k, namely, elk = (1/W )

∑
i∈l,j∈k wij ,

with wij being the connection strength between two nodes
and W the total of wij in the network. In previous studies it
has been found that synchronization clusters emerge during
the transition to synchronization in random and scale-free
[19,29] networks, and in our work, we have found that
this phenomenon can be very prominent when community
structure in networks exists. The synchronization clusters may
be very clear at some coupling strength and hard to find at
other coupling strength values. To measure the strength of
the synchronization cluster, we generalize the definition of
modularity and define a dynamical modularity. To make sure
the two modularities are not confused we name the modularity
in Eq. (3) the topological modularity QT to measure the
strength of community structure from the adjacency matrix of
the network. We measure the strength of synchronization clus-
tering by the dynamical modularity QD , which is computed by
taking wij as the dynamical dependency between two nodes. In
particular, wij = |c̄ij |, where c̄ij = (cx,ij + cy,ij + cz,ij )/3.0
is the average correlation over the three variables between
a pair of nodes i and j . We get the correlation between
nodes by integrating Eq. (1) using the Runge-Kutta method
with step size h = 0.05; after a transient time interval t0 =
700, we store the data till T = 1200 and calculate cx,ij =
[ 1

(T −t0)/h

∑T/h

t=t0/h(xi,t − x̄i)(xj,t − x̄j )]/(σxi
σxj

), where x̄i and
σxi

are the average and standard deviation of variable xi over
the time interval from t0 to T , and cx,ij takes values from
−1 to 1. The dynamical modularity QD will be large, when
the nodes between different dynamical clusters have weak or
no correlation, and QD will decrease with the increasing of
dependency between nodes belonging to different dynamical
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clusters, no matter the dependency is in phase or antiphase
according to the definition of wij .

III. COMPETITION CAUSED BY INTER-COMMUNITY
LINK NUMBER

In this section, we construct community networks by
four equal-sized Erdos-Renyi (ER) random networks [30,31],
and each has 100 nodes with the average degree 16. We
construct community networks with the following operations:
(1) random select an intra-community link, (2) cut one end
of it, and (3) rewire it to a random selected node in the
other subnetworks. Only after several rewirings, the whole
network will become connected. Repeat the operations 1–3 till
the desired community network is obtained. This connection
strategy is called random connection. When more and more
intra-community links are changed to inter-community links,
the topological modularity QT becomes smaller and smaller
till the network becomes fully random without communities.

In Figs. 1(a) and 1(b), we present the changes of CN and CC

with coupling strength σ at different topological modularity
QT (corresponding to different number of inter-community
links LE). Clearly, at the same coupling strength, the global
network synchronizability will be better and better with the
decreasing of topological modularity QT , which is consistent
with previous studies [4–6]. However, the change of global
synchronization performance with respect to the coupling
strength σ is greatly different from the monotonic dependence
on QT : All the curves first increase sharply at very small cou-
pling strength [region I in Fig. 1(a)] and then increase slowly in
a broad region of coupling strength (region II). With the further
increasing of σ , networks with fewer inter-community links
(larger QT ) will show degraded synchronization performance,
while those with more inter-community links will be much
better (region III). After that all the curves will reach a

FIG. 1. (Color online) The synchronization performance of
global network CN (a), of individual community CC (b), and
dynamical modularity QD (c) as functions of the coupling strength σ

at different topological modularity QT . (d) CN , CC , and QD at very
small coupling strength for QT = 0.734. There are four communities
in the network; each one is an ER random network with 100 nodes,
and the average degree in each community is 16. Each plot is obtained
after averaging over 50 network configurations and 10 initial states
of each configuration.

saturated state (region IV). The synchronization performance
of individual community, CC behaves in the opposite way. It
increases monotonically with σ but does not show a monotonic
dependence on the topological modularity QT , as seen in
Fig. 1(b). We will investigate the change of CC with respect
to QT in more detail later in this paper. We also study the
effects of inter-community links on dynamical modularity
QD . Figure 1(c) shows that QD has a main maximal point
in region III and some other smaller maxima in regions I
and II. For a complex community network system, larger
dynamical modularity would favor segregated function by
the communities, and meanwhile the communication between
different dynamical clusters should also be smooth enough
to make good coordination among them. Then a natural
question arises: What is the best topological modularity where
segregated function and coordination among them could be
both satisfied? In the following, we try to present an insightful
understanding to this question.

First, we will investigate the mechanism of the phenomena
in Fig. 1. As seen in Fig. 1(d) for the region of small couplings,
CC grows faster than CN , leading to enhanced dynamical mod-
ularity. Then CN becomes large too, and the dynamical clusters
become smeared and QD is reduced. It worth mentioning
that very small coupling strength could make the network
go into a very good phase synchronization state, and at the
coupling strength σ = 0.030 the initial isolated subnetworks
will reach a complete synchronization state. To show explicitly
the synchronization state of nodes in different communities,
we plot the time series of the variable x(t) of four typical nodes.
We randomly pick out two communities from the four ones and
select two nodes (not directly connected) in each community,
one node having some inter-community links and the other
one having only intra-community neighbors. By comparing
the time series of the four nodes in Fig. 2(a), we found that
phase synchronization throughout the networks occurs at very
small coupling strength even for very few inter-community
links. This corresponds to the slowly increasing region of
CN [region II in Fig. 1(a)]. With the further increase of the
coupling strength, the networks move to a regime of fierce
competition: For the networks with very few inter-community
links, the individual community gets ready to reach complete
synchronization state and the synchronization of nodes in the
same community is rather good, but because of the random
initial states, different communities oscillate at different phase,
and the small number of inter-community links fail to bring the
phases of different communities to each other; thus the global
synchronization shows even worse performance compared
to weaker coupling strength. This phenomenon can be seen
in Fig. 2(b). The good synchronization performance within
individual communities and weak synchronization between
them result in the prominent dynamical modularity [region
III, Figs. 1(a) and 1(c)]. As for the networks with enough
inter-community links, communities yield to the effects of
inter-community links, and there is no significant differ-
ence between intra-community synchronization and inter-
community synchronization [Fig. 2(c)], leading to reduced
dynamical modularity QD [Fig. 1(c)]. When the number of
inter-community links is between these two situations, the
individual community tries to oscillate as much independently
as possible, but is inevitably affected by the others to some
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FIG. 2. (Color online) The change of state x with time t at
coupling strength (a) 0.2, (b) 0.3, and (c) 0.6. The two bold
curves and two regular curves present nodes belonging to the two
different communities separately; the two solid curves represent
nodes connected by inter-community link, and the two dashed curves
present two nodes that are connected neither to each other nor to the
other two nodes. (d) Change of dE (square line) and dI (circle line)
with the coupling strength. The topological modularity of the adopted
network is 0.746, and the other network parameters are the same as
in Fig. 1.

extent, which results in degraded synchronization performance
of individual communities. This is the reason for the decreasing
of CC at some topological modularity QT [Fig. 1(b)]. When
the coupling strength becomes stronger and stronger, the
information is exchanged more smoothly between different
communities, and the states of different communities oscillate
almost fully synchronously [Fig. 2(c)]. The global synchro-
nization increases again, and the dynamical communities
become not so prominent. This procedure of competition and
coordination can be further manifested by the state differences
of a node to its neighbors in the same community (dI ) and in the
other communities (dE). Here the difference for a node i and its
neighbors in community X is defined as di = √〈(x̄j,X − xi)2〉,
where x̄j,X is the average state of i’s neighbors in community
X and 〈·〉 denotes averaging over time. dI and dE averaged
over nodes are shown as functions of connection strength σ

in Fig. 2(d). It is evident that dI almost keeps decreasing
with σ , which indicates that the state of a node gets close
to its neighbors in the same community gradually. However,
the curve of dE has a distinct peak at about σ ∗ = 0.3, which
shows that in this region of coupling strength the state of a
node is far away from its neighbors in the other communities.
In summary, we can see that at very weak coupling strength,
the inter-community links could effectively transmit the state
information of different communities to make the nodes of
the whole network have the similar phase, and at very strong
coupling strength, the inter-community links could also be
efficient to bring together the states of different communities.
However, when the coupling strength is between these two
cases, the synchronization in communities are too strong, and
the inter-community links fail to synchronize them at some
larger topological modularity.

FIG. 3. (Color online) The change of CN (a), CC (b), and QD

(c) with QT at various coupling strength σ as indicated. The other
network parameters are the same as in Fig. 1.

We also investigate CN , CC , and QD as functions of
the topological modularity QT with fixed coupling strengths
(Fig. 3). The inverse change between CN and QD can be
seen more obviously: The synchronization performance of
global networks is degraded with the increasing of QT , and
dynamical modularity QD will keep about zero at small
QT and increase sharply when the community structure
becomes prominent enough at large QT . Interesting behav-
ior happens for synchronization of individual communities
where CC displays a pronounced minimum. The change of
CC can be understood as follows: When intra-community
links are rewired to inter-community links in the beginning
(QT decreasing), the number of intra-community links is
reduced, and the number of inter-community links is increased,
synchronization within community becomes weaker. In fact,
only decreasing the number of intra-community links or only
increasing the number of inter-community links will both
reduce CC . At this stage, the individual communities still
oscillate largely independently (CC ∼ 1 > CN ). When there
are enough inter-community links, as part of the whole network
the individual communities are not prominent at all and no
longer independent and CC ≈ CN , corresponding to QD ≈ 0.
Therefore, the minimum of CC corresponds to a critical
point QT C . When QT > QT C , communities oscillate rather
independently, and the communication between communities
is weak, and for QT < QT C , the communication between
communities is smooth but the dynamical independency of
individual community is not prominent. Therefore, the region
around the critical point represents a balance region where the
individual community is still clearly independent while the
information transmission remains effective between different
communities.

It is worth noting that the best topological modularity QT C

is relevant to the individual node dynamics, and the value may
be of great difference for different types of node dynamics.

IV. COMPETITION UNDER VARIOUS
CONNECTION STRATEGIES

Intuitively, not only the number of inter-community links
but also the connection strategy of inter-community links
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could affect the synchronization performance of community
networks. For example, connecting nodes from different
communities with larger degrees seems to be more efficient
for information exchange between the communities and,
therefore, might be superior for global synchronization. It has
been found that in brain networks there are hub nodes (nodes
with rather large degree), and some of them act as connectors
between different communities [32,33]. In this section we
design several connection strategies to investigate whether it
will be better for global network synchronization to connect
nodes with larger degree rather than nodes with smaller degree
and how the competition will change with different connection
strategies.

In this section we need the subnetworks with broader
distribution of degree, and the Barabasi-Albert (BA) scale-free
network model [34] seems a good candidate for our study,
since its degree distribution obeys a power law, which allows
the existence of nodes with rather larger degree than the
average degree. Although there will be small synchronization
clusters in communities during the synchronization process,
we pay more attention to overall synchronization of individual
community and the global network. The result will not be
affected greatly by the synchronization clusters with small
sizes.

The connection strategies are as follows: Take BA scale-free
networks as communities and (1) keep one end of inter-
community links on some nodes with largest degree (big
nodes) and connect the nodes with randomly selected nodes
in other communities (hub-random connection), (2) connect
nodes selected in different communities with probability p ∝
kα
i , where ki is the degree of node belongs to the community

and α is a tunable parameter (preferential connection), and
(3) connect big nodes belong to different communities (hub-
hub connection). Compared to the random connection, these
three connection strategies make the distribution of inter-
community links biased more and more to some big nodes.
For preferential connection, with the increasing of parameter
α, more and more inter-community links will connect nodes
with larger degree. Suitably selected α will make the big nodes
of different communities not only connect densely among
themselves, but also connect to some smaller nodes. Such
a connection scheme is consistent with the structure of brain
cortex network that the hub areas are almost fully connected
among themselves to form a hypercommunity overlapping
different communities [35]. Moreover, to compare the effects
of degree of connected nodes, we also designed the middle
or small degree connection strategy, which is characterized
by connecting nodes with middle or small degree in different
communities. For all the strategies, once the inter-community
link number is fixed, the topological modularity is almost
the same according to the definition of modularity. Now
we will see if the synchronization property will be different
for the same topological modularity but different connection
strategies.

We have investigated networks composed by different
number of communities and found no essential differences
in the synchronization property. Thus, in our simulation of
this section we take the simplest community network model
with two communities. Figure 4 shows the change of CN ,
CC , and QD with the coupling strength for community

FIG. 4. (Color online) The change of CC , CN , and QD with σ at
LE = 64 (QT = 0.46) and 196 (QT = 0.38) for different rewiring
strategies. Parameter α = 4.0 for preferential connection. There are
two communities in the network, each one is a BA network with
100 nodes, and the average degree is 16. Each plot is obtained after
the averaging of 50 network configurations and 10 initial states of
each configuration.

networks with different connection strategies. In contrast
to intuitive expectation, not the strategy connecting only
big nodes but that connecting random selected nodes will
make the global network as well as individual community
synchronization better at the same coupling strength and
the same topological modularity. Namely, when the inter-
community links distribute more homogeneously on nodes
with different degree, the global network synchronization will
be better. When the inter-community links concentrate on
nodes with either large or small degrees, connecting big nodes
will ensure better global network synchronization. As to the
dynamical modularity, its values still changes inverse to the
global network synchronizability. QD keeps larger in a broad
range of coupling strength σ when the inter-community links
are more concentrated to nodes with smaller degrees.

Now it is interesting to investigate how the connection
strategy affects the competition between the synchroniza-
tion of individual community and the whole network. In
Fig. 5, we present the change of CN , CC , and QD with
the topological modularity at several coupling strengths for
community networks constructed by random connection, hub-
random connection, preferential connection with parameter
α = 2.0 and 4.0, and hub-hub connection. From the figure it
can be seen that when the inter-community links are more
and more concentrated on hub nodes, the global network
synchronization becomes too weak, and accordingly, the
dynamical modularity is more prominent. The connection
strategies have significant impact on the competition between
individual community and global network. The critical point
of topological modularity QT corresponding to the minimum
of QC becomes smaller and smaller and finally disappears
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FIG. 5. (Color online) The change of CC , CN , and QD with σ for
different rewiring strategies. The other network parameters are the
same as in Fig. 4.

when the inter-community links are concentrated on hub
nodes. The absence of the critical point shows the individual
community dose not yield to each other. As a result, the
coordination among communities is rather inefficient when the
inter-community links too much concentration on big nodes.
To connect different communities with randomly selected
nodes does not seem a good strategy either, because there
is no dynamical clustering (QD ∼ 0) until the topological
modularity QT becomes rather large. Therefore, we could
speculate that communities in real-world systems shall be
connected with inter-community links concentrated on the big
nodes to some extent to obtain large dynamical modularity as
well as better coordination among them.

V. SYNCHRONIZATION IN MODULAR
CORTICAL NETWORKS

Modular organization is prominent and synchronization
dynamics is of special importance for functioning in neural
systems [36–40].

The critical competition regime in the synchronization
of community network is of special importance from the

viewpoint of information processing, where the specialized
processing using the dynamical communities can coexist with
the global exchange of information and integration from
specialized communities. In neural systems a combination of
these two ingredients, the functional segregation and integra-
tion, is believed to be crucial to underly the structural and
dynamical organization for efficient and diverse functioning
[41,42]. The synchronization properties of the preferential
connection scheme as in the real-world cat cortical network
allow quite strong global synchronization and meanwhile
maintain intermediate dynamical modularity, again pointing
to a meaningful balance between segregation and integration.

In order to study the relevance of this interesting observa-
tion, we study dynamics of a realistic cortical neural network
of cats. The cat cortical network [43] [Fig. 6(a)] has 53 nodes,
826 weighted links, and four communities that carry out the
four functions: visual (V), auditory (A), somatomotor (SM),
and frontolimbic (FL). Cortical networks posses exist hub

FIG. 6. (Color online) (a) The cortical network of cats. A node
represents a functional region of the cortex, and a link represents
the existence of fiber projection between two regions. The differ-
ent symbols represent different connection weight: 1 (◦ sparse),
2 (• intermediate), and 3 (∗ dense). The communities and functional
subdivision V, A, SM, and FL of the network are indicated by the
solid lines. (b) The change of synchronization performance of global
network (CN ) and of the four communities (CV , CA, CSM, and CFL)
vs the coupling strength σ . Each plot is obtained after the averaging
of 10 initial states.
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areas with large degree [32] and display the scale-free features
[33,44]. In this network, each node represents a brain area that
is composed of a huge number of interacting neurons. The
rhythmic activity of such a neural ensemble can be modeled
by neurophysiologically realistic neural mass oscillators [45].
The dynamical equation of coupled neural mass model is [36]

v̈P
i = Aaf

(
vE

I − vI
i

) − 2av̇P
i − a2vP

i ,

v̈I
i = BbC4f

(
C3v

P
i

) − 2bv̇I
i − b2vI

i , (4)

v̈E
i = Aa

⎡
⎣C2f

(
C1v

p

I

) + pi(t) + σ

〈S〉
N∑
j

Wij f
(
vE

j − vI
j

)
⎤
⎦

−2av̇E
j − a2vE

j ,

where vP
i , vI

i , and vE
i are the average postsynaptic membrane

potentials of pyramidal cells, excitatory interneurons, and
inhibitory interneurons of the area i, respectively. A static
nonlinear sigmoid function f (v) = 2e0/(1 + er(v0−v)) converts
the average membrane potential v into an average pulse
density of action potentials. Here v0 is the postsynaptic
potential corresponding to a firing rate of e0, and r is the
steepness of the activation. The parameters A and B represent
the average synaptic gains, and 1/a and 1/b the average
dendritic-membrane time constants. C1 and C2, C3, and C4 are

the average number of synaptic contacts for the excitatory and
inhibitory synapses, respectively, and pi represents afferent
inputs from subcortical systems. A more detailed interpretation
and the standard parameter values of this model can be found
in Ref. [45]. We take the parameters as in Ref. [45] so that
the model generates alpha-band periodic oscillations. As in
Ref. [45], in our simulations we take the subcortical input as
pi(t) = p0 + ξI (t), where ξI (t) is a Gaussian white noise with
standard deviation D = 2. Wij is the coupling strength from
area j to area i. We normalize coupling strength σ by the mean
intensity 〈S〉, where the connection intensity Si = ∑N

j Wij is
the total input weight to node i.

In this system of noisy oscillations, we also use the corre-
lation between nodes to measure the network synchronization
performance. Figure 6(b) shows the change of CN and CC

of the four communities with coupling strength σ . Unlike in
Fig. 1(a), here we do not observe the region III where CN

decreases with σ ; however, there is a regime at intermediate
couplings where CN increases slowly.

In order to see if the real system could work in the
balance and critical states, we compare the synchronization
performance of the real network with rewired networks having
larger or smaller topological modularity. This is obtained by
rewiring the intra-community links to inter-community links
or rewiring the inter-community links to intra-community links

FIG. 7. (Color online) The change of CC vs QT at σ = 20.0, 30.0, and 40.0. The stars present the results of the original cat cortical network.
Each plot is obtained after averaging over 50 network configurations and 10 initial states of each configuration.
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of the original cat cortical network. Figure 7 shows the change
of CC of the four communities with respect to QT (solid dot
lines). Interestingly, in a broad coupling strength region, the
original network (star) is just at the critical point of topological
modularity where CC is a minimum simultaneously in several
or all the communities. These results confirmed our expec-
tation that the real cortical network is organized such that
it allows efficient global integration under the condition that
the functional segregation is also maintained simultaneously.
This finding provides a detailed mechanism for our previous
observation [22] that the dynamical complexity measuring a
balance between segregation and integration is optimal in cat
cortical networks.

VI. DISCUSSION AND CONCLUSION

In summary, we have studied in detail the effects of
inter-community links on the synchronization performance
of community networks. We have revealed an interesting
competition between synchronization of the global network
and the individual communities. With the increasing of
the number of inter-community links the global network
synchronization will be enhanced, but the synchronization
performance of individual community will be degraded till
a critical point where the community structure is no longer
prominent. Afterwards, synchronization within the community
increases again as part of the global network. We also
investigated the impact of various connection strategies on
the global and community synchronization. We showed that
connecting nodes selected randomly in different communities

will ensure better global network synchronization but weak
dynamical modularity. On the other hand, concentrating all
the inter-community links to nodes with largest degrees may
not be efficient for global integration of the whole network.

Interestingly, these discoveries in generic models are
demonstrated to be relevant in a realistic cat cortical network
with simulated neural population activities. Comparing the
synchronization properties to rewired networks with larger or
small modularity, we found that the real network is just at
the critical point. Our analysis indicates that the cat cortical
network is organized such that it allows both segregated
performance with the communities and efficient integration
of the whole network.

Our work has provided a deeper understanding how the
inter-community link number and connection strategy affect
the synchronization of community networks as a whole as
well as individual community. These results not only present
the possible reason for the real cortical network to evolve to the
current community structure from the dynamical point of view
but also provide useful methods to regulate the synchronization
of community networks for potential applications.
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