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Penalized versions of the Newman-Girvan modularity and their relation to normalized
cuts and k-means clustering
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Two penalized—balanced and normalized—versions of the Newman-Girvan modularity are introduced and
estimated by the non-negative eigenvalues of the modularity and normalized modularity matrix, respectively. In
this way, the partition of the vertices that maximizes the modularity can be obtained by applying the k-means
algorithm for the representatives of the vertices based on the eigenvectors belonging to the largest positive
eigenvalues of the modularity or normalized modularity matrix. The proper dimension depends on the number
of the structural eigenvalues of positive sign, while dominating negative eigenvalues indicate an anticommunity
structure; the balance between the negative and the positive eigenvalues determines whether the underlying graph
has a community, anticommunity, or randomlike structure.
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I. INTRODUCTION

Spectral clustering has evolved in the last decades. Usually,
the underlying object is a graph and we want to classify its
vertices by maximizing or minimizing some objective function
favoring high or low edge densities within or between the
clusters. For example, minimum multiway cut problems aim
at minimizing the intercommunity edge densities. Though
it is not always stated explicitly, an equal balance between
the groups is preferable in order to form more realistic
clusters and avoid trivial solutions. Thus we are looking for
an optimum balanced partition of the vertices such that the
objective function penalizes significantly different cluster sizes
or volumes, where the volume of a vertex cluster—defined on
an edge-weighted graph—is the sum of the weights of edges
with at least one endpoint in the cluster. Even if the number
of clusters (k) is given, it is nondeterministic polynomial
(NP) complete to find the k partition optimizing the objective
function. To reduce computational demand, spectral clustering
methods were developed for minimizing multiway cuts, ratio
cuts, and normalized cuts, cf. [1–7]. In the case of a convenient
choice of k a good approximation of the optimal multiway cut
can be found in polynomial time in the number of vertices
(N ). This significantly reduces computational costs, especially
if N is very large; for example, genomic data [8] with tens
of thousands of genes, and weighted graphs of social or
communication networks, where the edge weights are pairwise
similarities between a large number of sites. In [1] and [4] it
is proved that the more dense the clusters themselves are,
the larger the spectral gap between the k smallest normalized
Laplacian eigenvalues and the others is. In his survey paper [9],
Fortunato gives a nice overview of community detection in
graphs.

The Newman-Girvan modularity introduced in [10] directly
focuses on modules of higher intracommunity connections
than expected based on the model of independent attachment
of the vertices with probabilities proportional to their degrees.
To maximize this modularity, hierarchical clustering methods
based on the edge betweenness measure [10–13] and vector
partitioning algorithms based on the spectral decomposition of
the modularity matrix [14] are introduced. In [15] an extremal
optimization algorithm is presented.

Our purpose is to extend the linear algebraic machinery
developed for Laplacian based spectral clustering to the
modularity based community detection. To this end, two
penalized versions of the Newman-Girvan modularity are
introduced in the general framework of an edge-weighted
graph [16], and their relation to projections onto the subspace
of partition vectors and to k variance of the clusters formed by
the vertex representatives is investigated. These considerations
give useful information on the choice of k and on the nature
of the community structure. With an appropriate k (that
is fairly small and corresponds to a spectral gap) a local
maximum of the modularity can be guaranteed by processing
an advanced version of the traditional k-means algorithm in
O(kN ) time. It will be proved by linear algebraic methods that
the k-means algorithm used in spectral clustering problems is
an efficient tool for community detection provided the “best”
eigenvectors are selected for vertex representation. It is also
important that we use the spectral decomposition of the matrix
that is most adequate to our problem in the sense that the
objective function can be sharply estimated by the sum of
the largest or smallest eigenvalues of it. For example, the
ratio/normalized cut (to be minimized over k partitions of
vertices) can be sharply estimated from below by the sum
of the k smallest (including the zero) eigenvalues of the
positive semidefinite Laplacian/normalized Laplacian matrix;
see [1–7]. Therefore the corresponding eigenvectors (apart
from the trivial one belonging to the 0 eigenvalue) will be
used for the representation of vertices in Rk−1 that gives the
input of the k-means algorithm with k clusters. Analogously,
the balanced/normalized modularity (to be maximized over
k partitions of vertices) can be estimated from above by the
sum of the k largest eigenvalues of the modularity/normalized-
modularity matrix. Similarly, the corresponding eigenvectors
of this matrix will be used for the representation of vertices in
Rk that gives the input of the k-means algorithm with k + 1
clusters (the increase is due the orthogonality to the trivial
eigenvector belonging to the 0 eigenvalue that is separated
from the k largest ones). As the unpenalized Newman-Girvan
modularity is concerned, in [14] no exact estimation for
it is given by the leading modularity eigenvalues. To get
sharp estimations, balanced or normalized partition vectors
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are advisable to use so that they form a suborthogonal matrix
and can be relaxed to orthonormal eigenvectors.

We also prove that maximizing the normalized modularity
is equivalent to minimizing the normalized cut with the same
k, therefore the normalized Laplacian can as well be used.
However, the normalized modularity spectrum being in [−1,1],
the normalized modularity matrix is more capable to treat
large graph problems. E.g., for convergent graph sequences
(see [17]), the spectrum is accumulated around zero, and
outstanding negative and positive eigenvalues indicate the
block structure. This correlationlike matrix is also the kernel of
the operator taking conditional expectation. Further, the zero
is a watershed in its spectrum, and because of this symmetry,
it is well suited for maximizing/minimizing the normalized
modularity and may be the most adequate to the spectral
characterization of randomlike graphs on several clusters (see
[18]), where the probability of two vertices being connected
depends merely on their cluster memberships.

Robustness of a community structure is also an important
problem discussed in [19]. We also touch upon this problem,
rather from a statistical point of view. For large N , if there
are no outstanding positive eigenvalues in the modularity
spectrum, there is no use in looking for modules of high intra-
community connections. There are other possibilities too: an
anticommunity structure with lower than expected intracluster
connections or a completely randomlike structure as discussed
above. A shift toward the positive eigenvalues indicates
community, while that toward the negative ones indicates an
anticommunity structure; an equal balance between them may
be an indication of a randomlike structure. It is shown through
theoretical examples how the signs of the structural (large ab-
solute value) eigenvalues decide the situation. By relaxing the
notion of communities we may look for groups of vertices such
that their intra- and intercluster connections mainly depend on
their cluster memberships, and on this basis, noisy models are
investigated [20]. These structures can as well be recovered by
means of eigenvectors belonging to the structural eigenvalues
of the modularity matrix. For example, equally functioning
genes, people, or web sites in genomic, social, or communica-
tion networks may form clusters in this wider sense.

The paper is organized as follows. In Sec. II notation and
two penalized versions of the Newman-Girvan modularity
are introduced in the framework of an edge-weighted graph;
further, efficiency of the k-means algorithm is discussed.
Exact mathematical formulation of the balanced version is
derived in Sec. III, while that of the normalized version is
derived in Sec. IV, together with their relation to the k-
variance minimization problem; hence the k-means algorithm
is applicable. In Sec. V more general community structures are
introduced and identified by spectra; further, real-life examples
are presented. In Sec. VI some future directions, concerning
consistency, are discussed.

II. PRELIMINARIES

A. Edge-weighted graphs

We shall use the general framework of an edge-weighted
graph, cf. [1,9,16]. Let G = (V,W) be a graph on N vertices,
where the N × N symmetric matrix W has non-negative real

entries and zero diagonal. Here wij is the similarity between
vertices i and j , where 0 similarity means no connection or
edge at all. A simple graph is a special case of it with 0 or 1
weights. In [16] the author first investigates multigraphs that
correspond to a W of non-negative integer entries. Without
loss of generality

N∑
i=1

N∑
j=1

wij = 1 (1)

will be supposed. Hence W is a joint distribution, with
marginal entries

di =
N∑

j=1

wij , i = 1, . . . ,N

that are called generalized vertex degrees. Let d :=
(d1, . . . ,dN )T be the degree vector comprising the main
diagonal of the diagonal degree matrix D (vectors are columns
and T stands for the transposition). In [1] we estimated a variety
of penalized minimum cuts by means of the spectrum of the
Laplacian L = D − W or that of the normalized Laplacian
LD = I − D−1/2WD−1/2, where I denotes the identity matrix
of appropriate size.

Let Pk = (V1, . . . ,Vk) be a k partition of the vertices,
where the disjoint, nonempty vertex subsets V1, . . . ,Vk will be
referred to as modules, communities, or clusters; Pk denotes
the set of all k partitions. In the edge-weighted case, with
condition (1), the Newman-Girvan modularity of Pk given W
is defined by

Q(Pk,W) =
k∑

a=1

∑
i,j∈Va

(wij − didj )

=
k∑

a=1

[e(Va,Va) − Vol 2(Va)],

where e(Va,Va) = ∑
i,j∈Va

wij is twice the sum of the weights
of edges in Va , and Vol(Va) = ∑

i∈Va
di is the volume of Va

(the sum of the weights of edges with at least one endpoint
in Va); while the entries didj of the null-model matrix ddT

belong to the hypothesis of independence. In other words,
under the null hypothesis, vertices i and j are connected
to each other independently, with probabilities proportional
[actually, because of condition (1), equal] to their generalized
degrees. Hence for given k, maximizing Q(Pk,W) is equivalent
to looking for k modules of the vertices with intracommunity
connections higher than expected under the null hypothesis.
As

∑k
a=1

∑k
b=1

∑
i∈Va

∑
j∈Vb

(wij − didj ) = 0, the above task
is equivalent to minimizing∑

a �=b

∑
i∈Va, j∈Vb

(wij − didj ), (2)

that is, to looking for k clusters of the vertices with intercluster
connections lower than expected under the hypothesis of
independence. In the minimum cut problem the cumulated
intercluster connections themselves are minimized. In the
edge-weighted case the modularity matrix is defined as B =
W − ddT that is the negative of the so-called Q-Laplacian
introduced in [21]. For large N , the authors use the structural
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eigenvalues of the normalized matrix D−1/2WD−1/2 that is
equal to I − LD , therefore its structural eigenvalues are 1
minus those of the normalized Laplacian, and they also
coincide with the eigenvalues of the transition probability
matrix D−1W. Then they use specially normalized eigenvec-
tors corresponding to the structural eigenvalues for vertex
representation and process the k-means algorithm with the
representatives. Therefore the spectral method introduced in
[21] for maximizing the Newman-Girvan modularity is closely
related to that of [3–5] for minimizing the normalized cut.
We will show how these spectra are related to the maxima
of the penalized modularities. Though it is not explicitly
stated in the existing spectral algorithms, the normalization of
their matrices and the eigenvectors implicitly favor balanced
partitions defined precisely as follows.

We want to penalize partitions with clusters of extremely
different sizes. To measure the size of cluster Va either the
number of its vertices |Va| or its volume Vol(Va) is used.
In [9] the author remarks that the Newman-Girvan modularity
seems to attain its maximum for clusters of near equal sizes,
though there is no explanation for it. In fact, it is true only for
completely random networks; see Sec. V. In [11] and [22] the
authors also define a good modularity structure as one having
near equal sizes of modules. However, they do not make use
of this idea in their objective function. As in the k > 2 case
there are more intercluster sums than intracluster ones; it is
in Eq. (2) where we penalize clusters of too different size or
volume by introducing a factor 1

|Va | + 1
|Vb| or 1

Vol(Va ) + 1
Vol (Vb)

for the a �= b pair that shifts the argmin toward balanced pairs.
On the one hand, communities of real-life networks have

practical relevance if they do not differ too much in size. On
the other hand, in their paper [22] Reichardt and Bornholdt
prove that the Newman-Girvan modularity is a special ground-
state energy, and in Bolla et al. [17] we use the convergence of
ground-state energies to prove the testability of some balanced
multiway cut densities (roughly speaking, testability means
that they can be concluded by sampling from a large graph).
Therefore to be testable, nonparametric statistics that can be
interpreted as ground-state energies are to be maximized/
minimized on conditions of balancing. However, these con-
ditional extrema cannot be immediately related to spectra.
As a compromise, we modify the modularity itself so that
it would penalize clusters of significantly different sizes. Of
course, real-life communities are sometimes very different in
size. Our method is capable to find fundamental clusters, and
further analysis is needed to separate small communities from
the large ones. Another possibility is to distinguish a core of
the graph that is free of low-degree vertices for which, usually
near zero, eigenvalues are responsible.

For the above reasons, analogously to the the weighted
cut of Bolla and Tusnády [1] and the ratio cut of Alpert and
Yao [6], we define the balanced Newman-Girvan modularity
of Pk given W as

QB(Pk,W) =
k∑

a=1

1

|Va|
∑

i,j∈Va

(wij − didj )

=
k∑

a=1

[
e(Va,Va)

|Va| − Vol 2(Va)

|Va|
]

,

and analogously to the normalized cut of Meilă and Shi [3]
for k = 2, further that of Bolla and Molnár-Sáska [5], and
Azran and Ghahramani [7] for a general k, we define the the
normalized Newman-Girvan modularity of Pk given W as

QN (Pk,W) =
k∑

a=1

1

Vol (Va)

∑
i,j∈Va

(wij − didj )

=
k∑

a=1

e(Va,Va)

Vol (Va)
− 1,

where we used the fact that
∑k

a=1 Vol (Va) = 1. In [7] it is
shown that minimizing the normalized cut of G = (V,W)
over k partitions of vertices is equivalent to maximizing∑k

a=1
e(Va,Va )
Vol (Va ) . Hence maximizing the normalized Newman-

Girvan modularity can be solved with the same spectral
method (using the normalized Laplacian) as the normalized cut
problem. However, in Sec. IV we introduce another method
based on the normalized modularity matrix. Of course, for
increasing N the value of the penalized modularity will
decrease akin to the Pearson correlation, relatively small values
of which can be significant for large sample sizes. However,
for fixed N , the penalized modularity is larger as the modules
are nearer to those of an equitable partition.

We also want to show another insight into the problem of the
choice of k from the point of view of computational demand
and by using the linear algebraic structure of our objective
function. In this way, we will prove that for the selected k,
maximizing the above adjusted modularities is equivalent to
minimizing the k variance of the vertex representatives by
choosing an appropriate representation; hence the k-means
algorithm is applicable.

B. The k-means algorithm

Let us consider the following clustering problem in a finite
dimensional Euclidean space. Given the points x1, . . . ,xN ∈
Rd and an integer 1 < k < N , we are looking for the k partition
of the index set {1, . . . ,N} (or equivalently, the clustering of
the points into k disjoint nonempty subsets), which minimizes
the following k variance of the points over all possible k

partitions (V1, . . . ,Vk):

S2
k (x1, . . . ,xN ) =

k∑
a=1

∑
j∈Va

‖xj − ca‖2, ca = 1

|Va|
∑
j∈Ca

xj .

(3)

In general, d � k, and they are much less than N . To find
the global minimum is NP complete, but the iteration of
the k-means algorithm, first described in [23], is capable to
find a local minimum in polynomial time. If there exists a
well-separated k clustering of the points (even the largest
intracluster distance is smaller than the smallest intercluster
one), the convergence of the algorithm to the global minimum
is proved in [24,25], with a convenient starting. Under relaxed
conditions, the speed of the algorithm is increased by a
filtration in [26]. The algorithm runs faster if the separation
between clusters increases and an overall running time of
O(kN ) can be guaranteed. When we apply the k-means
algorithm, these separation conditions will be kept in mind.
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Sometimes the points x1, . . . ,xN are endowed with the
positive weights d1, . . . ,dN , where without loss of generality∑N

i=1 di = 1 can be supposed. In such cases the weighted k
variance of the points

S̃2
k (x1, . . . ,xN ) =

k∑
a=1

∑
j∈Va

dj‖xj − ca‖2,

(4)

ca = 1∑
j∈Va

dj

∑
j∈Va

dj xj

is minimized over all possible k partitions (V1, . . . ,Vk). The
above algorithm can be easily adapted to this situation.

III. MAXIMIZING THE BALANCED NEWMAN-GIRVAN
MODULARITY

The k partition Pk is uniquely defined by the N × k

balanced partition matrix Zk = (z1, . . . ,zk), where the ath bal-
anced k-partition vector za = (z1a, . . . ,zNa)T is the following:
zia = 1√|Va | if i ∈ Va and 0, otherwise. This yields

QB(Pk,W) = QB(Zk,B) =
k∑

a=1

zT
a Bza = tr ZT

k BZk.

We want to maximize tr ZT
k BZk over balanced k-partition

matrices Zk ∈ ZB
k . Observe that the k columns of Zk form an

orthonormal system in Rn. Therefore Zk is a suborthogonal
matrix, and hence ZT

k Zk = Ik (Ik being the k × k identity
matrix).

By the notation of Sec. II, let β1 � · · · � βN denote the
eigenvalues of the modularity matrix B with corresponding
unit-norm, pairwise orthogonal eigenvectors u1, . . . ,uN . Let
p denote the number of its positive eigenvalues; thus βp+1 = 0
and up+1 = 1/

√
N . Now let Y = (y1, . . . ,yk) be an arbitrary

N × k suborthogonal matrix (k � N ). Then by a simple linear
algebra (see, e.g., Bathia [27]),

max
YT Y=Ik

tr (YT BY) = max
yT

a yb=δab

k∑
a=1

yT
a Bya =

k∑
a=1

βa

and equality is attained when y1, . . . ,yk are eigenvectors of B
corresponding to β1, . . . ,βk . Though the vectors themselves
are not necessarily unique (e.g., in the case of multiple
eigenvalues), the subspace Span {y1, . . . ,yk} is unique if βk >

βk+1.
Therefore

max
Zk∈ZB

k

QB(Zk,B) �
k∑

a=1

βa �
p+1∑
a=1

βa. (5)

Both inequalities can be attained by equality only in the k =
1, p = 0 case, when our underlying graph is the complete
graph (all the weights are equal). This corresponds to perfectly
assortative mixing. In this case there is only one cluster with
partition vector of equal coordinates (balanced eigenvector
belonging to the single 0 eigenvalue). For k > 1, partition
vectors for no graph can coincide with eigenvectors belonging
to positive eigenvalues, since their coordinates do not sum to
zero, which would be necessary to be orthogonal to the vector
belonging to the 0 eigenvalue.

It is also obvious that the maximum with respect to k of the
maximum in Eq. (5) is attained with the choice of k = p + 1.
In [14], for the nonpenalized case, the author shows how p + 1
clusters can be constructed by applying a vector partitioning
algorithm for u1, . . . ,up. However, in the case of large
networks, p can also be large, and computation of the positive
eigenvalues together with eigenvectors is time consuming. As
a compromise, it will be shown that choosing a k < p such
that there is a remarkable gap between βk−1 and βk will also
suffice. Further, even for a fixed “small” k < p, to find the true
maxim over k partitions cannot be solved in polynomial time in
N , but due to our estimations, spectral partitioning algorithms
can be constructed like spectral clustering based on Laplacian
eigenvectors; see [1,4]. Now, we are going to discuss this issue
in detail.

We expand QB(Zk,B) with respect to the eigenvalues and
eigenvectors of the modularity matrix:

QB(Zk,B) = tr ZT
k BZk =

k∑
a=1

zT
a

(
N∑

i=1

βiuiuT
i

)
za

=
N∑

i=1

βi

k∑
a=1

(
uT

i za

)2
.

We can increase the last sum if we neglect the terms belonging
to the negative eigenvalues, hence the outer summation stops
at p, or equivalently, at p + 1. In this case the inner sum is
the largest in the k = p + 1 case, when the partition vectors
z1, . . . ,zp+1 are “close” to the eigenvectors u1, . . . ,up+1,
respectively. As both systems consist of orthonormal sets of
vectors, the two subspaces spanned by them should be close to
each other. The subspace Fp+1 = Span {z1, . . . ,zp+1} consists
of stepwise constant vectors on p + 1 steps, therefore up+1 ∈
Fp+1, and it suffices to process only the first p eigenvectors.
The notation Q′

p+1,p will be used for the increased objective
function based on the first p eigenvalue-eigenvector pairs and
looking for p + 1 clusters:

QB(Zp+1,B) � Q′
p+1,p(Zp+1,B) :=

p∑
i=1

βi

p+1∑
a=1

(
uT

i za

)2
,

and in the sequel, for given B, we want to maximize
Q′

p+1,p(Zp+1,B) over ZB
p+1.

For this purpose, let us project the vectors
√

βiui onto the
subspace Fp+1:

√
βiui =

p+1∑
a=1

[(
√

βiui)
T za]za + ort Fp+1 (

√
βiui),

i = 1, . . . ,p. (6)

The first term is the component in the subspace, and the
second is orthogonal to it. In fact, the projected copies will
be in a p-dimensional subspace of Fp+1 orthogonal to the 1
vector (scalar multiple of up+1). They will be stepwise constant
vectors on p + 1 steps, and their coordinates sum to 0. This is
why one less eigenvector is used than the number of clusters
looked for.
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By the Pythagorean theorem, for the squared lengths of the
vectors in the decomposition (6) we get that

βi = ‖
√

βiui‖2 =
p+1∑
a=1

[(
√

βiui)
T za]2 + dist2(

√
βiui ,Fp+1),

i = 1, . . . ,p.

By summing for i = 1, . . . ,p, the cumulated second term will
turn out to be the sum of inner variances of the vertex repre-
sentatives in an appropriate representation, defined as follows.
For a given positive integer d � p, let the d-dimensional
representatives x1, . . . ,xN of the vertices be row vectors of
the N × d matrix Xd = (

√
β1u1, . . . ,

√
βdud ). For brevity’s

sake, the k variance S2
k (x1, . . . ,xN ) is denoted by S2

k (Xd ), cf.
the notation of Sec. II. Since Fk consists of stepwise constant
vectors on the partition (V1, . . . ,Vk), by an analysis of variance
argument (see [1]) it follows that

S2
k (Xd ) =

d∑
i=1

dist2(
√

βiui ,Fk).

Indeed, dist2(
√

βiui ,Fk) is the minimum squared distance
between

√
βiui and the subspace of stepwise constant vectors

on (V1, . . . ,Vk). In view of Steiner’s theorem, the minimum
is attained by the stepwise constant vector with coordinates
having at most k different values c1i , . . . ,cki . Namely, if
j ∈ Va , the j th coordinate of the distance minimizing stepwise
constant vector is cai = 1

|Va |
∑

�∈Va

√
βiui(�), yielding

dist2(
√

βiui ,Fk) =
k∑

a=1

∑
j∈Va

[
√

βiui(j ) − cai]
2.

By summing for i = 1, . . . ,d and rearranging the summation,∑d
i=1 dist2(

√
βiui ,Fk) equals S2

k (Xd ) with cluster centers ca =
(ca1, . . . ,cad ), a = 1, . . . ,k, cf. (3). Hence

p∑
i=1

βi =
p∑

i=1

p+1∑
a=1

[(
√

βiui)
T za]2 +

p∑
i=1

dist2(
√

βiui ,Fp+1)

= Q′
p+1,p(Zp+1,B) + S2

p+1(Xp),

where the rows of Xp = (
√

β1u1, . . . ,
√

βpup) are regarded
as p-dimensional representatives of the vertices. We could as
well take (p + 1)-dimensional representatives as the last co-
ordinates are zeros, and hence S2

p+1(Xp) = S2
p+1(Xp+1). Thus

maximizing Q′
p+1,p is equivalent to minimizing S2

p+1(Xp),
which can be obtained by applying the k-means algorithm for
the p-dimensional representatives with p + 1 clusters.

More generally, if there is a gap between βd and βd+1 > 0,
then we may look for k clusters based on d-dimensional
representatives of the vertices. Analogously to the above
calculations, for d < k � p + 1 we have that

d∑
i=1

βi =
d∑

i=1

k∑
a=1

[(
√

βiui)
T za]2 +

d∑
i=1

dist2(
√

βiui ,Fk)

=: Q′
k,d (Zk,B) + S2

k (Xd ). (7)

If βd is much greater than βd+1, the k variance S2
k (Xd+1) is not

significantly greater than S2
k (Xd ), since Xd+1’s last column,√

βd+1ud+1, will not increase too much the k variance of the

d-dimensional representatives, its norm being much less than
that of the first d columns. As the left hand side of Eq. (7)
is not increased significantly by adding βd+1, the quantity
Q′

k,d+1(Zk,B) is not much greater than Q′
k,d (Zk,B). Neither

the classification nor the value of the modularity is changed
much compared to the cost of taking one more eigenvector
into consideration. After d has been selected, we can process
the k-means algorithm with k = d + 1, . . . ,p + 1 clusters. By
an easy argument, S2

k+1(Xd ) � S2
k (Xd ), but we can stop if it

is much less. These considerations would minimize computa-
tional demand and proved good for randomly generated graphs
from different block structures; see Sec. V.

Calculating eigenvectors is costly; the Lánczos method
performs well if we calculate only eigenvectors belonging to
some leading eigenvalues followed by a spectral gap. In [6]
the authors suggest to use as many eigenvectors as possible.
In fact, using more eigenvectors (up to p) is better from
the point of view of accuracy, but using fewer eigenvectors
(up to a gap in the positive part of the spectrum) is better
from the computational point of view, cf. [4,11]. We have to
compromise. By these arguments, a local maximum of the
modularity can be expected at k = d + 1.

The advantage of the modularity matrix versus the Lapla-
cian is that here 0 is a watershed, and for small graphs, the
d = p, k = p + 1 choice is feasible; for large graphs we look
for gaps (like in the case of the Laplacian) in the positive part of
the spectrum, and the number of clusters is one more than the
number of the largest positive eigenvalues with corresponding
eigenvectors entered into the classification.

IV. MAXIMIZING THE NORMALIZED NEWMAN-GIRVAN
MODULARITY

The k partition Pk is also uniquely defined by the N ×
k normalized partition matrix Zk = (z1, . . . ,zk), where the
ath normalized k-partition vector za = (z1a, . . . ,zNa)T is the
following: zia = 1√

Vol (Va )
, if i ∈ Va and 0, otherwise. By these,

QN (Pk,W) = QN (Zk,B) =
k∑

a=1

zT
a Bza

= tr (D1/2Zk)T BD(D1/2Zk),

where BD = D−1/2BD−1/2 will be called normalized modu-
larity matrix. Since the matrix D1/2Zk is suborthogonal, the
maximization here happens with respect to ZT

k DZk = Ik , that
is, over normalized k-partition matrices Zk ∈ ZN

k .
Let β ′

1 � · · · � β ′
N denote the eigenvalues of the

symmetric normalized modularity matrix BD with cor-
responding unit-norm, pairwise orthogonal eigenvec-
tors u′

1, . . . ,u
′
N . First we establish the range of the

eigenvalues of BD = D−1/2WD−1/2 − D−1/2ddT D−1/2 =
D−1/2WD−1/2 − √

d
√

d
T

, where
√

d := (
√

d1, . . . ,
√

dN )T .
The correlationlike eigenvalues of the first term are in the
[−1,1] interval; the largest eigenvalue is always 1 with
corresponding unit-norm eigenvector

√
d. The only nonzero

eigenvalue of the rank 1 second term is also 1 with the
same eigenvector. Therefore the spectrum of the matrix BD

is the same as the spectrum of the first term, with the only
exception that—due to the subtraction of the second term—the
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eigenvalue 1 of D−1/2WD−1/2 becomes an eigenvalue 0 of BD

with eigenvector
√

d. Hence the spectrum of BD is in [−1,1]
and includes the 0. These considerations also give an exact
relation between the normalized Laplacian and modularity

matrix: BD = I − LD − √
d
√

d
T

. If the eigenvalues of LD

are 0 = λ1 � · · · � λN � 2, then the spectrum of BD consists
of the numbers 1 − λi (i = 2, . . . ,N) and the zero with
corresponding eigenvector

√
d. Further, the multiplicity of 0 is

one more than the multiplicity of the eigenvalue 1 of LD . The
multiplicity of 1 is one less than multiplicity of the eigenvalue 0
of LD; hence 1 cannot be an eigenvalue of BD if G is connected
(W is irreducible).

Let p denote the number of positive eigenvalues of BD (this
p does not necessarily coincide with that of Sec. III). Now
let Y = (y1, . . . ,yk) be an arbitrary N × k matrix (k � N )
such that YT DY = Ik . With the same linear algebra as used in
Sec. III,

max
YT DY=Ik

tr (YT BY) =
k∑

a=1

β ′
a (8)

and equality is attained with y1 = D−1/2u′
1, . . . ,yk = D−1/2u′

k .
Therefore

max
Zk∈ZN

k

QN (Zk,B) �
k∑

a=1

β ′
a �

p+1∑
a=1

β ′
a.

For further investigation, we expand our objective function
with respect to the eigenvectors:

QN (Zk,B) =
N∑

i=1

β ′
i

k∑
a=1

[(u′
i)

T (D1/2za)]2.

We can increase this sum if we neglect the terms belonging
to the negative eigenvalues, hence the outer summation stops
at p, or equivalently, at p + 1. The inner sum is the largest in
the k = p + 1 case, when the unit-norm, pairwise orthogonal
vectors D1/2z1, . . . ,D1/2zp+1 are close to the eigenvectors
u′

1, . . . ,u
′
p+1, respectively. In fact, the two subspaces spanned

by them should be close to each other. Now the subspace
Fp+1 = Span {D1/2z1, . . . ,D1/2zp+1} does not consist of step-
wise constant vectors, but the following argument is valid.
By the notation Q′′

p+1,p(Zp+1,B) for the increased objective
function based on the first p eigenvalue–eigenvector pairs and
looking for p + 1 clusters we get that

QN (Zp+1,B) � Q′′
p+1,p(Zp+1,B)

:=
p∑

i=1

β ′
i

p+1∑
a=1

[(u′
i)

T (D1/2za)]2.

In the sequel, for given B, we want to maximize
Q′′

p+1,p(Zp+1,B) over ZN
p+1.

With the argument of Sec. III, now the vectors
√

β ′
i u′

i are
projected onto the subspace Fp+1:

√
β ′

i u′
i =

p+1∑
a=1

[(
√

β ′
i u′

i)
T D1/2za] D1/2za + ort Fp+1 (

√
β ′

i u′
i),

i = 1, . . . ,p.

As
√

β ′
p+1 u′

p+1 = 0, there is no use in projecting it.

By the Pythagorean theorem, for the squared lengths of the
vectors in the above orthogonal decomposition we get that

β ′
i = ‖

√
β ′

i u′
i‖2 =

p+1∑
a=1

[(
√

β ′
i u′

i)
T D1/2za]2

+ dist2(
√

β ′
i u′

i ,Fp+1), i = 1, . . . ,p.

Let the vertex representatives x′
1, . . . ,x

′
N ∈ Rp

be the row vectors of the N × p matrix X′
p =

(
√

β ′
1 D−1/2u′

1, . . . ,
√

β ′
p D−1/2u′

p). Then

dist2(
√

β ′
i u′

i ,Fp+1) =
N∑

j=1

dj (x ′
ji − cji)

2, i = 1, . . . ,p

where x ′
ji is the ith coordinate of the vector x′

j and cji is
the same for vector cj ∈ Rp, where there are at most p + 1
different ones among the centers c1, . . . ,cN assigned to the
vertex representatives, namely,

cji = 1∑
�∈Va

d�

∑
�∈Va

d�x
′
�i , j ∈ Va, i = 1, . . . ,p.

In other words, the column vectors of the N × p matrix of
rows c1, . . . ,cN are stepwise constant vectors on the same
p + 1 steps belonging to the (p + 1) partition of the vertices
encoded into the partition matrix Zp+1.

By summing for i = 1, . . . ,p, in view of the analysis of
variance argument of Sec. III, the cumulated second term
will turn out to be the weighted (p + 1) variance (4) of the
vertex representatives in the (p + 1) partition designated by
the partition matrix Zp+1:

S̃2
p+1(X′

p) =
p∑

i=1

dist2(
√

β ′
i u′

i ,Fp+1) =
n∑

j=1

dj‖xj − cj‖2.

Therefore
p∑

i=1

β ′
i = Q′′

p+1,p(Zp+1,B) + S̃2
p+1(X′

p).

This applies to a given (p + 1) partition of the vertices. We
are looking for the (p + 1) partition maximizing the first
term. In view of the above formula, increasing Q′′

p+1,p can
be achieved by decreasing S̃2

p+1(X′
p); the latter one is obtained

by applying the k-means algorithm with p + 1 clusters for
the p-dimensional representatives x′

1, . . . ,x
′
N with respective

weights d1, . . . ,dN .
Analogously, for d < k � p + 1:

d∑
i=1

β ′
i =

d∑
i=1

k∑
a=1

[(
√

β ′
i u′

i)
T D1/2za]2 +

d∑
i=1

dist2(
√

β ′
i u′

i ,Fk)

= Q′′
k,d (Zk,B) + S̃2

k (X′
d ),

where the row vectors of the N × d matrix X′
d =

(
√

β ′
1 D−1/2u′

1, . . . ,
√

β ′
d D−1/2u′

d ) are d-dimensional repre-
sentatives of the vertices. Hence in the presence of a spectral
gap between β ′

d and β ′
d+1 > 0—in the miniature world of the

[0,1] interval—neither
∑d

i=1 β ′
i nor S̃2

k (X′
d ) can be increased

significantly by introducing one more eigenvalue-eigenvector
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pair [by using (d + 1)-dimensional representatives instead of
d-dimensional ones]. Consequently, Q′′

k,d (Zk,B) would not
change much, and by the argument of Sec. III, k = d + 1
clusters based on d-dimensional representatives will suffice.

In their new paper [28], Karrer and Newman introduce
a model that takes into consideration the heterogeneity in
the degrees of vertices. While the usual block model is
biased toward placing vertices of similar degrees in the same
cluster, the new model is capable to find clusters of vertices
of heterogeneous degrees. I had the same motivation when
introduced the normalized modularity matrix. To get this
matrix, the edge weights in the modularity matrix are divided
by the square roots of the degrees of their end vertices;
therefore the normalized modularity matrix supports the effort
for eliminating degree differences.

V. COMMUNITIES IN GENERAL

A. Anticommunity structure

Given the weighted graph G = (V,W) instead of taking the
maximum, we take the minimum of QB(Pk,W) = QB(Zk,B)
over balanced k-partition matrices Zk . As for fixed k, analo-
gously to Eq. (5),

min
YT Y=Ik

tr (YT BY) = min
yT

a yb=δab

k∑
a=1

yT
a Bya =

k∑
a=1

βN+1−a,

and similarly to the inference of Sec. III,

min
Pk∈Pk

QB(Zk,B) = min
ZT

k Zk=Ik

tr ZT
k BZk

�
k∑

a=1

βN+1−a �
n+1∑
a=1

βN+1−a,

where n is the number of negative eigenvalues of B (n + p <

N ). For the classification, here we use the scaled (by the square
root of the absolute value of the corresponding eigenvalue)
eigenvectors belonging to the negative eigenvalues for the
representation to find n + 1 clusters. For large N , it suffices
to choose d < n structural negative eigenvalues such that
there is a remarkable spectral gap between βN+1−d and βN−d .
Then with Xd = (

√|βN | · uN, . . . ,
√|βN+1−d | · uN+1−d ), we

find the minimum of S2
d+1(Xd ) by the k-means algorithm with

d + 1 clusters.
The same can be done by minimizing the normalized

modularity QN (Zk,B) based on the largest absolute value
negative eigenvalues and the corresponding eigenvectors of
the normalized modularity matrix.

B. Examples

The following theoretical examples illustrate that large
positive eigenvalues of the modularity matrix reflect a com-
munity, while large absolute value negative ones reflect an
anticommunity structure.

Pure community structure. G is the disjoint union of k

complete graphs on N1, . . . ,Nk vertices, respectively (there
are no intercommunity edges, but all possible intracommunity
edges are present). This belongs to perfectly assortative
mixing. G’s modularity matrix has k − 1 positive eigenvalues,
βk = 0 with corresponding eigenvector 1/

√
N , and there is

only one negative eigenvalue with multiplicity N − k. (In the
N1 = · · · = Nk special case β1 = · · · = βk−1 is a multiple
positive eigenvalue.) Here k communities are detected by
the k-means algorithm applied for the (k − 1)-dimensional
representatives based on the eigenvectors corresponding to
the positive eigenvalues. As these eigenvectors themselves
have piecewise constant structures on the steps belonging
to the vertex clusters, the k variance of the representatives
is 0, and the maximum QB(Zk,B) is a slightly smaller
positive number than the maximum Q′

k,k−1(Zk,B), the latter
one being the sum of the positive eigenvalues. In the k = 1
case the modularity matrix is negative semidefinite, and
both the maximum QB(Zk,B) and Q′

k,k−1(Zk,B) are zeros.
The normalized modularity matrix BD has the eigenvalue 1
with multiplicity k − 1, one 0 eigenvalue, and all the other
eigenvalues are in the (−1,0) interval taking on at most k − 1
different values. (In the N1 = · · · = Nk case there is only one
negative eigenvalue with multiplicity N − k.)

Pure anticommunity structure. G is the complete k-partite
graph on N1, . . . ,Nk vertices, respectively (there are no
intracommunity edges, but all possible intercommunity edges
are present). These modules may model hub authorities
and belong to perfectly disassortative mixing. G’s modu-
larity matrix has k − 1 negative eigenvalues, all the other
eigenvalues are zeros. (In the N1 = · · · = Nk special case
there is one negative eigenvalue with multiplicity k − 1.)
Here k communities are detected by the k-means algorithm
applied for the (k − 1)-dimensional representatives based on
the eigenvectors corresponding to the negative eigenvalues.
As these eigenvectors themselves have piecewise constant
structures on the steps belonging to the vertex clusters, the k

variance of the representatives is 0, the minimum QB(Zk,B) is
negative, but slightly larger than the minimum Q′

k,k−1(Zk,B),
the latter one being the sum of the negative eigenvalues.
The normalized modularity matrix BD has k − 1 negative
eigenvalues in the [−1,0) interval; all the other eigenvalues
are zeros. (In the N1 = · · · = Nk case the negative eigenvalue
has multiplicity k − 1.)

Noisy community structure. Now we investigate a case close
to the community structure. Let W be a noisy matrix obtained
by burdening a blown up k × k symmetric pattern matrix
with a so-called Wigner noise (its entries in and above the
main diagonal are independent, uniformly bounded random
variables; otherwise it is symmetric).

The blown up matrix is a symmetric block matrix with
k2 blocks of Ni × Nj sizes and it has the same entries
within the blocks. If N = ∑k

i=1 Ni is large and the block
sizes are of the same magnitude, the spectral decomposition
of the edge-weighted graph G = (V,W) is very “close” to
that of the following random graph model on the vertex
set V : edges come into existence within/between the blocks
with probabilities given in the pattern matrix; see [20] for
details. If the pattern matrix has “large” diagonal and “small”
off-diagonal entries and, further, the blow-up sizes are of
the same magnitude, then the modularity matrix has k − 1
outstanding positive eigenvalues (larger than the absolute value
of the smallest negative eigenvalue), and the representatives
based on the corresponding eigenvectors can be well classified
into k clusters: S2

k (Xk−1) is much smaller than S2
k−1(Xk−1), but

not much larger than S2
k+1(Xk−1).

016108-7



MARIANNA BOLLA PHYSICAL REVIEW E 84, 016108 (2011)

1
2

3

4
5

6

7
8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33
34

FIG. 1. (Color online) The network of social connections in the karate club network of Zachary [29]. Circles and squares represent nodes
of the two clusters with sizes proportional to their degrees. The shaded nodes are the administrator (1) and the instructor (34, covering 33). The
separation of the two clusters found by our spectral algorithm maximizing the balanced modularity coincides with the real-life separation of
the club members found in the original paper and denoted by the dashed line.

Noisy anticommunity structure. Now we investigate a case
close to the anticommunity structure. Let W be a noisy
matrix obtained from a pattern matrix with small diagonal
and large off-diagonal entries. The modularity matrix has
k − 1 protruding negative eigenvalues (in absolute value larger
than the positive ones), and the representatives based on
the corresponding eigenvectors can be well classified into k

clusters: S2
k (Xk−1) is much smaller than S2

k−1(Xk−1), but not
much larger than S2

k+1(Xk−1).
We also applied our spectral algorithm for real-life net-

works, as follows:
Zachary’s karate club data. Maximizing the balanced

modularity by means of applying the k-means algorithm (with
k = 2 clusters) for the coordinates of the eigenvector belonging

to the leading positive eigenvalue of the modularity matrix, our
algorithm gave exactly the same partition of the club members
as found in the original paper [29]; see Fig. 1.

The bottlenose dolphin community of Doubtful Sound. We
investigated the graph of social connections of 40 bottlenose
dolphins retained for association analysis by Lusseau et al.
[30]. They found three groups with individuals most frequently
seen together (see Lusseau’s Fig. 5), though the groups
were not separated clearly by their hierarchical clustering
algorithm. Based on one and two leading positive eigenvalues
and the corresponding eigenvectors of the modularity matrix,
by k-means algorithm, we found two and three clusters,
respectively. Though we processed the algorithm for the two-
and three-cluster cases separately, one cluster of the three

Beak

BZ

DN16 DN21

DN63

DoubleFeather

Fish

Five

Gallatin
Grin

Haecksel

Hook

Jet

Jonah
Knit

Kringel

MN105

MN83

Notch

Oscar

Patchback
PL

Quasi

Ripplefluke
Scabs

Shmuddel

SN4

SN63

SN89
SN90

SN96

Stripes

Topless

TR88

Trigger

Upbang

Wave

Web

Whitetip

FIG. 2. (Color online) The network of social connections between 40 bottlenose dolphins retained for association analysis by Lusseau
et al. [30]. Squares and circles represent individuals of the two main clusters obtained by our spectral clustering algorithm maximizing the
balanced modularity with k = 2. In the k = 3 case, the squares remained in the same cluster, while circles separated into the shaded and open
ones. The dense parts of these clusters coincide with the three communities described in [30]. The two main communities observed in the
original paper are separated by dashed lines, while the intermediate low degree nodes are not classified uniquely by the original paper.
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turned out to be the same as one of the clusters of the
two-cluster case. In our Fig. 2, squares and circles represent
individuals of the two main clusters obtained by our spectral
clustering algorithm maximizing the balanced modularity with
k = 2, and the shaded and open circles denote the separation
of the second cluster when we processed our algorithm with
k = 3. These three communities are practically the same as
discussed on page 401 of [30]. Squares correspond to a
male group with an unknown sex individual at the bottom,
shaded circles correspond to the group of six males and one
female (Trigger) at the left upper corner, finally, open squares
represent the female band at the top right of Lusseau’s Fig.
5; there were loose connections between these two kinds
of circles in accord with the fact that they belonged to one
cluster in the two-cluster situation. The two main communities
observed in the original paper are separated by dashed lines,
while the intermediate low degree nodes—corresponding to
the middle part of Lusseau’s Fig. 5— are not classified
uniquely in the original paper.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In [31] the total modularity is normalized by a factor so
that the perfectly assortative network’s modularity attains the
maximum value 1, and that of the perfectly disassortative
network is in the [−1,0) interval. The author also remarks that
the optimum modularity of a perfectly disassortative network
is closer to that of a randomly mixing network. Our idea
is that a real-life network is generally the superposition of
these types; however, for large N , we are able to identify the
dominating structure. If N is large, in the noisy cases there
are a lot of positive/negative eigenvalues, but for detecting the
community/anticommunity structure it suffices to take only
the structural ones. We can spare memory and computational
time in this way.

Summarizing, a shift toward the positive/negative eigen-
values indicates community/anticommunity structure. The
number of structural eigenvalues plus one can be taken
for the number of clusters, while the cluster memberships
can be concluded by applying the k-means algorithm for
the representatives based on the corresponding normalized
eigenvectors. Equal balance between the positive and the
negative eigenvalues (not only in their number, but also in
their magnitudes) indicates a randomlike structure of [18].
Normalized modularity spectrum may play an important role in
the spectral characterization of these random-looking graphs.
It seems that the bulk of the normalized modularity spectrum
is responsible for the pairwise regularities, while the structural
(large absolute value) eigenvalues together with eigenvectors
indicate the blocks. Though the number of clusters may be
large, at the cost of the accuracy it can be decreased by applying
spectral methods using eigenvectors belonging to the largest
absolute value eigenvalues; cf. [32].

A drawback of the spectral methods is that the structural
eigenvalues with corresponding eigenvectors are only capable
to reveal fundamental clusters (this is why they are related to
balanced modularities), while small communities are hidden
behind the near zero eigenvalues. It seems straightforward
to enter eigenvectors belonging to small eigenvalues into
the representation based classification, but it would cause
complications: partly because in the case of large graphs
there are too many small eigenvalues (normalized modularity
spectrum has tendency accumulate around zero) and partly
because small eigenvalues can be indications of small clusters
and low degree vertices at the same time. These considerations
are valid for large and dense enough graphs. For sparse
ones, a so-called core of the graph can be separated which
is used to decide whether the graph has a community or
anticommunity structure. In [33] the separation is done in
terms of the normalized Laplacian eigenvalues. In view of
Sec. IV, the normalized modularity spectrum can as well be
used.

In [34] Bickel and Chen state the asymptotic consistency of
the Newman-Girvan modularity in a submodel of their block
model. As these modularities are nonparametric statistics, and
the conditions apply to the unknown model parameters, it is
possible to substitute their estimates for the parameters, and
if these satisfy the conditions, we may expect consistency. It
is a future direction to check the consistency conditions for
the penalized modularities. We conjecture that for large N ,
the balanced modularity is a consistent estimator of the true
modularity structure of the underlying weighted graph if the
optimum k and optimum k partition (V1, . . . ,Vk) of its vertices
satisfy the following requirement: for every a = 1, . . . ,k,√

|Va|e(Va,Va) >
∑
b �=a

√
|Vb|e(Va,Vb)

holds. For the normalized modularity this condition seems to
be √

Vol (Va)e(Va,Va) >
∑
b �=a

√
Vol (Vb)e(Va,Vb).

The conditions formulated in the above conjectures are more
likely to be satisfied by balanced clusters. If these requirements
are violated, one should treat carefully the result of the clas-
sification and suspect other possibilities: an anticommunity or
randomlike structure.
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