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There are a number of situations in which several signals are simultaneously recorded in complex systems,
which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis
(MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the
detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based
on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA
algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series
generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated
moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature.
In all cases, the scaling exponents hxy extracted from the MFXDMA and MFXDFA algorithms are very close to
the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation
is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered
MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA
algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find
that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward
and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA
algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward
MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q < 0 and underperforms
when q > 0. We apply these algorithms to the return time series of two stock market indexes and to their
volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of hxy(q) since its hxy(2)
is closest to 0.5, as expected, and the MFXDFA algorithm has the second best performance. For the volatilities,
the forward and backward MFXDMA algorithms give similar results, while the centered MFXDMA and the
MFXDFA algorithms fail to extract rational multifractal nature.

DOI: 10.1103/PhysRevE.84.016106 PACS number(s): 89.75.Da, 05.45.Tp, 05.45.Df, 05.40.−a

I. INTRODUCTION

Natural and socioeconomic systems are usually complex
systems from which macroscopic statistical laws emerge.
These macroscopic laws are the outcomes of self-organization
and interactions among constituents, which cannot be ex-
plained by the sum of the microscopic behaviors of individuals.
Statistical laws can be extracted from time series, which is
the most usual recorded form of observable quantities in real
world. The fractal and multifractal nature of time series has
been extensively studied for different systems [1].

For a nonstationary time series, the detrended fluctuation
analysis (DFA) can be adopted to explore its long-range
autocorrelations [2–6] and multifractal features [7–9]. Alterna-
tively, the detrending moving-average (DMA) method can also
be used for fractal analysis [10–14] or multifractal analysis
[15,16]. Numerical experiments on monofractal time series
unveil that the performance of the DMA method is comparable
to the DFA method with slightly different priorities under
different situations [17–19]. However, for multifractal time
series, the multifractal detrending moving average (MFDMA)
performs better than the multifractal detrended fluctuation
analysis (MFDFA) [15]. In addition, we note that both the DFA
and DMA algorithms can be extended from one dimension
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to higher dimensions for fractal and multifractal analysis
[15,20–22].

A complex system usually contains several observable
variables that exhibit long-range dependence or multifractal
nature. In turbulent flows, the velocity, temperature, and
concentration fields are embedded in the same space as joint
multifractal measures [23–27], in which the scaling behavior
of the joint moments of two joint multifractal measures μ1 and
μ2 is investigated:

J (s) = 〈[μ1(s)]p[μ2(s)]q〉, (1)

where s is the box size. This framework has also been applied to
study the joint multifractal nature between topographic indices
and crop yield in agronomy [28,29], trading volume and
volatility in stock markets [30], nitrogen dioxide and ground-
level ozone [31], heart rate variability and brain activity of
healthy humans [32], and wind patterns and land surface air
temperature [33].

For two stationary time series {x(i)} and {y(i)} of the
same length, the time-lagged cross correlation or covariance
provides another example [34–37],

C(s) = 〈x(t)y(t + s)〉. (2)
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For two nonstationary time series {X(i)} and {Y (i)} of the same
length, one can study the following cross-correlation function
between two detrended series [38]:

Cxy(s) = 〈[X(t) − X̃(t)][Y (t + s) − Ỹ (t + s)]〉, (3)

where X̃(t) and Ỹ (t) are certain trend functions of X(t) and
Y (t), respectively. The detrended cross-correlation analysis
(DCCA) was introduced to investigate the long-range power-
law cross correlations between two nonstationary time series
[39–41]:

Fxy(s) = 〈[X(t) − X̃(t)][Y (t) − Ỹ (t)]〉, (4)

where X̃(t) and Ỹ (t) are certain trend functions of X(t) and
Y (t) specific to moving windows of size s, respectively. The
DFA method is a special case of this DCCA method when
X(t) = Y (t). The DCCA method studies the temporal (not the
cross-sectional) properties of two nonstationary time series,
which is similar to the instant cross correlations [42,43].
The significance of the cross correlation can be assessed by
statistical tests [44,45]. Podobnik and Stanley pointed out that,
when Fxy(s) versus s fluctuates around zero, there are no
power-law cross correlations with a unique exponent: either
no cross correlations or only short-range cross correlations
exist between X(t) and Y (t) [40]. The DCCA method has
been applied to study volume change and price change of
the Standard and Poor’s (S&P) 500 Index [46], volatilities
of the Brazilian agrarian commodities and stocks [47], traffic
flows [48], and self-affine time series of taxi accidents [49].
Alternatively, the temporal cross-correlation property can also
be investigated using the cross-spectral density function or the
coherence function based on wavelet transform [50,51].

More generally, the multifractal detrended cross-correlation
analysis was introduced to investigate the multifractal nature
in the long-range power-law cross correlations between two
nonstationary time series [52], which recovers the MFDFA
method when X(t) = Y (t). We call this method the MFXDFA
for reasons that will be clear in Sec. II. Note that the MFXDFA
method is relevant to the multifractal height cross-correlation
analysis with differences [53]. The MFXDFA method has been
applied to temporal and spatial seismic data [54], sunspot num-
bers and river flow fluctuations [55], stock index prices [56,57],
price-volume relationships in agricultural commodity futures
markets [58], prices of the Chinese and US agricultural futures
[59], spot and futures markets of West Texas Intermediate
(WTI) crude oil [60], and traffic signals [61].

In this work, we introduce a variant of the MFXDFA
algorithm, termed multifractal detrending moving-average
cross-correlation analysis (MFXDMA), which combines the
ideas of MFDMA and DCCA. The main difference between
MFXDFA and MFXDMA is that the latter adopts local moving
average as the trend function. Since the MFDMA algorithm
outperforms the MFDFA algorithm for multifractal time series,
we expect that the MFXDMA algorithm will show advantages
over the MFXDFA algorithm. Our numerical experiments and
real-work data analysis confirm this conjecture.

The paper is organized as follows. Section II describes
a unified framework of the MFXDFA and MFXDMA
algorithms. Section III gives extensive numerical experi-
ments using fractal and multifractal time series with known

analytical expressions [bivariate fractional Brownian motions,
two-component autoregressive fractionally integrated moving
average (ARFIMA) processes, and binomial measures] to
investigate the performance of the algorithms. In Sec. IV,
we apply the algorithms to daily stock index returns and
volatilities. We discuss and summarize our findings in Sec. V.

II. MFXDMA AND MFXDFA

Consider two stationary time series {x(i)} and {y(i)} of
the same length M , where i = 1,2, . . . ,M . Without loss of
generality, we can assume that these two time series have
zero means. Each time series is covered with Ms = [M/s]
nonoverlapping boxes of size s. The profiles within the vth
box [lv + 1,lv + s], where lv = (v − 1)s, are determined to be

Xv(k) =
k∑

j=1

x(lv + j ), Yv(k) =
k∑

j=1

y(lv + j ), (5)

where k = 1, . . . ,s. Assume that the local trending functions
of {Xv(k)} and {Yv(k)} are {X̃v(k)} and {Ỹv(k)}, respectively.
The cross correlation for each box is calculated as follows:

Fv(s) = 1

s

s∑
k=1

[Xv(k) − X̃v(k)][Yv(k) − Ỹv(k)]. (6)

The qth order cross correlation is calculated as follows:

Fxy(q,s) =
[

1

m

m∑
v=1

|Fv(s)|q/2

]1/q

(7)

when q �= 0, and

Fxy(0,s) = exp

[
1

2m

m∑
v=1

ln |Fv(s)|
]

. (8)

We then expect the following scaling relation:

Fxy(q,s) ∼ shxy (q). (9)

According to the standard multifractal formalism, the
multifractal scaling exponent τ (q) can be used to characterize
the multifractal nature, which reads

τxy(q) = qhxy(q) − Df , (10)

where Df is the fractal dimension of the geometric support
of the multifractal measure [9]. For time series analysis,
we have Df = 1. If the scaling exponent function τ (q) is a
nonlinear function of q, the signal has a multifractal nature. It
is easy to obtain the singularity strength function α(q) and the
multifractal spectrum f (α) via the Legendre transform [62]

αxy(q) = dτxy(q)/dq
(11)

fxy(q) = qαxy − τxy(q).

There are many different methods for the determination
of X̃v and Ỹv . The local detrending functions could be
polynomials [2,3], which recovers the MFDXA method [52].
The local detrending function could also be the moving
averages [10,11], in which case the algorithm is called
MFXDMA. To be more clear, we rename the MFDXA al-
gorithm as MFXDFA, and all multifractal analysis algorithms
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for cross correlations based on local detrending are termed
multifractal detrending or detrended cross-correlation analysis
(or MFDCCA). MFXDFA is an MFDCCA method based on
DFA, and MFXDMA is an MFDCCA method based on DMA.
When X = Y , MFXDFA in Ref. [52] reduces to MFDFA in
Ref. [9], and MFXDMA reduces to MFDMA in Ref. [15]. We
note that the extension of the MFDCCA algorithms to high
dimensions is straightforward [52].

The moving-average function Z̃(t) of Z ∈ {X,Y } in a
moving window [13] can be calculated as follows:

Z̃(t) = 1

n

�(n−1)(1−θ)�∑
k=−	(n−1)θ


Z(t − k), (12)

where n is the window size, 	g
 is the largest integer smaller
than g, �g� is the smallest integer larger than g, and θ is the
position parameter with the value varying in the range [0,1].
Hence, the moving-average function considers �(n − 1)(1 −
θ )� data points in the past and 	(n − 1)θ
 points in the future.
We consider three special cases in this paper. The first case,
θ = 0, refers to the backward moving average [18], in which
the moving-average function Z̃(t) is calculated over all the
past n − 1 data points of the signal. The second case, θ = 0.5,
corresponds to the centered moving average [18], where Z̃(t)
contains half past and half future information in each window.
The third case, θ = 1, is called the forward moving average,
where Z̃(t) considers the trend of n − 1 data points in the
future. Usually, one chooses n = s to obtain better results [15].

III. NUMERICAL EXPERIMENTS

In order to investigate the validity and performance of the
proposed MFDCCA algorithms, we perform extensive numer-
ical experiments using bivariate fractional Brownian motions
(BFBMs) [34–36], two-component ARFIMA processes [40,
63], and binomial measures generated from the multiplicative
p model [64]. By definition, there is no multifractality in
BFBMs and two-component ARFIMA processes. Therefore,
the hxy(q) function is independent of q, and the τxy(q) function
is linear. In contrast, binomial measures are expected to possess
a multifractal nature. These three classes of time series are
adopted to test the performance of the algorithms since the
theoretical expressions of Hxx(q) are known for individual
time series and we know the theoretical expressions of Hxy(q)
for the first two classes and the numerical expression for the
third class. Note that we have used H for theoretical values
and h for estimated values below.

A. Bivariate fractional Brownian motions

A bivariate fractional Brownian motion [x(t),y(t)] with
parameters {Hxx,Hyy} ∈ (0,1)2 is a self-similar Gaussian
process with stationary increments, where x(t) and y(t)
are two univariate fractional Brownian motions with Hurst
indices Hxx and Hyy and are the two components of the
BFBM [34–36]. The basic properties of multivariate fractional
Brownian motions have been extensively studied [34–36].
Particularly, it has been proven that the Hurst index Hxy of the
cross correlation between the two components is [34–36,38]:

Hxy = (Hxx + Hyy)/2. (13)

This property allows us to investigate the performances of the
proposed algorithms on a solid foundation.

An efficient simulation technique for univariate fractional
Brownian motions (FBMs) relies upon the embedding of the
covariance matrix into a circulant matrix, whose square root
can be easily obtained by the discrete Fourier transform [65].
This method is an exact simulation algorithm provided that
the circulant matrix is positive definite. This algorithm can
be generalized to simulate bivariate FBMs, which embeds the
circulant of a block Toeplitz covariance matrix and uses the
fast Fourier transform to diagonalize the block circulant matrix
[66]. A detailed description of the simulation procedure can
be found in Refs. [35,36].

In the simulation algorithm, the two Hurst indexes Hxx and
Hyy of the two univariate FBMs and their cross-correlation
coefficient ρ are input arguments. We have generated a huge
number of BFBMs, where Hxx , Hyy , and ρ all vary from
0.1 to 0.9 with a spacing of 0.1. For a given triple of
(Hxx,Hyy,ρ), 100 repeated simulations are conducted, and
100 BFBMs with a length of 216 are generated. In most
cases, the positive-definiteness condition is not fulfilled. We
then perform MFXDMA and MFXDFA on each BFBM to
obtain the scaling exponent hxy . The average over 100 repeated
simulations is calculated. We have observed for each BFBM
and each algorithm that

hxy = (hxx + hyy)/2. (14)

Our main findings are the following: (1) The exponent
hxy is independent of the cross-correlation coefficient ρ.
(2) The hxy(q) functions are independent of q, indicating that
the BFBMs are monofractals. (3) All four algorithms give
nice estimates hxy of the scaling exponents, which are very
close to the corresponding theoretical Hxy values. (4) The
centered MFXDMA algorithm (θ = 0.5) and the MFXDFA
algorithms have comparative performance and perform better
than the backward and forward MFXDMA algorithms (θ = 0
and θ = 1). Since there are too many results to present in a
concise way, we present a part of the results to manifest these
findings.

A typical example of the BFBM with Hxx = 0.1, Hyy =
0.5, and ρ = 0.3 is illustrated in Fig. 1(a), and the corre-
sponding power-law dependence of the fluctuation functions
Fxy(q,s) with respect to the scale s for the four algorithms is
shown in Fig. 1(b). For MFXDMA algorithms, s should not be
too large due to the finite-size effect. The scaling ranges span
over two orders of magnitude for the MFXDMA algorithms
and three orders of magnitude for the MFXDFA algorithm. In
the determination of the scaling exponents hxy , we have used
the same scaling ranges as in Fig. 1(b) for all the BFBMs, and
nice power-law relationships are observed.

Figure 1(c) shows the hxy(q) functions for Hxx = Hyy =
0.8 and ρ = 0.5 (top panel) and for Hxx = 0.1, Hyy = 0.5, and
ρ = 0.3 (bottom panel). Although there is a decreasing trend
in each function, the theoretical functions Hxy(q) = 0.8 and
Hxy(q) = 0.3 are well within the error bars, indicating that the
hxy(q) functions are independent of the order q. Hence, the
four algorithms are able to correctly capture the monofractal
nature of the BFBMs. We focus on q = 2 below.
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FIG. 1. (Color online) Multifractal detrended cross-correlation analysis of bivariate fractional Brownian motions. Comparisons are
performed among three MFXDMA algorithms with θ = 0, 0.5, and 1 and the MFXDFA algorithm. The results in (c)–(f) are averaged
over 100 repeated simulations. (a) A typical example of BFBM with Hxx = 0.1, Hyy = 0.5, and ρ = 0.3. (b) Power-law dependence of the
fluctuation functions Fxy(q,s) of the BFBM shown in (a) with respect to the scale s for q = −4, q = 0, and q = 4. The straight lines are the
best power-law fits to the data. The results have been translated vertically for better visibility. (c) Scaling exponents hxy(q) with the theoretical
values as a dashed line for Hxx = Hyy = 0.8 and ρ = 0.5 (top) and Hxx = 0.1, Hyy = 0.5, and ρ = 0.3 (bottom). (d) Independence of the
scaling exponents hxy with respect to the cross-correlation coefficient ρ for Hxx = Hyy = 0.8 (top) and Hxx = 0.1 and Hyy = 0.5 (bottom).
(e) Differences �hxy(q) between the estimated scaling exponents hxy and the theoretical exponents Hxy for BFBMs, where Hxx = 0.1 is fixed,
Hyy varies from 0.1 to 0.9, and ρ takes different values. (f) Differences �hxy(q) between hxy and Hxy for BFBMs with Hxx = Hyy varying
from 0.1 to 0.9 and different ρ values.

Figure 1(d) shows the dependence of the scaling exponents
hxy with respect to the cross-correlation coefficient ρ for
Hxx = Hyy = 0.8 (top panel) and for Hxx = 0.1 and Hyy =
0.5 (bottom panel). We find that the hxy functions (hθ=0

xy ,
hθ=0.5

xy , hθ=1
xy and hDFA

xy ) for the four algorithms are independent
of ρ. This finding is very important since it distinguishes
the temporal cross correlations quantified by MFDCCA
algorithms and the cross-sectional correlation quantified by ρ.
Two uncorrelated time series may exhibit long-term power-law
cross correlation. In addition, the centered MFXDMA and the
MFXDFA give similarly very accurate estimates of the scaling
exponents with hθ=0.5

xy ≈ hDFA
xy , Hxy = 0.8 for the top panel and

Hxy = 0.3 for the bottom panel. In contrast, Fig. 1(d) shows
that the backward and forward MFXDMA algorithms perform
slightly worse and hθ=0

xy ≈ hθ=1
xy .

In order to compare the performance of the four algorithms,
we calculate the difference between the estimated exponent hxy

and the theoretical exponent Hxy :

�hxy = hxy − Hxy. (15)

Figure 1(e) shows the dependence of �hxy with respect to
Hyy with a fixed Hxx = 0.1 for ρ = 0.5 (top panel), ρ = 0.3
(middle panel), and ρ = 0.1 (bottom panel), while Fig. 1(f)
shows the dependence of �hxy with respect to Hxx = Hyy

for ρ = 0.9 (top panel), ρ = 0.5 (middle panel), and ρ = 0.1
(bottom panel). All the �hxy values in Figs. 1(e) and 1(f)

are less than 0.01, implying that all the four algorithms give
good estimates. It is interesting to observe that hθ=0

xy ≈ hθ=1
xy

for all the cases. In addition, the centered MFXDMA and the
MFXDFA algorithms outperform the backward and forward
MFXDMA algorithms. We note that these conclusions also
hold for other BFBMs. The relative performances between the
centered MFXDMA and the MFXDFA algorithms are a little
bit complicated. When Hxx �= Hyy , as shown in Fig. 1(e), the
two algorithms have comparable performance since �hθ=0.5

xy ≈
�hDFA

xy ≈ 0. When Hxx = Hyy , as shown in Fig. 1(f), the cen-
tered MFXDMA algorithm slightly outperforms the MFXDFA
algorithm. In summary, the centered MFXDMA algorithm
(θ = 0.5) is recommended for analyzing bivariate fractional
Brownian motions.

B. Two-component ARFIMA processes

The power-law autocorrelations in stochastic variables can
be modeled by an ARFIMA process [67]:

z(t) = Z(d,t) + ε(t), (16)

where d ∈ (0,0.5) is a memory parameter, εz is an independent
and identically distributed Gaussian variable, and

Z(d,t) =
∞∑

n=1

an(d)z(t − n), (17)

016106-4



MULTIFRACTAL DETRENDING MOVING-AVERAGE CROSS- . . . PHYSICAL REVIEW E 84, 016106 (2011)

10
0

10
1

10
2

10
3

10
4

10
510

−7

10
−4

10
−1

10
2

10
5

10
8

q = −4

q = 0

q = 4

(a)

s

F
x
y
(q

,s
)

F θ=0
xy

F θ=0.5
xy

F θ=1
xy

FDFA
xy

−4 −2 0 2 4
0.87

0.88

0.89

0.9

0.91
(b)

q

h
x
y
(q

)

hθ=0
xy hθ=0.5

xy hθ=1
xy hDFA

xy

0 0.1 0.2 0.3 0.4 0.5
−0.04

−0.02

0

0.02

0.04
(c)

d

Δ
h
x
y
(q

)

Δhθ=0
xy Δhθ=0.5

xy

Δhθ=1
xy ΔhDFA

xy

10
0

10
1

10
2

10
3

10
4

10
510

−7

10
−4

10
−1

10
2

10
5

10
8

q = −4

q = 0

q = 4

(d)

s

F
x
y
( q

,s
)

F θ=0
xy

F θ=0.5
xy

F θ=1
xy

FDFA
xy

−4 −2 0 2 4
0.74

0.75

0.76

0.77
(e)

q

h
x
y
(q

)
hθ=0
xy hθ=0.5

xy

hθ=1
xy hDFA

xy

0 0.1 0.2 0.3 0.4 0.5
−0.04

−0.02

0

0.02

0.04
(f)

d

Δ
h
x
y
(q

)

Δhθ=0
xy Δhθ=0.5

xy

Δhθ=1
xy ΔhDFA

xy

FIG. 2. (Color online) Multifractal detrended cross-correlation analysis of two-component ARFIMA processes. Comparisons are performed
among three MFXDMA algorithms with θ = 0, 0.5, and 1 and the MFXDFA method. (a) Power-law dependence of the fluctuation functions
Fxy(q,s) with respect to the scale s for q = −4, q = 0, and q = 4 for the process in Eq. (20) with d1 = d2 = 0.4. The straight lines are the best
power-law fits to the data. The results have been translated vertically for better visibility. (b) Scaling exponents hxy(q) for the process in Eq. (20)
with d1 = d2 = 0.4. (c) Differences �hxy between the estimated scaling exponents hxy and the theoretical exponents Hxy for the process in
Eq. (20) with different d values where d1 = d2 = d . (d) Power-law dependence of the fluctuation functions Fxy(q,s) with respect to the scale s for
q = −4, q = 0, and q = 4 for the process in Eq. (22) with d1 = 0.1 and d2 = 0.4. (e) Scaling exponents hxy(q) for the process in Eq. (22) with
d1 = 0.1 and d2 = 0.4. (f) Differences �hxy between hxy and Hxy for the process in Eq. (22) with different d values where d1 = d2 = d .

in which an(d) is the weight,

an(d) = d�(n − d)/[�(1 − d)�(n + 1)]. (18)

The Hurst index Hzz is related to the memory parameter d

by [40,68]

Hzz = 0.5 + d. (19)

For the two-component ARFIMA processes discussed below,
we take Z = X or Y .

The two-component ARFIMA process is defined as follows
[63]:

x(t) = WX(d1,t) + (1 − W )Y (d2,t) + εx(t)

y(t) = (1 − W )X(d1,t) + WY (d2,t) + εy(t),
(20)

where W ∈ [0.5,1] quantifies the coupling strength between
the two processes x(t) and y(t). When W = 1, x(t) and y(t) are
fully decoupled and become two separate ARFIMA processes,
as defined in Eq. (16). The cross correlation between x(t)
and y(t) increases when W decreases from 1 to 0.5 [63]. To
our knowledge, no general expression has been analytically
derived for Hxy . When d1 > d2, the Hurst index Hxx of x(t)
decreases from 0.5 + d1 to certain value greater than 0.5 + d2

when W decreases from 1 to 0.5 [63]. In other words, Hxx

locates within the interval [0.5 + d2,0.5 + d1]. When d1 =
d2 = d, i.e., d1 → d2, we obtain

Hxx = Hyy = 0.5 + d, (21)

which does not depend on the value of W .

When W = 1 and εx(t) = εy(t) = ε(t), the two-component
ARFIMA process becomes [40]

x(t) = X(d1,t) + ε(t)

y(t) = Y (d2,t) + ε(t) .
(22)

If x and y are long-range power-law cross-correlated, it has
been analytically derived that Eq. (13) holds [44].

Figures 2(a)–2(c) show the results for the process in
Eq. (20). Figure 2(a) illustrates in log-log scale the dependence
of the fluctuation functions Fxy(q,s) with respect to the scale s

for q = −4, q = 0, and q = 4 for the process in Eq. (20) with
d1 = d2 = 0.4. Nice power-law relations are observed, which
are also evident for other (d1,d2) pairs. Figure 2(b) shows
the corresponding scaling exponents hxy(q) for the process
in Eq. (20) with d1 = d2 = 0.4. We note that the equation
hxy(q) = [hxx(q) + hyy(q)]/2 holds for all the four curves.
For the four algorithms, hxy(q) is close to the horizontal
line H = 0.9, indicating that all the four algorithms correctly
unveil the fractal nature of the two-component ARFIMA
process. For q = 2, Fig. 2(b) shows that the MFXDFA gives
the best estimate of hxy . Figure 2(c) depicts the differences
�hxy between hxy and Hxy with q = 2 for the process in
Eq. (20) with different d values where d1 = d2 = d. It is found
that (1) the two MFXDMA algorithms with θ = 0 and θ = 1
have the same performance, (2) the two MFXDMA algorithms
with θ = 0 and θ = 1 perform better than the MFXDFA and
the MFXDMA with θ = 0.5 for relatively small d values,
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and (3) the two MFXDMA algorithms with θ = 0 and θ = 1
perform worse for large d values.

Figures 2(d)–2(f) show the results for the process in
Eq. (22). Figure 2(d) illustrates in log-log scale the dependence
of the fluctuation functions Fxy(q,s) with respect to the scale s

for q = −4, q = 0, and q = 4 for the process in Eq. (22) with
d1 = 0.1 and d2 = 0.4. Nice power-law relations are observed,
which are also evident for other (d1,d2) pairs. Figure 2(e)
shows the corresponding scaling exponents hxy(q) for the
process in Eq. (22) with d1 = 0.1 and d2 = 0.4. Again, the
equation hxy(q) = [hxx(q) + hyy(q)]/2 holds for all the four
curves. For the four algorithms, hxy(q) is close to the horizontal
line H = 0.75, indicating that all the four algorithms correctly
unveil the fractal nature of the two-component ARFIMA
process. For q = 2, Fig. 2(e) shows that the MFXDMA
algorithms with θ = 0 and θ = 1 give the best estimate of
hxy . Figure 2(f) shows the differences between hxy and Hxy

with q = 2 for the process in Eq. (22) with different d values
where d1 = d2 = d. It is found that the MFXDFA and the
MFXDMA with θ = 0.5 outperform the other two algorithms
and give comparably nice estimates.

He and Chen have investigated the two-component
ARFIMA process defined in Eq. (20) of different lengths
utilizing the DCCA method (the MFXDFA method with q =
2) and the DMCA method (the MFXDMA method with θ = 0
and q = 2) and found that the DMCA method performs better
in most cases and performs worse in a few cases [69]. However,
both methods are prone to underestimate the exponents hxy

[69]. Our results shown in Fig. 2(c) are consistent with their
results for d = 0.15, 0.25, and 0.35 in the sense that the
MFXDMA method with θ = 0 outperforms the MFXDFA
method. However, we have obtained better estimates for hxy ,
and there is no systematic underestimation. For instance, the
three MFXDMA methods give hxy ≈ 0.85 or �hxy ≈ 0 when
d = 0.35, as shown in Fig. 2(c).

There are two subtle issues that might worsen the estimation
of hxy . Podobnik and Stanley [40] introduced a cutoff length
M = 104 in their numerical simulations and let the sum run
from 1 to M , i.e., they set aj = 0 for j > M . Our numerical
experiments show that this cutoff seems optimal and a smaller
or larger cutoff will worsen the estimation of the exponents.
This finding applies for both MFXDMA and MFXDFA. In
addition, we stress that the upper bound of the scaling range for
the MFXDMA algorithms should not be too large because each
moving average is calculated within a window of size s. Let
us take the MFXDMA algorithm with θ = 0 as an example. In
this case, the moving averages of the first s − 1 data points are
not well defined. The bias becomes more significant for large
window size s. When s is large, the Fxy(q,s) function bends
downward, and the overall slope flattens. Similar arguments
apply for other MFXDMA algorithms with different θ values.
In contrast, the MFXDFA algorithm does not suffer from
this finite-size effect.

C. Multifractal binomial measures

We construct two binomial measures {x(i) : i =
1,2, . . . ,2k} and {y(i) : i = 1,2, . . . ,2k} from the p model with
known analytic multifractal properties as the third example
[64]. Each multifractal signal is obtained in an iterative way.

We start with the zeroth iteration k = 0, where the data set z(i)
consists of one value, z(0)(1) = 1. In the kth iteration, the data
set {z(k)(i) : i = 1,2, . . . ,2k} is obtained from

z(k)(2i − 1) = pzz
(k−1)(i)

(23)
z(k)(2i) = (1 − pz)z

(k−1)(i)

for i = 1,2, . . . ,2k−1. We notice that there are typos in the
formula in Ref. [52]. When k → ∞, z(k)(i) approaches a
binomial measure, whose scaling exponent function Hzz(q)
has an analytic form [62,64],

Hzz(q) = 1/q − log2

[
pq

z + (1 − pz)
q
]
/q. (24)

According to Eq. (10), we have

Tzz(q) = −log2

[
pq

z + (1 − pz)
q
]
. (25)

In our simulation, we have performed k = 16 iterations
with px = 0.3 for x(i) and py = 0.4 for y(i). The analytic
scaling exponent functions Hxx(q) and Hyy(q) of x and y are
expressed in Eq. (24). The two time series x and y are strongly
correlated with a coefficient of 0.82, which originates from the
fact that the two sequences are constructed according to the
same rules. The results are depicted in Fig. 3.

Figure 3(a) illustrates the power-law dependence of
Fxy(q,s) against s for the four algorithms. Since the time series
is not very long, we investigate −4 � q � 4 to ensure the
convergence of the qth moments [70,71]. For the MFXDMA
algorithms, there is a finite-size effect since the moving
averages at the ends of the time series are ill defined. This effect
becomes significant, and the estimation of Fxy for large scales
s deteriorates. The scaling range is chosen as [24,211] for the
three MFXDMA methods. In contrast, the MFXDFA method
performs poorly if the same scaling range is adopted. We use
[28,215] for the MFXDFA method, which seems optimal. The
algorithm-specific selection of the scaling range reveals the
difference in the applicability of the two types of methods.
Figure 3(a) shows that the power-law scaling is excellent for
both positive and negative q values.

The power-law scaling exponents (hDFA
xy , hθ=0

xy , hθ=0.5
xy , and

hθ=1
xy ) are presented in Fig. 3(b), while the mass scaling expo-

nents (τDFA
xy , τ θ=0

xy , τ θ=0.5
xy , and τ θ=1

xy ) and the multifractal spec-
tra (f DFA

xy , f θ=0
xy , f θ=0.5

xy , and f θ=1
xy ) are illustrated in Figs. 3(c)

and 3(d), respectively. It is evident that the MFXDMA method
with θ = 0.5 fails in a large part to correctly estimate the
exponents, while the other three methods work much better.
This finding is consistent with the conclusion that the MFDMA
method with θ = 0.5 performs much worse than the MFDFA
method and the MFDMA methods with θ = 0 and θ = 1 [15].

The insets of Fig. 3(b) show the interesting feature for all
the four algorithms that

hxy(q) = [hxx(q) + hyy(q)]/2 (26)

no matter how accurate the estimates of an algorithm is. Similar
relationships hold for individual monofractal ARFIMA signals
[40] and individual binomial measures [15]. Hence, we can
give the “theoretical” expression of Hxy(q) as follows:

Hxy(q) = [Hxx(q) + Hyy(q)]/2, (27)
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FIG. 3. (Color online) Multifractal detrended cross-correlation analysis of two cross-correlated binomial measures generated from the p

model with px = 0.3 and py = 0.4. Comparisons are performed among three MFXDMA algorithms with θ = 0, 0.5, and 1 and the MFXDFA
method. (a) Power-law dependence of the fluctuation functions Fxy(q,s) with respect to the scale s for q = −4, q = 0, and q = 4. The straight
lines are the best power-law fits to the data. The results have been translated vertically for better visibility. (b) Scaling exponents hxy(q) with the
theoretical values as a dashed line. The insets show the hxy(q) curves and the corresponding [hxx(q) + hyy(q)]/2 curves, verifying the relation
hxy(q) = [hxx(q) + hyy(q)]/2. (c) Multifractal mass exponents τ (q) obtained from the MFXDMA and MFXDFA methods, with the theoretical
curve shown as a dashed line. (d) Multifractal spectra f (α) with respect to the singularity strength α for the four methods. The dashed curve is
the theoretical multifractal spectrum. (e) Differences �hxy(q) between the estimated mass exponents and their theoretical values for the three
algorithms: MFXDFA, MFXDMA with θ = 0, and MFXDMA with θ = 1. (f) Differences �τ (q) between the estimated mass exponents and
their theoretical values for the three algorithms: MFXDFA, MFXDMA with θ = 0, and MFXDMA with θ = 1.

where Hxx(q) and Hyy(q) are given in Eq. (24). The theoretical
line is plotted in Fig. 3(b) as a dashed line. According to
Eq. (10), we obtain

Txy(q) = [Txx(q) + Tyy(q)]/2, (28)

which is shown in Fig. 3(c) for comparison. Similarly, we have

Fxy(α) = [Fxx(α) + Fyy(α)]/2, (29)

which is illustrated in Fig. 3(d) as a dashed curve.
In order to further assess the performance of the MFXDFA

method and the two MFXDMA methods with θ = 0 and θ =
1, we compare the empirical estimates of hxy(q) and τxy(q)
with the theoretical values of Hxy(q) and Txy(q) by calculating
the relative errors:

�hxy(q) = hxy(q) − Hxy(q) (30)

and

�τxy(q) = τxy(q) − Txy(q), (31)

which are shown in Figs. 3(e) and 3(f), respectively. Roughly
speaking, the MFXDMA algorithm with θ = 1 performs
best and the MFXDFA algorithm performs worst for most
negative q values, and the MFXDMA method with θ = 0
performs best and the MFXDMA method with θ = 1 performs
worst for most negative q values. On average, the backward

MFXDMA method (θ = 0) has the best performance and is
thus recommended.

IV. APPLICATION TO STOCK MARKET INDEX
RETURNS AND VOLATILITIES

We now apply the MFXDMA algorithms to investigate the
temporal cross correlations of the daily return and volatility
time series of the Dow Jones Industrial Average (DJIA) and the
National Association of Securities Dealers Automated Quo-
tations (NASDAQ) index. The power-law cross correlations
between the DJIA volatility and the NASDAQ volatility have
been studied using the DCCA method [40] and the MFXDFA
method [52]. The closing prices of the DJIA and the NASDAQ
from 5 February 1971 to 25 January 2011 have been retrieved.
The length of the time series is 10084 trading days. The return
is defined as the daily difference of the logarithmic closing
prices, and the volatility is defined as the absolute value of the
return.

Figure 4(a) illustrates in log-log scale the dependence of
the fluctuation functions Fxy(q,s) with respect to the scale s

for q = −4, q = 0, and q = 4 for the returns. Excellent power
laws are observed spanning over two orders of magnitude
for all the four algorithms. The resulting hxy functions are
shown in Fig. 4(b). All four hxy functions are monotonically
decreasing, indicating that the cross correlations between
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FIG. 4. (Color online) Multifractal detrended cross-correlation analysis of (a–c) the return time series and (d–f) the volatility time series
for the DJIA index and the NASDAQ index. Comparisons are performed among three MFXDMA algorithms with θ = 0, 0.5, and 1 and the
MFXDFA method. (a, d) Dependence of the fluctuation functions Fxy(q,s) with respect to the scale s for q = −4, q = 0, and q = 4. The
straight lines are the best power-law fits to the data. The results have been translated vertically for better visibility. (b, e) Scaling exponents
hxy(q) with respect to q. (c, f) Multifractal spectra fxy(α) with respect to the singularity strength α.

the index returns exhibit a multifractal nature. We also find
that

hθ=0
xy (q) > hθ=1

xy (q) > hDFA
xy (q) > hθ=0.5

xy (q) (32)

for −4 � q � 4. When q = 2, all the hxy values are less than
0.6 and particularly hθ=0.5

xy ≈ 0.5. This means that there is no
significant linear long-term memory in the cross correlations
of the returns. The multifractal spectra fxy(α) are plotted
in Fig. 4(c). The singularity widths are all significantly
greater than 0, confirming that the cross correlations possess a
multifractal nature.

Figure 4(d) illustrates in log-log scale the dependence of
the fluctuation functions Fxy(q,s) with respect to the scale s

for q = −4, q = 0, and q = 4 for the volatilities. Excellent
power-law scaling is observed in the fluctuation functions for
the MFXDMA algorithms with θ = 0 and 1. However, for the
MFXDFA algorithm and the MFXDMA algorithm with θ =
0.5, there is a crossover in each curve. If we treat each curve
with two scaling ranges and perform analysis on each scaling
range, the resulting hxy(q) functions are not monotonically
decreasing, and the multifractal spectra fxy(α) are not concave.
We thus focus on the two MFXDMA algorithms with θ = 0
and 1, which lead to one scaling range. The two hxy(q)
functions are depicted in Fig. 4(e). The two functions are
monotonically decreasing and close to each other. When q =
2, hxy is close to 0.98, showing a very strong linear long-term
memory in the cross correlations between volatilities. We note
that the relation hxy(q) = [hxx(q) + hyy(q)]/2 does not hold,
which is consistent with previous work [52]. Figure 4(f) plots
the two multifractal spectra. The large singularity width means

that the cross correlations between the two index volatilities
exhibit a multifractal nature.

Our results for the volatility seem different from those in
Refs. [40,52]. First of all, the DJIA and NASDAQ time series
are much longer in the current work. More importantly, the
power-law scaling in the previous works exhibits significant
fluctuations [40,52], which makes it difficult to determine a
proper scaling range. According to Fig. 4(d), it is evident
that the MFXDMA algorithms with θ = 0 and 1 significantly
outperform the MFXDFA algorithm.

V. CONCLUSION AND DISCUSSION

In this work, we have developed a class of MFDCCA algo-
rithms based on the detrending moving-average analysis. The
performances of the MFXDMA algorithms are compared with
the MFXDFA method by extensive numerical experiments
on pairs of time series generated from bivariate fractional
Brownian motions, two-component autoregressive fractionally
integrated moving-average processes, and binomial measures,
which have theoretical expressions of the multifractal nature.
In all cases, the scaling exponents hxy extracted from the
MFXDMA and MFXDFA algorithms are very close to the
theoretical values.

For bivariate fractional Brownian motions, the scaling
exponent hxy of the cross correlation is found to be independent
of the cross-correlation coefficient ρ between two time
series. The MFXDFA and centered MFXDMA algorithms
outperform the forward and backward MFXDMA algorithms.
When Hxx �= Hyy , the MFXDFA and centered MFXDMA
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algorithms show comparable performance. When Hxx = Hyy ,
the centered MFXDMA algorithm performs slightly better
than the MFXDFA algorithm. Our numerical experiments
verified the validity of the BFBM generating algorithm [35,36,
66]. For two-component autoregressive fractionally integrated
moving-average processes, we also found that the MFXDFA
and centered MFXDMA algorithms have comparative per-
formances, while the forward and backward MFXDMA
algorithms perform slightly worse. All four algorithms are
able to correctly unveil the monofractal nature in the cross
correlations between the components of BFBMs and two-
component ARFIMA processes. For binomial measures, the
forward MFXDMA algorithm exhibits the best performance,
the centered MFXDMA algorithms performs worst, and the
backward MFXDMA algorithm outperforms the MFXDFA
algorithm when the moment order q < 0 and underperforms
when q > 0.

In all three mathematical models, the relation hxy =
(hxx + hyy)/2 has been confirmed for all four algorithms,
where hxy , hxx , and hyy are estimated scaling exponents.
Previous works have shown that the MFDFA and MFDMA
algorithms are able to give nice estimates for univariate signals,
that is, hxx ≈ Hxx and hyy ≈ Hyy . It follows immediately
that hxy ≈ (Hxx + Hyy)/2. Combining the theoretical fact that
Hxy ≈ (Hxx + Hyy)/2, we obtain Hxy ≈ hxy . For monofractal
time series, extensive numerical experiments unveiled that the
performance of the DMA algorithms is comparable to the
DFA algorithm and the centered DMA algorithm performs
slightly better than DFA under certain situations [17–19].
This explains our numerical results for BFBMs and two-
component ARFIMA processes. For multifractal measures
generated from the p model, the backward MFDMA algorithm
performs best [15], which explains our findings for MFDCCA
algorithms.

We applied these algorithms to the returns and volatilities
of two US stock market indexes. For the returns, the centered
MFXDMA algorithm gives the best estimates of hxy(q) since
its hxy(2) is closest to 0.5, and the MFXDFA algorithm has the
second best performance. For the volatilities, the forward and
backward MFXDMA algorithms give similar results, while
the centered MFXDMA and the MFXDFA algorithms fail to
extract a rational multifractal nature. These two applications
are interesting since they showed that the choice of algorithms
is automatic, although we did not know which one should be
used before the analysis. The key message of our work is that
we should use all four algorithms and compare the results to
make a choice.

We note that the MFXDMA algorithms are easy to
implement (see the Supplemental Material [72]).
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APEENDIX: HIGHER-DIMENSIONAL MFXDMA

In this work, we have focused on time series analysis. It is
easy to generalize the one-dimensional MFXDMA algorithms
to higher dimensions. The higher-dimensional MFXDMA
algorithms are closely related to the MFXDFA algorithms [52],
the DMA algorithms [21], and the MFDMA algorithms [15]
in higher dimensions.

Consider two physical quantities in d dimensions:
{X(i1, . . . , id )} and {Y (i1, . . . , id )}, where ij = 1,2, . . . , Nj

for j = 1,2, . . . , d . Before proceeding, we need to construct
the difference matrices {x(i1, . . . , id )} and {y(i1, . . . , id )} of
X and Y . For simplicity, we denote Z ∈ {X,Y } and z as
the corresponding difference matrix, which are related by the
following equation:

Z(i1, . . . , id ) =
i1∑

j1=1

· · ·
id∑

jd=1

z(i1, . . . , id ). (A1)

The matrix z is expressed as a square block matrix of size
2d , whose block is z(i1, . . . ,id ), where the intervals Ij = ij or
[1 : ij − 1] for j = 1,2, . . . ,d. In real-world applications, we
can focus on d = 2 and d = 3.

For the two-dimensional case d = 2, the four blocks are
z(i1,i2), z(i1 − 1,i2), z(i1,1 : i2 − 1), and z(1 : i1 − 1,1 : i2 −
1). According to Eq. (A1), we have

Z(i1,i2) = z(i1,i2) +
i1−1∑
j=1

z(j,i2)

+
i2−1∑
j=1

z(i2,j ) +
i1−1∑
j1=1

i2−1∑
j2=1

z(j1,j2). (A2)

Since
i1−1∑
j1=1

i2−1∑
j2=1

z(j1,j2) = Z(i1 − 1,i2 − 1),

i1−1∑
j=1

z(j,i2) = Z(i1 − 1,i2) − Z(i1 − 1,i2 − 1),

i2−1∑
j=1

z(i2,j ) = Z(i1,i2 − 1) − Z(i1 − 1,i2 − 1),

it follows that

z(i1,i2) = Z(i1,i2) + Z(i1 − 1,i2 − 1)

−Z(i1 − 1,i2) − Z(i1,i2 − 1), (A3)

where Z(i,j ) � 0 if i × j = 0.
For the three-dimensional case d = 3, the eight blocks

are z(i1,i2,i3), z(1 : i1 − 1,i2,i3), z(i1,1 : i2 − 1,i3), z(i1,i2,1 :
i3 − 1), z(1 : i1 − 1,1 : i2 − 1,i3), z(1 : i1 − 1,i2,1 : i3 − 1),
z(i1,1 : i2 − 1,1 : i3 − 1), and z(1 : i1 − 1,1 : i2 − 1,1 : i3 −
1). We can derive similar to the two-dimensional case that

z(i1,i2,i3) = Z(i1,i2,i3) − Z(i1 − 1,i2 − 1,i3 − 1)

+Z(i1 − 1,i2 − 1,i3) + Z(i1 − 1,i2,i3 − 1)

+Z(i1,i2 − 1,i3 − 1) − Z(i1 − 1,i2,i3)

−Z(i1,i2 − 1,i3) − Z(i1,i2,i3 − 1), (A4)
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where Z(i,j,k) � 0 if i × j × k = 0. When i3 = 1, Eq. (A4)
reduces to Eq. (A3).

The algorithm of d-dimensional multifractal detrending
moving-average cross-correlation analysis is described as
follows.

Step 1. For each quantity z = x or z = y, deter-
mine the moving averages Z̃(i1, . . . , id ), where sj � ij �
Nj − 	(sj − 1)θ1
 and {θj } are the position parameters with
the values varying in the range [0,1] for j = 1,2, . . . , d. For
each point located at (i1, . . . , id ) in the d-dimensional space,
we extract a submatrix z(k1, . . . , kd ) with size s1 × · · · × sd

from the matrix z, where kj ∈ [ij − �(sj − 1)(1 − θj )�,ij +
	(sj − 1)θj
] � [mj,1,mj,2]. We calculate the cumulative
sums Z′(k1, . . . ,kd ) of the points within the box:

Z′(k1, . . . ,kd ) =
k1∑

	1=m1,1

· · ·
k2∑

	1=md,1

z(	1, . . . ,	d ), (A5)

and the moving average Z̃(i1, . . . ,id ) at location (i1, . . . ,id ) is
calculated as follows:

Z̃ = 1

s1· · ·sd

m1,2∑
k1=m1,1

· · ·
md,2∑

k1=md,1

Z′(k1, . . . ,kd ). (A6)

Step 2. For each quantity, calculate the cumulative sums
Q(i1, . . . ,id ) in a sliding window with size s1 × · · · × sd ,
where sj � ij � Nj − 	(sj − 1)θj
. For each point located
at (i1, . . . ,id ), we have

Q =
i1∑

k1=i1−s1+1

· · ·
id∑

kd=id−sd+1

z(k1, . . . ,kd ). (A7)

Step 3. Detrend the matrix by removing the moving-
average function Z̃(i1, . . . ,id ) from Q(i1, . . . ,id ), and obtain
the residual matrix εz(i1,i2) as follows:

εz(i1, . . . ,id ) = Q(i1, . . . ,id ) − Z̃(i1, . . . ,id ), (A8)

where sj � ij � Nj − 	(sj − 1)θj
.

Step 4. Each residual matrix εz(i1, . . . ,id ) is partitioned
into Ns1 × · · · × Nsd

disjoint boxes of the same size s1 ×
· · · × sd , where Nsj

= 	[Nj − sj (1 + θj )]/sj
. Each box
can be denoted by εz

v1,...,vd
for vj = 1, . . . ,Nsj

such that
εz
v1,...,vd

(k1, . . . ,kd ) = εz(lv1 + k1, . . . ,lvd
+ kd ) for 1 � kj �

sj , where lvj
= vj sj . The cross correlation between X and

Y in each box is calculated as follows:

Fv1,...,vd
= 1

s1 · · · sd

s1∑
k1=1

· · ·
sd∑

kd=1

εx
v1,...,vd

(k1, . . . ,kd )

×εy
v1,...,vd

(k1, . . . ,kd ). (A9)

Step 5. The qth order overall detrending cross-correlation
function Fq(n) is calculated as follows:

[Fq(s)]q = 1

Ns1 · · ·Nsd

Ns1∑
v1=1

· · ·
Nsd∑
vd=1

|Fv1,...,vd
|q/2, (A10)

where s2 = ∑d
j=1 s2

j /d and q can take any real values except
for q = 0. When q = 0, we have

ln[F0(s)] = 1

Ns1 · · ·Nsd

Ns1∑
v1=1

· · ·
Nsd∑

vd=1

ln |Fv1,...,vd
|, (A11)

according to L’Hôpital’s rule.
Step 6. Varying the box sizes sj , we are able to determine

the power-law relation between the fluctuation function Fq(s)
and the scale s,

Fq(s) ∼ sh(q). (A12)

In real-world applications, one usually uses s1 = · · · =
sd = s. When Nsj

�= [Nj − sj (1 + θj )]/sj , one needs to start
from different directions as for the DFA algorithm [73] or
uses a random algorithm [74]. In addition, the box-by-box
procedure is crucial for multifractal analysis, which was
shown for high-dimensional MFDFA [20] and MFDMA [15].
However, the “traditional” procedure works well for high-
dimensional fractals [21].
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[47] E. L. Siqueira Jr., T. Stošić, L. Bejan, and B. Stošić, Phys. A

389, 2739 (2010).

[48] N. Xu, P.-J. Shang, and S. Kamae, Nonlinear Dyn. 61, 207
(2010).

[49] G. F. Zebende, P. A. da Silva, and A. M. Filho, Phys. A 390,
1677 (2011).

[50] S. Achard, D. S. Bassett, A. Meyer-Lindenberg, and E. Bullmore,
Phys. Rev. E 77, 036104 (2008).

[51] H. Wendt, A. Scherrer, P. Abry, and S. Achard, in 2009
IEEE International Conference on Acoustics, Speech and Signal
Processing (IEEE, Piscataway, NJ, 2009), pp. 2913–2916.

[52] W.-X. Zhou, Phys. Rev. E 77, 066211 (2008).
[53] L. Kristoufek, UTIA AV CR Research Report No. 2281, 2010

(unpublished).
[54] S. Shadkhoo and G. R. Jafari, Eur. Phys. J. B 72, 679 (2009).
[55] S. Hajian and M. S. Movahed, Phys. A 389, 4942 (2010).
[56] Y.-D. Wang, Y. Wei, and C.-F. Wu, Phys. A 389, 5468 (2010).
[57] J.-L. Sun and H.-Y. Sheng, in Third International Conference on

Business Intelligence and Financial Engineering (BIFE), edited
by L.-A. Yu, K.-K. Lai, and S.-Y. Wang (IEEE Computer Society,
Tokyo, 2010), pp. 301–304.

[58] L.-Y. He and S.-P. Chen, Phys. A 390, 297 (2011).
[59] L.-Y. He and S.-P. Chen, Chaos Solitons Fractals 44, 355 (2011).
[60] Y.-D. Wang, Y. Wei, and C.-F. Wu, Phys. A 390, 864 (2011).
[61] X.-J. Zhao, P.-J. Shang, A.-J. Lin, and G. Chen, Phys. A (to be

published).
[62] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and

B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).
[63] B. Podobnik, D. Horvatic, A.-L. Ng, H. E. Stanley, and P. C.

Ivanov, Phys. A 387, 3954 (2008).
[64] C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59, 1424

(1987).
[65] A. T. A. Wood and G. Chan, J. Comput. Graph. Stat. 3, 409

(1994).
[66] G. Chan and A. T. A. Wood, Stat. Comput. 9, 265 (1999).
[67] J. R. M. Hosking, Biometrika 68, 165 (1981).
[68] B. Podobnik, P. Ch. Ivanov, K. Biljakovic, D. Horvatic, H. E.

Stanley, and I. Grosse, Phys. Rev. E 72, 026121 (2005).
[69] L.-Y. He and S.-P. Chen, Phys. A (to be publihsed).
[70] V. S. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, and

D. Vandembroucq, Phys. Rev. E 58, 1811 (1998).
[71] W.-X. Zhou, D. Sornette, and W.-K. Yuan, Phys. D 214, 55

(2006).
[72] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.84.016106 for the MATLAB codes imple-
menting the 1D MFXDMA algorithms.

[73] J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego, S. Havlin,
and A. Bunde, Phys. A 295, 441 (2001).

[74] L.-J. Ji, W.-X. Zhou, H.-F. Liu, X. Gong, F.-C. Wang, and Z.-H.
Yu, Phys. A 388, 3345 (2009).

016106-11

http://dx.doi.org/10.1016/j.physa.2008.04.023
http://dx.doi.org/10.1016/j.physa.2008.04.023
http://dx.doi.org/10.1103/PhysRevE.74.061104
http://dx.doi.org/10.1103/PhysRevE.76.056703
http://dx.doi.org/10.1103/PhysRevE.81.026706
http://dx.doi.org/10.1103/PhysRevE.81.026706
http://dx.doi.org/10.1017/S0022112075000304
http://dx.doi.org/10.1103/PhysRevA.41.894
http://dx.doi.org/10.1209/epl/i1996-00438-4
http://dx.doi.org/10.1209/epl/i1996-00438-4
http://dx.doi.org/10.1209/epl/i2000-00170-7
http://dx.doi.org/10.1209/epl/i2000-00170-7
http://dx.doi.org/10.1209/0295-5075/79/44001
http://dx.doi.org/10.1209/0295-5075/79/44001
http://dx.doi.org/10.2134/agronj2000.9261279x
http://dx.doi.org/10.2134/agronj2000.9261279x
http://dx.doi.org/10.2134/agronj2004.1082
http://dx.doi.org/10.1016/j.physa.2008.01.119
http://dx.doi.org/10.1007/s10661-009-1083-6
http://dx.doi.org/10.1063/1.3427639
http://dx.doi.org/10.1016/j.atmosres.2010.11.009
http://dx.doi.org/10.1016/j.spl.2009.08.015
http://dx.doi.org/10.1016/j.spl.2009.08.015
http://dx.doi.org/10.1209/0295-5075/90/68001
http://dx.doi.org/10.1088/1742-5468/2009/03/P03037
http://dx.doi.org/10.1103/PhysRevE.73.066128
http://dx.doi.org/10.1103/PhysRevLett.100.084102
http://dx.doi.org/10.1103/PhysRevLett.100.084102
http://dx.doi.org/10.1209/0295-5075/94/18007
http://dx.doi.org/10.1209/0295-5075/94/18007
http://dx.doi.org/10.1088/1367-2630/12/4/043057
http://dx.doi.org/10.1016/j.physa.2010.11.011
http://dx.doi.org/10.1016/j.physa.2010.11.011
http://dx.doi.org/10.1140/epjb/e2009-00310-5
http://dx.doi.org/10.1016/j.physa.2010.10.022
http://dx.doi.org/10.1073/pnas.0911983106
http://dx.doi.org/10.1016/j.physa.2010.01.040
http://dx.doi.org/10.1016/j.physa.2010.01.040
http://dx.doi.org/10.1007/s11071-009-9642-5
http://dx.doi.org/10.1007/s11071-009-9642-5
http://dx.doi.org/10.1016/j.physa.2010.12.038
http://dx.doi.org/10.1016/j.physa.2010.12.038
http://dx.doi.org/10.1103/PhysRevE.77.036104
http://dx.doi.org/10.1103/PhysRevE.77.066211
http://dx.doi.org/10.1140/epjb/e2009-00402-2
http://dx.doi.org/10.1016/j.physa.2010.06.025
http://dx.doi.org/10.1016/j.physa.2010.08.029
http://dx.doi.org/10.1016/j.physa.2010.09.018
http://dx.doi.org/10.1016/j.chaos.2010.11.005
http://dx.doi.org/10.1016/j.physa.2010.11.017
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1016/j.physa.2008.01.062
http://dx.doi.org/10.1103/PhysRevLett.59.1424
http://dx.doi.org/10.1103/PhysRevLett.59.1424
http://dx.doi.org/10.2307/1390903
http://dx.doi.org/10.2307/1390903
http://dx.doi.org/10.1023/A:1008903804954
http://dx.doi.org/10.1093/biomet/68.1.165
http://dx.doi.org/10.1103/PhysRevE.72.026121
http://dx.doi.org/10.1103/PhysRevE.58.1811
http://dx.doi.org/10.1016/j.physd.2005.12.004
http://dx.doi.org/10.1016/j.physd.2005.12.004
http://link.aps.org/supplemental/10.1103/PhysRevE.84.016106
http://link.aps.org/supplemental/10.1103/PhysRevE.84.016106
http://dx.doi.org/10.1016/S0378-4371(01)00144-3
http://dx.doi.org/10.1016/j.physa.2009.05.006

