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Path lengths, correlations, and centrality in temporal networks
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In temporal networks, where nodes interact via sequences of temporary events, information or resources can
only flow through paths that follow the time ordering of events. Such temporal paths play a crucial role in dynamic
processes. However, since networks have so far been usually considered static or quasistatic, the properties of
temporal paths are not yet well understood. Building on a definition and algorithmic implementation of the average
temporal distance between nodes, we study temporal paths in empirical networks of human communication and
air transport. Although temporal distances correlate with static graph distances, there is a large spread, and
nodes that appear close from the static network view may be connected via slow paths or not at all. Differences
between static and temporal properties are further highlighted in studies of the temporal closeness centrality.
In addition, correlations and heterogeneities in the underlying event sequences affect temporal path lengths,
increasing temporal distances in communication networks and decreasing them in the air transport network.
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I. INTRODUCTION

Understanding complex networks is of fundamental impor-
tance for studying the behavior of various biological, social,
and technological systems [1–3]. Often, networks represent
the complex lattices on which some dynamical processes
unfold [4], from information flow to epidemic spreading.
For such processes, networks have mainly been considered
static or quasistatic, such that dynamic changes of the network
structure take place at a time scale longer than that of the
studied process, and thus a node may interact with any or all
of its neighbors at any point in time. In empirical analysis of
systems where time-stamped data are available, a common
approach has been to integrate connections or interaction
events over the period of observation. This results in a static
network where a pair of nodes is connected by a link if an
event has been observed between them at any point in time.
The frequency of events between nodes may then be taken
into account with link weights that represent the number of
events between nodes (see, e.g., [5,6]). Taking a step beyond
static networks, in the dynamic network view (see, e.g., [7,8]),
links are allowed to form and terminate in time, such as
friendships forming and decaying in social networks. This
view is commonly adopted in epidemiological modeling in
the form of concurrency or transmission graphs [9,10], e.g.,
for sexually transmitted diseases, links represent partnerships
that have a beginning and an end, and the prevalence of
multiple simultaneous partnerships has significant effects on
the dynamics of outbreaks.

However, there are many cases where even the dynamic
network picture is too coarse grained, as the nodes are in
reality connected by recurrent, temporary events of short
duration at specific times only [11–18]. We use the term
temporal network for such systems to distinguish them from
static or (quasistatic) dynamic networks. The events in a
temporal network represent the temporal sequence of inter-
actions between nodes, and thus the dynamics of any process
mediated by such interactions depends on their structure. As
an example, in an air transport network, events may represent
individual flights transporting passengers. In a social network,
events may represent individual social interactions (phone

calls, emails, physical proximity) that allow information to
propagate through the network from one individual to another.
In epidemiological modeling, data on the timings of possible
transmission events, i.e., individual encounters that may result
in disease transmission, have allowed for moving beyond the
concurrency graph view [17,18].

An immediate consequence of event-mediated interactions
for any dynamics is that it has to follow time-ordered, causal
paths [12,13]. Because of the causality requirement, the static
network representation where nodes are connected if any
interaction has been observed between them at any point in
time can be misleading: although node i may be connected
to node j via some path in the static network, that path
may not exist in its temporal counterpart. Nevertheless, were
the interaction events uncorrelated and uniformly spread in
time, they could in many cases be taken into account by
assigning weights to the edges of the static network, so that
the weights would represent the frequencies of events between
nodes [5,6] and regulate the rate of interactions. However,
it has turned out that this is commonly not the case: it has
been observed that for the dynamics of spreading of computer
viruses, information, or diseases, timings of the actual events
and their temporal heterogeneities [14–20] play an important
role: e.g., the burstiness of human communication has been
observed to slow down the maximal rate of information
spreading [15,16,20]. Hence, for a detailed understanding of
such processes, one should adopt the temporal network view.

A temporal network can be represented by a set of N

nodes between which a complete trace of all interaction events
E occurring within the time interval [0,T ] is known. Each
such event can be represented by a quadruplet e ≡ (u,v,t,δt),
where the event connecting nodes u and v begins at t and
the interaction is completed in time δt . As an example, δt

may correspond to the duration of a flight in an air transport
network or the time between a user sending an email and the
recipient reading it. Broadly, we define δt such that, if an
event e transmits something from u to v, the recipient receives
the transmission only after a time δt . However, in some
cases, events can be approximated as instantaneous so that
δt = 0 and they can be represented with triplets e ≡ (u,v,t),
as in Ref. [13]. Further, events can be directed or undirected
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depending on whether the transmission or flow is directed or
not.

In some earlier papers [21–23], temporal networks have
been represented as a set of graphs G = 〈G0, . . . ,GT 〉, where
Gt = (Vt ,Et ) is the graph of pairwise interactions between
the nodes at time t ∈ [0,T ]. Here, Vt and Et represent the
nodes and edges at time t , respectively. However, this picture
is only meaningful when the events are instantaneous (and,
for practical purposes, only when the time is discretized). If
the events have a duration δt , such a representation can not
be applied: it is not compatible with the fact that, for anything
to be transmitted via node i to node j , i has to receive the
transmission before the event connecting i and j is initiated,
but j then receives the transmission only after a time δt .

In this paper, we set out to study the time-ordered paths
that span a temporal graph and their durations. Any dynam-
ical processes have to proceed along such paths; consider,
as an example, the deterministic susceptible-infectious (SI)
dynamics, where infected nodes always infect their susceptible
neighbors as soon as they interact. The speed of such dynamics
depends on how long it takes, on average, to complete
time-ordered shortest paths between nodes, i.e., the average
temporal distance between nodes, which in turn depends
on the temporal heterogeneity and correlations of the event
sequence. As an example, in a social network, where events
such as calls or emails mediate information, the average
temporal distance measures the shortest time it takes for any
information to be passed from one individual to another, either
directly or via intermediaries. For other dynamics, additional
constraints can be placed on allowed transmission paths:
e.g., for the susceptible-infectious-recovered (SIR) spreading
dynamics where an infected node remains infectious for a
limited period of time only, there is a waiting time threshold
between consecutive events spanning a path.

We begin by defining the average temporal distance
between nodes that properly takes the finiteness of the period
of observation into account. We also present an algorithm
for calculating such distances in event sequences, based on the
concept of vector clocks. We then compare static and temporal
distances in empirical networks of human communication
and air transport and illustrate the differences. We next
turn to the role of heterogeneities and correlations in the
event sequences, and show that their effects are strikingly
different in our empirical networks. Contrary to the known
effect of correlations slowing down dynamics in human
communications, they give rise to faster dynamics in the air
transport network. The roles of correlations are also studied on
temporal paths constrained by a SIR-like condition on allowed
waiting times between events. Finally, we study the temporal
centrality of nodes, and show that nodes that may appear
insignificant from the static point of view may, in fact, provide
fast temporal paths to all other nodes.

II. MEASURING DISTANCES IN TEMPORAL GRAPHS

A. Temporal paths and temporal distances: Definitions

Information or resources can be transmitted from node
i to node j in a temporal network only if they are joined
by a causal temporal path, i.e., a time-ordered sequence of

events beginning at i and ending at j [12,13]. If the events
are noninstantaneous, a temporal path exists only if there is
a time-ordered sequence where each event begins only after
the previous one is completed.1 As an example, suppose that
there is an event e1 = (i,j,t1,δt1) between nodes i and j

and another event e2 = (j,k,t2,δt2), between j and k. This
sequence of events spans the temporal path i → j → k only if
t2 > t1 + δt1, and the time it takes to complete this path, i.e., the
temporal path length, is then �t = t2 − t1 + δt2. Let us define
the temporal distance τij (t) between i and j as the shortest
time it takes to reach j from i at time t along temporal paths.2

If the fastest sequence of events, i.e., the shortest temporal
path joining i and j begins at time t ′ > t and its duration
is δt , then τij = (t ′ − t) + δt . It is evident that this temporal
distance depends on the time of measurement t ; it may also
happen that no such path exists and then τij (t) = ∞. As τij (t)
is not constant in time, it is useful to characterize temporal
distances with an average temporal distance τij , averaged over
the entire period of observation. However, taking this average
is not straightforward and certain choices have to be made.

For empirical event sequences, the period of observation
[0,T ] is always finite.3 Because of this, the total number of
future events decreases as time increases and, consequently,
so does the likelihood of the existence of a time-ordered
path between any pair of nodes. Thus, infinite temporal
distances τij (t) = ∞ become increasingly common when
t approaches T . There are three possible ways of taking
these infinite distances into account: (i) for each pair of
nodes, averaging only over the range where τij (t) is finite,
as was done in Ref. [13], (ii) getting rid of all infinite
distances by assuming that the entire event sequence may be
periodically repeated, i.e., assuming network-wide periodic
temporal boundary conditions, and (iii) handling the finite
window size and infinite distances separately for each pair of
nodes i and j for which τij is calculated, by assuming that the

1This requirement comes from our view of an event as the
“fundamental unit” of interaction: an email user may forward
information obtained from an email only after she has received
and read it, and a passenger may only board a connecting flight
if the previous flight arrives before the connecting flight departs. On
the contrary, e.g., in concurrency graphs where a link in essence
represents a string of interactions, it would make sense to allow paths
via temporally overlapping links.

2Note that temporal distances are inherently nonsymmetric and,
generally, τ (i,j ) 	= τ (j,i). Thus, the temporal distance defined here is
not, strictly speaking, a metric, and we use the term distance similarly
to the geodesic graph distance in directed networks.

3Evidently, the length of the period should be chosen such that
enough events are collected for any measure to be meaningful. This
problem is equally important for static network analysis, although it
is typically neglected and made more difficult by the fact that there
may be changes in the system dynamics on multiple, overlapping
time scales. Here, we adopt the view that the defined measures are
estimates based on the events observed within a period of length
T and their values are with certainty only representative for this
window, although certain probability distributions may be stationary
across time. This is the approach typically taken in studies of static
networks aggregated over time, although it is seldom explicitly stated.
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FIG. 1. Schematic representation of the variation of temporal
distances between two pairs of nodes: (a) i-j and (b) k-l. The period
of observation is between 5 a.m. and 5 p.m. In panel (a), the two
nodes are connected by an event that begins at 8 a.m and takes two
hours to completion. In panel (b), the nodes are connected by an event
of the same duration at 1 p.m. If the average temporal distance were
defined only over its finite range, then τij < τjk , although both pairs
are connected via similar events.

observation window provides a good estimate of the frequency
and duration of paths for each node pair.

Let us first take a look at option (i), averaging the temporal
distance only over the period where it is finite. The problem
with this approach is that it introduces a bias in favor
of temporal paths taking place early within the period of
observation. This can be illustrated with a simple example (see
Fig. 1): suppose that node i directly interacts with j only once
at t1, nodes k and l interact once at t2, and no other temporal
paths exist between these nodes. Here, τij equals the shaded
area divided by t1 (t2). Now, if t1 
 t2, the above averaging
would imply that τij 
 τkl because, when the distances are
finite, τij (t) 
 τkl(t)∀t .

On the basis of the above, we now set the following
requirement for the average temporal distance τij : For any
sequence of shortest temporal paths, the resulting average
temporal distance should not depend on when that sequence
takes place within the period of observation. Hence, τij should
be the same for both cases in Fig. 1. This leaves us with options
(ii) and (iii). Both choices fulfill the above criterion for the
simple example of Fig. 1. However, option (ii) can be ruled
out by the following requirement: nodes that are not connected
via a temporal path within the observation window should not
become connected by applying the condition. If the entire
event sequence is periodically repeated, this is not the case, as
disconnected nodes may become connected via paths that may
even span multiple window lengths. Thus, in order to avoid
unnecessary artifacts to the extent that is possible, we base
our definition of the average temporal distance on option (iii),
where the finite period of observation is handled separately for
each pair of nodes. Specifically, for calculating τij , we assume
that if there is a temporal path between i and j that begins at
t = t1 and the period of observation is [0,T ], then this temporal
path will reoccur at time t = T + t1 without affecting the paths
or distances between any other pair of nodes. It is easy to see
that, for the simple example of Fig. 1, this is analogous to
assuming that we have a correct estimate of the frequency and
duration of temporal paths between i and j .

Let us next have a closer look at how τij (t) varies with
time t (see Fig. 2) in a setting where there are several shortest
temporal paths at different points in time. Suppose that there
is a temporal path along a time-ordered sequence of events

FIG. 2. Schematic representation of the time variation of the
temporal distance between a pair of nodes i-j : (a) the actual distance
and (b) the distance with periodic boundary condition on paths
connecting i and j .

starting at time t1 through which one can reach node j

from i. If the time of completion of this path is �t1, then
τij (t1) = �t1. If this is the only temporal path between i and
j within the observation period, then for any t < t1, τij (t) =
(t1 − t) + �t1, and for any t > t1, τij (t) = ∞. In general, if
there are multiple shortest temporal paths between nodes i and
j that begin at times t1, . . . ,tn and have durations �t1, . . . ,�tn,
respectively, then the temporal distance curve has the shape
depicted in Fig. 2(a). Application of the node-pair-specific
boundary condition, i.e., repeating the first path, makes the
temporal distance between nodes i and j behave as depicted in
Fig. 2(b).4 If there are n shortest temporal paths between i and
j within the observation period, with beginning times t1, . . . ,tn
and durations �t1, . . . ,�tn, then the average temporal distance
is given by

τij = 1

T

[
t1

(
t1

2
+ �t1

)
+ (t2 − t1)

(
t2 − t1

2
+ �t2

)

+ · · · + (tn − tn−1)

(
tn − tn−1

2
+ �tn

)

+ (T − tn)

(
T − tn

2
+ t1 + �t1

)]
. (1)

If there is only one temporal path between these nodes, the
above equation reduces to τij = T

2 + �t , which is independent
of the actual time of occurrence of the path, fulfilling the
criterion that average temporal distance should be independent
of the placement of the event sequence within the observation
window.

4Note that periodic boundary conditions on the entire event
sequence, i.e., repeating the sequence, could change the behavior
near T , as entirely new temporal paths that cross the boundary might
appear.
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B. An algorithm for calculating temporal distances

For calculating the above-defined average temporal dis-
tance between any two nodes i and j in an empirical event
sequence, we need to detect the beginning times of all shortest
temporal paths between i and j (i.e., t1, . . . ,tn, and the
corresponding temporal distances at that particular time [i.e.,
τij (t1) = �t1, . . . ,τij (tn) = �tn]. Here, we use the notion of
vector clocks [24] and propose an algorithm for efficient
calculation of these quantities. For describing the algorithm,
we use the metaphor of events transmitting information
between nodes.

Let us assign a vector φi for each node, such that its element
φ

j

i (t) denotes the nearest point in time t ′ > t at which node
j can receive information transmitted from node i at time
t , either via a direct event or a time-ordered path spanned
by any number of events. We also define φi

i (t) = t . We then
take advantage of a simple and efficient algorithm [24–26] to
compute the shortest temporal paths between all nodes within
a finite time period [0,T ]. This is done by sorting the event
list in the order of decreasing time (i.e., “backward”) and
going through the entire list of events once. Initially, we set
all elements φ

j

i = ∞∀i 	= j at T , indicating that no node can
obtain any information, even indirectly, from any other after
the end of our observation period T . Let us first assume that
all events are instantaneous and undirected, i.e., information
flows in both directions. We now go through the time-reversed
event list event by event. For each event (i,j,t), we compare
the vector clocks of i and j elementwise, i.e., φk

i and φk
j

∀k, and update both with the lowest value. If φk
i is updated,

this indicates that the event has given rise to a new shortest
temporal path between i and k that begins at time t , and the
associated temporal distance τik(t) = φk

i (t) − t . As the event
connects i and j , we also set φ

j

i (t) = φi
j (t) = t and, thus,

τij (t) = τji(t) = 0. As each update of the vector indicates
the existence of a new temporal path, the updates define
the beginning times t1, . . . ,tn and durations �t1, . . . ,�tn
of temporal paths in the sum of Eq. (1), allowing for computing
the average temporal distance between i and j .

The algorithm can also be generalized for directed events
with specific durations. For details, see the Appendix.

III. TEMPORAL PATHS AND DISTANCES
IN EMPIRICAL NETWORKS

A. Data description

In the following, we apply the above measures in the
analysis of empirical data on temporal graphs. We have chosen
two very different types of data sets: social networks, where
information spreads through communication events in time,
and an air transport network, where events transport passengers
between airports. For each data set, we consider the respective
temporal graph, i.e., the sequence of events, as well as its
aggregated static counterpart where nodes are linked if an
event joining them is observed in the sequence at any point in
time.

Our first data set consists of time-stamped mobile phone
call data over a period of 120 days [16], where each event
corresponds to a voice call between two mobile phone users.

We consider the events here as undirected and instantaneous,
such that events may immediately transmit information. Note
that although calls have, in reality, a duration, one person
participates in one call only at a time and thus, for temporal
paths, this duration can be neglected. For this paper, we have
selected a group of 1982 users that comprise the largest
connected component (LCC) of an aggregated undirected
network of users with a chosen zip code. Between these 1982
users, there are 5420 undirected edges, containing in total
153 045 calls. This network is mutualized, i.e., we retain
only events associated with links where there is at least one
call both ways. Our second social network data set is an
email network constructed from time-stamped email records
of university users [27] within a period of 81 days. We consider
emails as directed and study only the largest weakly connected
component (LWCC) of the aggregated network, retaining
events between its members, arriving at 2993 users connected
by 28 843 directed edges with 202 687 emails. Third, we
consider an air transport network, where the flights between
all the airports in the US [28] for a period of 10 days between 14
and 23 December 2008 are observed. The air transport network
comprises 279 airports connected via 4152 directed edges and
altogether 180 192 flights; although edges are directed, 99.5%
of them are reciprocated. In the static network, all airports
belong to the strongly connected component (SCC). All times
are converted to Greenwich Mean Time (GMT).

We note that, for the two social networks, the observation
periods (120 and 81 days) have been determined by the
availability of data: we have chosen to use all the data
available to us. For the air transport network, because of the
inherent periodicity of flight schedules, a shorter window was
chosen.

B. Relationship between temporal and static distances

Let us first consider the relationship between static and
average temporal distances in the empirical systems dij

in the aggregated network and τij in the temporal graph
[Figs. 3(a)–3(c)]. Here, the static distance is defined as usual as
the number of links along the shortest path connecting nodes
in the aggregated network. For the call and email data sets,
the average temporal distance can be considered as a measure
of the time it takes for information to reach one node from
another, if it is transmitted via calls or email such that recipients
pass on the information. For the air transport network, the
average temporal distance measures the average time to reach
one airport from another, either directly or via connecting
flights. In all cases, the static distance measures the number of
links one has to traverse to get from one node to another. For
a pair of nodes joined by such a path, the shortest temporal
paths may of course follow another sequence of links, or not
exist at all. One would still expect that, in general, nodes that
are far from each other in the static network would also have
large temporal distances. For all three networks, we find that,
on average, this is indeed the case [Figs. 3(a)–3(c)]; however,
as the conditional distributions P (τij |dij ) clearly show, there
is surprisingly large variation around the average in all cases.
As an example, in the mobile call network, there are node
pairs that are at the same graph distance dij , but the temporal
distances of which differ by a factor of 102. Likewise, one can
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FIG. 3. (Color online) Top: the average temporal distance τij against the static graph distance dij between all pair of nodes for (a) the call
network, (b) the email network, and (c) the air transport network. The average temporal distances τij were calculated using periodic boundary
conditions, as detailed in the text. The colors represent the conditional probabilities of τij for a given dij . Note the broad distribution of P (τij |dij )
in all three cases. Bottom: The fraction of finite temporal paths fFinite as a function of dij for (d) the mobile phone call network, (e) the email
network, and (f) the air transport network. It is seen that the longer a static path, the less likely the existence of a corresponding temporal path
within the observation window.

find node pairs with a relatively short temporal distance that
are either directly linked or 10 links apart in the static network.
This highlights the importance of the temporal graph approach
for processes, the dynamics of which depend on event
sequences: e.g., for any spreading process on such systems,
the pathways taken and the structure of the resulting branching
tree can be entirely different if shortest temporal paths are
followed.

For the social networks, the relationship between the static
and average temporal distances is not linear, as there is an
apparent increase in the slope for larger temporal distances.
Furthermore, the fraction of node pairs at a given static distance
that are also connected via a temporal path fFinite is seen to
decrease for higher static distances [Figs. 3(d)–3(f)]. Hence,
in social communication networks, information between node
pairs at large static distances may be, on average, transmitted
only slowly or not at all. However, for the mobile call network,
95% of node pairs are nevertheless connected via a temporal
path as very large static distances are infrequent; for the
directed email network, the corresponding fraction is lower,
i.e., 58%. Note that the behavior of fFinite depends on the length
of the observation period (120 days for the call network and
81 days for the email network) and, in general, the frequency
of events. In addition, for the email network, the number of
existing paths is naturally constrained by the directedness of
the events, as from the point of view of information spreading,
emails carry the information one way only, whereas calls
may transfer information both ways. Thus, in the mobile call
network, information may in theory be passed from almost
any node to any other within the period of observation,
whereas in the email network studied here, this is not the
case. Nevertheless, for both systems, an observation window
spanning several months does not guarantee that all nodes are
connected by a temporal path. On the contrary, reflecting its
function and design, in the air transport network, almost all
pairs of nodes at any static distance are joined by a temporal
path within the 10-day period of observation.

C. Effects of correlations on temporal distances

The empirical event sequences in our data sets that span
the temporal paths contain correlations and heterogeneities
affecting the temporal distances. First, events follow strong
daily patterns. In the mobile call network, the call frequency
shows a peak around lunchtime and early evening (see [16]),
whereas the frequency of flights is almost constant during
the day. In the night, calls and departures of flights are
infrequent. Second, in addition to the daily pattern, there
are other nonuniformities in the event sequence: especially
in human communications, bursty behavior giving rise to
broad distributions of inter-event times is common [16,29,30].
Third, there are event-event correlations, where one event
may trigger another one, or events have been scheduled such
that one follows another. Such correlations give rise to short
waiting times between consecutive events along temporal
paths.

The effects of heterogeneities and correlations on temporal
distances can be investigated by applying null models where
the original event sequences are randomized to systematically
remove these correlations [13,16]. Here, we apply null models
that separately destroy the following correlations: bursty or
periodic event dynamics on single links, event-event corre-
lations between links, and the daily patterns. All structural
properties of the static network are retained, as the null
models only modify the times of events between nodes. The
null models are as follows: (i) In the equal-weight link-
sequence shuffled model, whole single-link event sequences
are randomly exchanged between links having the same
number of events. Event-event correlations between links are
destroyed. (ii) In the time-shuffled model, the time stamps of
the whole event sequence are shuffled. In this case, the bursts,
periodicity, and the event-event correlations are destroyed,
while the daily patterns are retained. (iii) In the random-time
model, the time stamps of all the events are chosen uniformly
randomly from the period of observation. Here, all temporal
correlations including the daily cycle are destroyed. When the
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FIG. 4. (Color online) Cumulative distribution of the temporal
distances for the (a) mobile phone call and (b) air transport network.
The corresponding distribution for the time-shuffled, random-time,
and equal-weight link-sequence shuffled cases are also shown. It is
seen that the distances in the mobile phone call network are relatively
long compared to the time-shuffled and random references, whereas
they are short in the air transport transport network designed to
transfer passengers in an optimal way.

events have a duration δt , this value remains attached to each
event whenever the time of its occurrence changes.

It has been earlier seen for the full mobile communication
network that the burstiness of event sequences results in
slower speed of SI dynamics [16]. This observation was based
on simulated spreading, averaged over a number of initial
conditions. As such dynamics follows shortest temporal paths,
one would expect a similar effect on average temporal path
lengths in general. This is indeed the case. Figure 4(a) shows
the cumulative probability distribution (CDF) of temporal
distances for the original sequence and null models. Clearly,
distances are shorter for the time-shuffled and random-time
models where bursts are destroyed; the similarity of these
curves points out that the daily pattern plays a negligible role.
The similarity of the CDFs for the original sequence and equal-
weight link-sequence shuffled model indicates that event-event
correlations are also fairly unimportant for temporal distances,
in line with [16].

For the air transport network, the situation is strikingly
different [Fig. 4(b)]. The temporal distances in the original case
are lower than for any null model, indicating that, overall, the
role of heterogeneities and correlations is to speed up dynamics
in this system. This is not surprising as the events of this
transport network are scheduled in an optimized way for the
network to efficiently transport passenger. Removing event-
event correlations (the equal-weight link-sequence shuffled
model) is seen to slightly increase distances. The daily pattern
is also seen to give rise to a minor increase in distances.

D. Temporal paths with waiting time cutoff

So far, we have considered any sequence of events that
follows temporal ordering a valid path. Let us now introduce
an additional criterion for the existence of a path: the waiting
time cutoff �c, indicating the maximum allowed time between
two consecutive events on a path. As an example, suppose there
is an instantaneous event between nodes i and j at time t1, and

another between j and k at time t2. These events then span the
path i → j → k only if the time difference between the events
0 < (t2 − t1) � �c. If the events have an associated duration
δt , the criterion becomes 0 < [t2 − (t1 + δt1)] � �c. If spread-
ing dynamics along such paths is considered, the cutoff makes
such dynamics SIR-like. In the SIR dynamics (susceptible,
infectious, recovered), an infectious node remains infectious
only for a limited period of time before recovery and immunity
to further infections. Hence, in such dynamics, for anything
to be transmitted via a node, it has to be transmitted quickly
enough. In the context of mobile calls, the cutoff time means
that information is no longer passed on after a too long waiting
time, i.e., it becomes obsolete or uninteresting. Similarly, for
the air transport network, imposing a cutoff means that flights
are not considered as connecting if the transit time is too long.
Temporal paths constrained by the waiting time cutoff are the
paths along which such spreading or transport processes may
take place.

The cutoff time �c restricts the number of allowed paths,
and we quantify this effect by calculating the overall fraction
of node pairs joined by finite temporal paths within the period
of observation fFinite, also called the reachability ratio [13],
as a function of �c. In the call network, for low �c, most
nodes remain disconnected [Fig. 5(a)]. However, in the air
transport network, even when �c =1 s, fFinite = 0.16. This is
because of two factors: a large number of direct connections,
and a large number of simultaneous arrivals and departures
at airports. For both networks, most pairs of nodes are
eventually connected by temporal paths as �c increases. For
the call network, connectivity emerges approximately when
�c > 2 days. Hence, for any information to percolate through
this system, nodes should forward it for at least 2 days after its
reception. This result is fairly surprising; such a long period
severely constrains global information cascades. However, it is
in line with earlier observations that in simulations, structural
and temporal features of call networks tend to limit the flow
of information [6,16]. For the air transport network, most
temporal paths become finite when �c > 30 min. This is
consistent with the minimum transit time required for catching
a connecting flight.
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FIG. 5. (Color online) Fraction of finite temporal paths as a
function of �c for the (a) mobile phone call and (b) air transport
network.
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FIG. 6. (Color online) Comparison of the cumulative probability
distributions of the temporal distances for the original and the
randomized null models in the (a) mobile phone call network with a
cutoff �c = 2 days and (b) air transport network with cutoffs �min

c =
30 min and �c = 5 h. Line styles denote different null models,
similarly to Fig. 4.

Let us next apply the null models and study temporal
paths with cutoffs �c. For the call network [Fig. 6(a)], we
set �c = 2 days. The CDFs of temporal distances show that
only a fraction of finite temporal paths exists for all cases.
This fraction is considerably larger for the time-shuffled and
random-time null models, as the bursty event sequences give
rise to longer waiting times and thus limit the number of
existing paths. In addition, as above, the temporal distances
for these null models are on average lower than for the original
sequence, and hence also SIR-like dynamics is slowed down
by bursts. Further, event-event correlations, i.e., rapid chains
of calls i → j → k, make the paths somewhat faster, as could
be expected, since in the equal-weight link-sequence shuffled
model where such chains are destroyed the temporal distances
are higher. The jump in the tail of the distribution is due to
the finite 120-day period of observation and a large number
of pairs of nodes connected via two events only, giving an
average tij ≈ 60 days.

For the air transport network, we apply an additional lower
waiting time cutoff to account for the time needed to catch
a connecting flight, and require the waiting times of between
consecutive events to be between �min

c = 30 min and �c =
5 h. The order of the cumulative probability distributions
of temporal distances [Fig. 6(b)] for all the null models is
similar to the unconstrained case. Like for the call network,
event-event correlations are seen to shorten temporal paths, as
destroying them with the equal-weight link-sequence shuffled
model gives rise to longer distances.

E. Temporal closeness centrality

So far, we have focused on the overall temporal distances
that limit the speed of any dynamics on temporal graphs.
To conclude our investigation, let us focus on the properties
of individual nodes and their importance. To measure how
quickly all other nodes can be reached from a given node, we

define the temporal closeness centrality as

CT
i = 1

N − 1

∑
j

1

τij

, (2)

where τij is the average temporal distance between i and j and
N the number of nodes. A high value of CT

i thus indicates that
other nodes can be quickly reached from i. This measure is a
generalization of the closeness centrality for static networks,
defined as the inverse of the average length of the shortest
paths to all the other nodes in the graph [31]:

CS
i = 1

N − 1

∑
j

1

dij

, (3)

where dij is the static distance between the nodes i and j . A
high value of CS

i indicates that, in the static network, other
nodes can be reached in a few steps from i, whereas low value
means that other nodes are on average either unreachable or
can only be reached via long paths.5

For comparing the static and temporal closeness centrality
to topological properties of nodes, we adopt the point of view
of spreading, where short distances to other nodes are likely
to improve the efficiency of the process, and central nodes are
likely to be influential spreaders. We study the dependence of
the static and temporal closeness centrality of a node on two
quantities: node degree k and its k-shell index ks . The node
degree can be viewed as a first approximation of the importance
of a node for spreading. However, it has recently been shown
that, in fact, the most efficient spreaders are located within
the core of the network, i.e., have a high value of ks [32].
The k-shell index of a node is an integer quantity, measuring
its “coreness.” To decompose the network into its ks shells, all
nodes with degree k = 1 are recursively removed until no more
such nodes remain, and assigned to the 1-shell. Remaining
higher-degree nodes are then recursively removed for each
value of k and assigned to the corresponding shell, until no
more nodes remain.

The dependence of the static and temporal closeness
centrality for the call network on both k and ks is shown in
Fig. 7. Clearly, both quantities CS and CT increase with k and
ks on average. However, again there is a large spread around
the mean, and nodes with a high k or k-shell index but a low
static or temporal closeness can be found. Measured with the
linear Pearson correlation coefficient, we find that the static CS

correlates with k and ks with coefficient values of C = 0.80
and 0.81, respectively. The correlation of the temporal CT with
k and ks is slightly weaker, with values of C = 0.69 and 0.76,
respectively. However, even these values are fairly high. Thus,
both the static and temporal closeness centralities are clearly
associated with high degrees and shell indices on average.

For the air transport network, we find a different result
(Fig. 8). The static closeness centrality CS correlates strongly
with degree k (C = 0.89) and the ks-shell index (C = 0.88).
However, the correlation between the temporal closeness

5Note that, for both cases, dynamic and static, we have chosen to
average over inverse distances rather than define the centrality as the
inverse average distance. This choice has been made to better account
for disconnected pairs of nodes.
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FIG. 7. (Color online) Static and temporal closeness centrality
(CS and CT) of the nodes against their (a), (c) degree, k and (b),
(d) ks-shell index in the mobile phone call network. Circles denote
mean values, while the shading represents conditional probabilities
P (CS,T|k) and P (CS,T|ks).

centrality with k and ks is much weaker, with coefficient values
C = 0.45 and 0.46, respectively. The explanation for this
observation is that the network is geographically embedded,
and temporal path lengths are heavily influenced by flight
times, i.e., the geographical distances between airports. Thus,
the nodes representing airports around the central regions of
the US should, on average, be connected to other airports by
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FIG. 8. (Color online) Static and temporal closeness centrality
(CS and CT) of the nodes against their (a), (c) degree, k and (b), (d) ks-
shell index in the air transport network. Circles denote mean values,
while the shading represents conditional probabilities P (CS,T|k) and
P (CS,T|ks).

short temporal paths, unless connected by a too low frequency
of flights, whereas airports around the coastal areas should
have lower temporal centralities. Indeed, this is the case. When
ranked according to CT, the top three airports are ATL, Atlanta
(rank = 1, k = 156, ks = 25); ORD, Chicago (rank = 2,
k = 133, ks = 25); DFW, Dallas (rank = 3, k = 126,

Algorithm 1: Temporal Distance (directed and long
events)
Data: E , events represented by e ≡ (u, v, t, δt), with

t ∈ [0,T ] and u, v ∈ [1,N ].
Result: D the average temporal distance between all

pair of nodes.
1 begin
2 Event-list E , sorted in reverse time order
3 φj

i = ∞ ∀ i, j /* Latest time of contact */

4 ψj
i = ∞ ∀ i, j /* Path’s starting time */

5 Δj
i = 0 ∀ i, j /* Path duration */

6 Lj
i = 0 ∀ i, j /* Last time of contact, tn */

7 Dij = 0 ∀ i, j /* Average temporal distance */
8 for (i, j, t, δt) ∈ E do
9 if φj

i = ∞ then
10 Lj

i = t
11 else

12 Dij = Dij + (ψj
i − t) × [ψ

j
i−t

2 + Δj
i ]

13 end
14 ψj

i = t

15 φj
i = t + δt

16 Δj
i = δt

17 R ≡ [k : (φk
i = ∞ ∨ φk

j = ∞) �∈ [i, j]]
/* Reachable nodes from i and j */

18 for k ∈ R do
19 if [ψk

j − (t + δt)] ≥ 0 then
20 if φk

i = ∞ then
21 Lk

i = ψk
i = t

22 φk
i = φk

j

23 Δk
i = φk

i − t

24 else if φk
i > φk

j then
25 φk

i = φk
j

26 Dik = Dik + (ψk
i − t) × [ψ

k
i −t
2 + Δk

i ]
27 ψk

i = t

28 Δk
i = φk

i − t

29 end
30 end
31 end
32 end
33 for i ∈ [1,N ] do /* Add first and last term */
34 for j ∈ [1,N ] do

35 Dij = Dij + ψj
i × [ψ

j
i

2 + Δj
i ] + (T − Lj

i ) ×
[T−Lj

i

2 + ψj
i + Δj

i ]
36 Dij = Dij/T

37 end
38 end
39 end

FIG. 9. Pseudocode for the temporal distance algorithm with
directed and noninstantaneous events.
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ks = 25). These major airports have high values of k and ks ,
reducing the number of transfers needed to reach other airports,
and are located away from the coast. There are also airports
that have a high temporal centrality, but low k and ks , typically
located in the central states of the US and also connected
to other temporally central nodes, e.g., CHA, Chattanooga
(rank = 8, k = 5, ks = 5); MGM, Montgomery (rank = 9,
k = 2, ks = 2); ACT, Waco (rank = 10, k = 1, ks = 1). On
the contrary, many interlinked coastal hubs that score low in
the temporal centrality ranking can be found in the highest ks

shells, e.g., IAD, Washington (rank = 152, k = 64, ks = 25);
MCO, Orlando (rank = 79, k = 69, ks = 25); JFK, New York
(rank = 199, k = 59, ks = 25).

IV. CONCLUSIONS AND DISCUSSION

The properties of time-ordered temporal paths play a crucial
role for any dynamics taking place on temporal graphs, such as
the flow of information or resources or epidemic spreading. In
essence, their maximum velocity is defined by the time it takes
to complete such paths. Building on a definition of average
temporal distance and its algorithmic implementation, we
have studied temporal paths in empirical networks. Although
our results show that temporal and static distances between
nodes are correlated, in general, there is a wide spread. Thus,
although nodes may be close in the static network, the time
it takes to reach one from another may be very long, or
vice versa, and in some cases, there is no temporal path
at all. Because of this, any spreading process may follow
very different paths on the temporal graph, and nodes that
appear fairly insignificant from the static network perspective
may in fact rapidly transmit information or disease around
the network. Second, as shown with null models, temporal
distances are affected by heterogeneities and correlations in
the sequence of events spanning the paths. In line with earlier
observations, these were seen to increase temporal distances
for human communication networks; however, for the air
transport network, the optimized scheduling of flights has the
opposite effect.

Furthermore, we have also raised the issue of the finite
observation period. For any measure to be applied on temporal
graphs, the size and finiteness of the time window are important
issues. Here, we have taken care to define the average temporal
distance such that unnecessary artifacts are avoided. Yet, the
application of this measure may yield results that are not useful
if the observation window is too short in relation to event
frequency. On the other hand, if the observation window is
too long, the system may undergo changes during the window
(e.g., in terms of its node composition) that make the results
difficult to interpret. Hence, for any analysis of temporal

graphs, the observation window issue is an important one, and
further studies and methods for choosing a proper window size
are, in our view, called for.

Finally, it is worth stressing that the null models we apply
retain both the underlying network topology as well as the
total numbers of events on each of its edges; hence, depending
on the temporal heterogeneities, the dynamics of processes
may differ a lot even when they take place on networks that
appear similar from the static perspective. This is especially
crucial for processes such as SIR spreading, where infection
may not be transmitted further if the waiting times between
consecutive events on temporal paths are too long. Thus,
in simulations and modeling of processes such as epidemic
spreading, information flow, and sociodynamic processes in
general, the time-domain properties of the event sequences
that carry the interactions should be taken into account.
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APPENDIX: ALGORITHM FOR COMPUTING
TEMPORAL DISTANCES

Here, we present the generalized temporal distance algo-
rithm, where the events are directed and/or have a duration
to completion. The main flow of the algorithm follows the
instantaneous and undirected case (see Sec. II). However, when
the events are directed, for each event (i,j,t) only the vector
clock of i is compared elementwise with that of j , i.e., φk

i

and φk
j ∀k. If φk

j < φk
j , φk

i is replaced with φk
j , and we also set

φ
j

i (t) = t . The vector clock of j remains unchanged. When the
events also have an associated duration δt , we have to define
an additional vector for each node ψψψi , which stores the last
observed beginning times of temporal paths from i to all other
nodes. Like for φφφi , the elements of this vector are also set to ∞
in the beginning of a run. When handling an event (i,j,t,δt),
the vector clock of i is again elementwise compared to that of
j , and if φk

i < φk
j for some k, it is checked if ψk

j > t + δt . If
this condition holds, the element φk

i is updated to φk
j and the

element ψk
i = t . One also sets φ

j

i (t) = t + δt and ψ
j

i (t) = t ,
since j can be reached from i through an event starting at t

and finishing at t + δt , and thus τij (t) = δt . A pseudocode for
the algorithm is given in Fig. 9.
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