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Steady magnetic-field generation via surface-plasma-wave excitation
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The possibility of inducing a magnetic field via surface plasma-wave excitation is investigated with a simple
nonrelativistic hydrodynamic model. A static magnetic field is predicted at the plasma surface, scaling with the
square of the surface-wave field amplitude, and the influence of the electron plasma density is studied. In the case
of resonant surface-wave excitation by laser this result can be applied to low intensities such that the electron
quiver velocity in the field of the surface wave is less than its thermal velocity.
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The possibility of generating high magnetic fields during
high-power laser matter interaction with a solid target has
attracted considerable attention during the last decade [1–3] as
it may have important consequences for the particle beams
produced during the interaction. Typically in these studies
a sharp-edged overdense plasma is created by an ultrashort
(τ < 100 fs) intense (Iλ2 < 1015Wcm−2μm2) IR laser pulse.
Electromagnetic energy is then partially absorbed (< 30%),
and electrons are heated through collisionless mechanisms
such as sheath inverse bremsstrahlung [4], �J × �B heating [5],
vacuum heating [6], and anomalous skin-layer heating [7].

Recently the idea of improving the laser absorption in an
overdense plasma created by laser-solid interactions has been
investigated considering structured targets [8–12] in order
to enhance electrons acceleration to values in the range of
keV to MeV. Of particular interest is the possibility of laser
excitation of surface plasma waves (SPWs) [13] in structured
systems in a large range of laser intensities, from low ∼ 1015

to high 1020 Wcm−2μm2. These waves are supported by a
stepwise profile overdense plasma when the condition for
resonant excitation is satisfied. SPWs propagate along the
plasma-vacuum interface and are characterized by a localized,
high-frequency, resonant electric field higher than the laser
one. In a previous work [10], we have shown the possibility
of resonant excitation of SPWs by an ultrashort (60f s)
high-intensity (1018Wcm−2μm2) laser pulse in overdense
prestructured plasma (ne = 25nc where ne is the electron
density and nc = ω2me

4πe2 is the critical density, ω being the laser
frequency). A dramatic increase of both the laser absorption
(up to the 70%), and the electron energy (several MeV) was
obtained. A high local amplified electric field was also found
that has interesting consequences on high electron bunch
creation. In these 2D particle-in-cell (PIC) simulations, due to
the high electron currents induced by the SPW at the plasma
surface, a quasistatic self-generated magnetic field of 20MG
was also observed.

We wish to present here an investigation of the role of
SPWs on the creation of a steady magnetic field during laser

overdense plasma interaction. To this end we develop a simple
nonrelativistic hydrodynamic model that gives an analytic
expression for the self-generated magnetic field. The model
shows a quadratic dependence of the magnetic field with the
SPW electric field; the influence the electron plasma density on
its intensity and location is also discussed. We remind readers
that magnetic fields can also be generated on the plasma surface
by mechanisms involving crossed density and temperature
gradients [14]. However, since here we focus on plasmas
generated by an ultrashort laser pulse, these mechanisms are
not expected to play a significant role.

We use a standard collisionless hydrodynamical approach
where the collective oscillation of the electron gas is described
by the Maxwell equations and the linearized fluid equations.
We consider two media separated by a planar interface at
x = 0, such that the plasma fills the semispace x < 0 and
the vacuum fills the semispace at x > 0. In our geometry the
plasma vacuum interface coincides with the y axis, and (the
real part of) the wave vector of the surface wave will be along
the y direction. Thus we have for the linearized fluid equations

∂n1

∂t
+ n0 �∇ · �v1 = 0, (1)

∂ �v1

∂t
= −e �E1

me

− 1

n0me

�∇P1, (2)

where n = n0 + n1 + · · · is the electron density, P is the
electron pressure, and subscripts 0 and 1 (here and in the
following) refer to equilibrium and perturbation quantities
(no index means the variable is not expanded yet). We
assume that time variations are so fast that no significant
heat exchange can take place in the plasma. Then the process
can be considered adiabatic, so that the temperature-density
relationship is T/T0 = (n/n0)(γ−1), where γ is the adiabatic
index. Thus the linearized (first-order) moment equation (2)
can be written as

∂ �v1

∂t
= −e �E1

me

− β2

n0

�∇n1, (3)

015402-11539-3755/2011/84(1)/015402(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.015402


RAPID COMMUNICATIONS

A. BIGONGIARI, M. RAYNAUD, AND C. RICONDA PHYSICAL REVIEW E 84, 015402(R) (2011)

where β2 = γ kBT0

me
is a parameter expressing the equilibrium

thermal speed of the electrons. The SPW fields are then
derived from the linearized Maxwell equations looking for
“H” waves and assuming a density perturbation of the form
n1 = g(x)eiky−iωt (k and ω being, respectively, the wave vector
and the frequency of the SPW). The following expressions
for the SPW fields inside the plasma are obtained after some
algebra:

E1x = E0x

(
e−qpx − ω2

p

ω2
e−qt x

)
eiky−iωt + c.c., (4)

E1y = E0x

(
qp

ik
e−qpx + ω2

p

ω2

ik

qt

e−qt x

)
eiky−iωt + c.c., (5)

B1z = − c

iωk

(
k2 − q2

p

)
E0xe

−qpx + c.c., (6)

where ω2
p = 4πe2ne

me
is the plasma frequency and

qt = [
k2 + (

ω2
p − ω2

)
/β2

]1/2
, (7)

qp = [
k2 + (

ω2
p − ω2)/c2]1/2

(8)

are the reverse of the two evanescence lengths of the field
inside the plasma. E0x is a constant representing the SPW
field at the surface.

It is to be noticed that these expressions agree with Ref. [13].
Namely, in the limit of a warm plasma (vosc = eE1/meω < β),
we can impose the boundary condition v1x = 0 at x = 0 (as
for the reflection of the electrons by a plasma sheath at the
interface) and find the same dispersion relation as [13]

k2ω2
p = qtqpω2 + (

ω2 − ω2
p

)
qvqt , (9)

where qv = [k2 − ω2/c2]1/2 is the reverse of the field evanes-
cence length in the vacuum. We observe that, for the range of
densities we are going to investigate (5–100nc) and an electron
thermal velocity β < c, we have qv � qp < qt . In the limit of
β = 0 we recover the well-known dispersion relation of the
surface wave for cold plasmas:

k2 = ω2

c2

ω2 − ω2
p

2ω2 − ω2
p

. (10)

We are now interested in the second-order fields in order to
find the quasistatic magnetic field generated into the plasma
by the SPW. The second-order momentum equation becomes

n0
∂ �v2

∂t
+ n0( �v1 · �∇) �v1 + n1

∂ �v1

∂t

= − n0e

mec
(c �E2+ �v1 × �B1)−β2 �∇n2−β2 T1

T0

�∇n1 − n1
e

me

�E1,

(11)

where the subscript 2 refers to the second-order perturbation
quantities. Accordingly with the adiabatic temperature-density
relationship, we have T1 = γ T0(n1/n0), which means at this
approximation order we are neglecting any thermo-electric
source, i.e., a term of the form �∇n × �∇T that gives no
contribution on the fast time scales of the SW oscillation.

Using (2) and Maxwell-Faraday equation, we can combine
two terms in Eq. (11): [ e

mec
�v1 × �B1 + ( �∇ · �v1) �v1] = �∇v2

1.

Moreover Eq. (11) will be manipulated as follows in order
to obtain a relation for the second-order magnetic field �B2:
First, the time derivative of v1 is replaced using the first-order
momentum equation (2); then we perform the time derivative
of the obtained equation, where we write the time derivative of
�E2 as a function of ( �B2,n1,v1,v2), via the Maxwell-Ampere

equation at second order. Finally, by taking the curl of the
resulting equation, we find the relation

∂2 �B2

∂t2
− c2∇2 �B2 + ω2

p
�B2 = −ω2

p

mec

en0

�∇ × (n1 �v1). (12)

As we are looking now for the slowly varying component

of the electromagnetic field, we neglect the term ∂2 �B2
∂t2 , and we

perform a time average in order to eliminate the oscillating
terms. The x component of the product ×(n1 �v1) is thus
eliminated by the averaging procedure. We finally obtain the
differential equation (valid for x > 0)

−c2 ∂2 �B2

∂x2
+ ω2

p
�B2 = 2c

e

me

E2
0x

ω2
p

ω2

k2 − q2
t

qtω

×
[−(qp+qt )qp

k
e−(qp+qt )x + e−2qt x2k

]
.

(13)

In the vacuum side (x < 0) the analogous of Eq. (13) reads
∂2 �B2,v

∂x2 = 0. The condition that the field is zero far away from
the surface imposes B2,v = 0, leading to the solution

�B2 = ẑ
(
Ae−(qp+qt )x + Be−2qt x + Ce− ωp

c
x
)
, (14)

A = 2c
e

me

E2
0x

ω2
p

ω2

k2 − q2
t

qtωk

−(qp + qt )qp

ω2
p − c2(qp + qt )2

, (15)

B = 2c
e

me

E2
0x

ω2
p

ω2

k2 − q2
t

qtω

2k

ω2
p − 4c2q2

t

, (16)

C = −(A + B). (17)

The terms A and B can also be expressed as a function of the
SPW field at the plasma-vacuum interface, Esw = |E1x(x =
0)| = (1 − ω2

p

ω2 )E0x , writing

A = 2ce

me

E2
sw(

1 − ω2
p

ω2

)2

ω2
p

ω2

k2 − q2
t

qtωk

−(qp + qt )qp

ω2
p − c2(qp + qt )2

, (18)

B = 2ce

me

E2
sw(

1 − ω2
p

ω2

)2

ω2
p

ω2

k2 − q2
t

qtω

2k

ω2
p − 4c2q2

t

. (19)

Equation (14) shows that the surface wave gives rise to a
second-order magnetic field proportional to the square of the
SPW field Esw and confined near the interface, whose strength
depends on the source field, electron temperature, and density.

Two limits are now interesting to explore, in order to clarify
the dependence of B2 on the involved parameters. First, in the
limit of T0 → 0 (qt → ∞), that is, a cold plasma, we observe
that B vanishes while A does not. Thus, using relations (14)
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FIG. 1. Magnetic field (absolute value B2 = | �B2|) as a function
of the depth inside the plasma, given by Eq. (14), for Esw = 0.2 for
ne = 25nc and different values of β. The values of the fields are given
in units of B0 = meω/e, and the depth is in units of k−1.

and (17) we obtain the second-order magnetic field for a cold
plasma at x > 0 (B2 = 0 at x = 0):

�B2,cold = 2
e

mecω

E2
sw(

1 − ω2
p

ω2

)2

ω2
p

ω2

qp

k
e− ωp

c
x ẑ. (20)

It should be noticed that this result is hard to obtain directly
from the cold plasma equations, due to the discontinuity of the
electric field E1x at x = 0.

Then, in the limit of strongly overdense plasma ωp

ω
� 1,

we have k2 ∼ ω2/c2 from the dispersion relation (10), and
Eq. (20) can be expressed as

�B2,ovd = sgn(k)2
e

mecω
E2

sw
ω

ωp

e− ωp

c
x ẑ. (21)

Thus, in the case of extremely high density and low temper-
ature, the model predicts a magnetic field having a rapidly
vanishing amplitude inside the plasma, with a maximum value
proportional to

√
nc/ne.

In Fig. 1 the dependence of the magnetic field given
by the expression (14) on the electron thermal velocity
(expressed by the term β) is shown, for Esw = 0.2meω/e,
ω2

pe/ω
2 = 25, and three values of β/c: 0.15, 0.05, and 0.

The magnetic field is peaked near the plasma surface for
low electron thermal temperatures, while it becomes less
localized when the electron thermal velocity is increased.
This is consistent with the fact that increasing the electron
thermal velocity the parameter 1/qt ∼ λDe (where λDe is the
Debye length) increases, while in the case of a cold plasma the
evanescence length is simply given by the skin depth, which
for our parameters is equal to c/ωpe = 0.2c/ω ∼ 0.2k−1. For
comparison, the curves corresponding to the limits of a cold
(T0 → 0) and dense plasma (ωpe/ω > 1) are also shown: The
long dashed curve corresponds to Eq. (20), while the gray fine
dashed curve correspond to Eq. (21). As expected a higher
maximum strength of B2,cold = 0.017meω/e is obtained in the
limit of a cold plasma, while in the limit of very high density
the peak decreases to B2,ovd = 0.016meω/e.

FIG. 2. Magnetic field (absolute value B2 = | �B2|) as a function
of the depth inside the plasma, given by Eq. (14), for Esw = 0.2 and
different values of the ne, up for β/c = 0.05 and down in the limit
of a cold plasma β = 0. The values of the fields are given in units of
B0 = meω/e, and the depth is in units of k−1.

To complete the discussion we have reported in Fig. 2 the
dependence of the magnetic field on the electron density for
ne = 5, 25, 50, 75, and 100nc for an electron thermal velocity
β/c = 0.05 (up) and in the cold plasma limit β = 0 (down).
As expected from the expression (21) in the limit of very
high density, we observe that the field amplitude decreases
for increasing electron density and becomes more peaked and
close to the surface. This is consistent with the decreasing of
the skin depth for increasing the plasma density. The same
trend is observed in the cold plasma limit.

Thus, in the case of resonant excitation of the surface
wave by a laser field the model predicts the presence of a
quasistatic magnetic field in the plasma skin depth, induced by
the SPW, whose amplitude scales with the square of Esw. Since,
according to Ref. [10], Esw is proportional to the laser field,
the self-generated magnetic field would scale with the laser
intensity. We notice that the quasistatic magnetic field derived
in this model is stronger than what was derived for the case
of generation of a static magnetic field by a laser propagating
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in underdense, cold, homogeneous plasma [15], where the
perturbative analysis needed expansion to fourth order in
order to prove the possibility of magnetic-field self-generation.
Nevertheless, it should be mentioned here that the validity
of this approach is limited to moderate laser intensity range
where Iλ2 <∼ 1016Wcm−2μm2 because of the hypothesis
vosc/c = eEsw/cmeω < β. In particular, some limitations of
the model should also be noticed, such as, for example, the
transfer of energy from the wave to the particle via kinetic
effects (such as Landau damping, wave breaking, and vacuum
heating), creating hot tails in the electron distribution functions
in directions parallel and perpendicular to the surface, which
are not described in this fluid approach. However, in a higher
laser intensity range, SPWs still exist [10] and can be an
attractive method for quasistatic magnetic-field generation.

In conclusion, we predict, with a simple nonrelativistic
hydrodynamic model, a new effect in a moderate intensity laser
interaction regime Iλ2 <∼ 1016Wcm−2μm2: the significant
generation of quasistatic magnetic field by resonant excitation

of a surface wave on a plasma target. The magnetic-field
intensity is shown to have a quadratic dependence with the
SPW electric field, which can be related to the laser one, and to
decrease with ω/ωpe for increasing density. The development
of such a quasistatic magnetic field in the vicinity of the laser-
plasma interaction layer is known to have an important effect
on the electron beams produced during the interaction [1,16].
For this reason the knowledge of the process of magnetic-field
generation is of great importance when seeking to control the
divergence of electron beams, and this result should promote
new experimental and numerical studies with grating targets.
We remind readers that the surface plasma wave can also
appear on flat (nonstructured) overdense plasmas by a decay
process [17], and thus the associated generation of a quasistatic
magnetic field is relevant for many situations of interest. In
particular, a high-intensity laser pulse regime where kinetic
and relativistic effects are dominant should be investigated.
This point is under study with PIC simulations and will be the
subject of a future publication.
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