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Spatiotemporal chaos and turbulence are universal concepts for the explanation of irregular behavior in various
physical systems. Recently, a remarkable new phenomenon, called “chimera states,” has been described, where in
a spatially homogeneous system, regions of irregular incoherent motion coexist with regular synchronized motion,
forming a self-organized pattern in a population of nonlocally coupled oscillators. Whereas most previous studies
of chimera states focused their attention on the case of large numbers of oscillators employing the thermodynamic
limit of infinitely many oscillators, here we investigate the properties of chimera states in populations of finite size
using concepts from deterministic chaos. Our calculations of the Lyapunov spectrum show that the incoherent
motion, which is described in the thermodynamic limit as a stationary behavior, in finite size systems appears
as weak spatially extensive chaos. Moreover, for sufficiently small populations the chimera states reveal their
transient nature: after a certain time span we observe a sudden collapse of the chimera pattern and a transition
to the completely coherent state. Our results indicate that chimera states can be considered as chaotic transients,
showing the same properties as type-II supertransients in coupled map lattices.
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Since their first discovery by Kuramoto and Battogtokh [1],
chimera states have attracted considerable attention [2–8].
After the notion of chimera states was introduced by Abrams
and Strogatz in [2] for spatially homogeneous systems of
coupled oscillators in one space dimension, similar spatiotem-
poral patterns were later found in various heterogeneous
systems [9–15] as well as two-dimensional settings [16,17].
The remarkable new phenomenon in all these systems is
the coexistence of synchronized regions and regions with
asynchronous motion, together displaying a self-organized
spatiotemporal pattern of coherent and incoherent motion. This
new paradigm of dynamical behavior can serve as a prototype
for various physical phenomena, e.g., the coexistence of
synchronous and asynchronous neural activity [18,19] or
turbulent-laminar flow patterns [20].

Starting from the pioneering work of Kuramoto and
Battogtokh [1], the thermodynamic limit N → ∞ has become
the most important tool for the study of chimera states.
Following the approach of Pikovsky and Rosenblum [21],
or alternatively Ott and Antonsen [22,23], one can derive
a limiting system of dynamical equations for macroscopic
quantities, where chimera states appear as stable stationary
patterns. However, in a similar way as Mirollo and Strogatz
showed in [24] for partially locked states in the continuum
limit of the classical Kuramoto model, it has been shown
recently [25] that in the thermodynamic limit, chimera states
are only neutrally stable, having continuous spectrum on the
imaginary axis.

Based on the understanding of the thermodynamic limit
N → ∞, there appear the following natural questions about
the finite size effects for chimera states in the finite dimensional
setting: (1) How long do the chimera states persist when
the number of oscillators N decreases, and in which way do
they finally disappear? (2) How can their incoherent motion
be understood in terms of classical deterministic chaos? At
first glance, the finite size effects will manifest themselves
only as noisy fluctuations with respect to the mean values
given by the stationary macroscopic quantities obtained in

the thermodynamic limit. However, due to the nonlinear
nature of the system, these fluctuations may also induce
qualitatively new phenomena. A first important feature of
the finite-dimensional chimera states that is not captured
by the thermodynamic limit has been reported in [26]: the
irregular motion of the coherent and incoherent regions (see
also Fig. 4). A second phenomenon resulting from finite size
effects will be reported here: the collapse of the chimera.
In this Rapid Communication we demonstrate that after a
long time span a sudden collapse of the chimera pattern
and a transition into the completely coherent state can be
observed.

The observation of very long irregular transients dates
back to the seminal paper of Grebogi, Ott, and Yorke [27]
who discovered them in the vicinity of a bifurcation of a
chaotic attractor in a low-dimensional system. Later, so called
supertransients were found in spatially extended systems,
where the length of the transients can grow exponentially with
the system size (for recent surveys, see [28,29]). While the first
examples were based on coupled map lattices [30,31], later
examples with both continuous time and space variable have
also been reported (see, e.g., [32–34]). Possible applications
of this general concept range here from fluid dynamics to
chemical reaction kinetics and biological systems. Investigat-
ing the statistical properties of the collapse events for chimera
states, we show that the average length of the transients grows
exponentially with the system size, given by the number
of oscillators. We complete this Rapid Communication by
starting with a study of the corresponding Lyapunov spectra,
which turn out to be weakly chaotic and remain stationary
until the collapse. Based on these facts, we can conclude
that chimera states are type-II supertransients in the sense
of [30]. In this way, we can give answers to the two questions
raised above: We provide numerical evidence that finite size
chimera states can indeed be considered as chaotic transients.
For decreasing system size, they disappear not in some kind
of bifurcation, but are observed on shorter and shorter time
scales.
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FIG. 1. (a) Phase snapshot of a chimera state observed in system
(1). (b) Time-averaged frequencies. Parameters: N = 40, R = 14,
and α = 1.46.

Our model is an array of N identical nonlocally coupled
phase oscillators with phases �� = (�1, . . . ,�N ) evolving
according to

�̇k(t) = ω − 1

2R

k+R∑

j=k−R

sin[�k(t) − �j (t) + α]. (1)

The indices have to be considered modulo N , inducing a ring
structure on the array. With ω, we denote the natural frequency
of the oscillators that can be set to zero, and α ∈ (0,π/2) is
Sakaguchi’s phase lag parameter [35]. The coupling range
R should satisfy R > 1, excluding the trivial case of local
(next-neighbor) coupling, and R < (N − 1)/2, excluding also
the case of global coupling.

A typical chimera solution for model (1) with N = 40
and R = 14 is shown in Fig. 1. Even for this rather small
number of oscillators, we can clearly distinguish between
oscillators with coherent and incoherent motion. Taking the
time averages of the phase velocities [see Fig. 1(b)], we still
obtain a rather continuous inhomogeneous profile, similar to
that in the thermodynamic limit (cf. [25]).

I. THE CHAOTIC NATURE OF THE FINITE SIZE
CHIMERA

In this section we show that the incoherent motion of a
finite size chimera carries the characteristics of weak spatially
extended deterministic chaos. We present our calculations of
the Lyapunov spectra of chimera states, focusing our attention
here on the spectra of chimera states in systems with a
comparatively small number of oscillators N .

A detailed investigation of the behavior of the Lyapunov
spectra for large N can be found in [25]. In particular, the
limit N → ∞ has been studied there. It has been shown that
within the incoherent region, the chaos has a spatially extensive
nature and that the corresponding exponents tend to zero for
N → ∞; the Lyapunov dimension is given asymptotically by
the number of incoherent oscillators. Corresponding to the
coherent region there is a stable part of the spectrum that has
a negative limit; moreover, both parts of the limiting spectrum
can be calculated explicitly as the continuous spectrum of
the linearized evolution operator for the thermodynamic limit
system.

For our numerical computations, we used the common
fourth-order Runge-Kutta scheme with fixed time step dt =
0.01 to integrate system (1) together with the standard
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FIG. 2. (Color online) Lyapunov spectra computed for chimera
trajectories of Eq. (1).

algorithm for Lyapunov exponents using continuous Gram-
Schmidt orthonormalization [36]. In Fig. 2, we show the
complete Lyapunov spectra for chimera states with three
different values of N . Note that here we have rescaled the
exponent index by the system size N in order to demonstrate
the extensive nature of the chaos. Moreover, it can be seen that
the positive exponents decay for increasing N . Note that with
changing N , we also adapted the coupling range R in order to
obtain an approximately fixed ratio between these quantities.
Figure 3 indicates that the positive exponents stabilize nicely
after a computation over 15 000 time units. However, it was
not possible to extend the time span of our calculations of
the Lyapunov spectra arbitrarily, since for these values of N

we could not find chimera trajectories that persist over an
arbitrarily long time.

II. THE CHIMERA’S COLLAPSE

In our numerical simulations of Eq. (1) with N � 40,
we discovered a surprising phenomenon: The collapse of
the chimera. After an apparently stable existence for quite
a long time span, the chimera state disappears suddenly and
the system changes over to completely coherent motion (see
Fig. 4). Note that for such small values of N the irregular
motion of the coherent region described in [26] is also very
pronounced. The moment τ of the collapse shows a sensitive
dependence on the initial data. We used simulations with
slightly varying initial conditions to investigate the statistical
properties of the collapse events. In Fig. 5 we show a histogram
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FIG. 3. (Color online) Stabilization of the leading three finite-
time Lyapunov exponents calculated along chimera trajectories of
increasing lengths. Parameters: N = 30, R = 10, and α = 1.46.
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FIG. 4. (Color online) The chimera’s collapse: (a) space time
plot of averaged phase velocities and global mean field Z(t) for a
chimera trajectory that collapses after approx. 4600 time units to
the completely coherent state (dark region: slow coherent motion).
Panels (b) and (c) show a magnification of segments well before the
collapse and directly at the collapse. Parameters: N = 40, R = 14,
and α = 1.46.

of collapse times τ that we obtained from 2000 trajectories
with initial data obtained by small random perturbations (with
amplitude 10−3) of the reference solution in Fig. 4. The
collapse event can be easily detected from the global mean
field

Z(t) :=
∣∣∣∣∣∣

1

N

N∑

j=1

ei�j (t)

∣∣∣∣∣∣
,

that for t > τ suddenly stabilizes at Z(t) = 1 (cf. Fig. 4).
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FIG. 5. Histogram of collapse times (circles) in logarithmic scale
with fitted exponential distribution (solid line). Parameters as in Fig. 4.
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FIG. 6. Average lifetimes of chimera states for increasing N from
numerical simulations (circles) and fitted exponential growth (solid
line). Parameters: R/N ≈ 0.35 and α = 1.46.

We clearly see that the distribution of the collapse times
ρ(τ ) follows an exponential law

ρ(τ ) = λe−λτ ,

with a constant collapse rate λ and the average lifetime

Tc := 〈τ 〉 = λ−1.

In this way, for a given set of parameters, the collapse rate and
the average lifetime of the chimera state can be obtained by a
straightforward fitting procedure.

Varying now the number of oscillators N and extracting
the average lifetime Tc(N ) in the way described above, we
observe an exponential growth Tc(N ) ∼ eκN (see Fig. 6). In
our example with α = 1.46 and R/N ≈ 0.35, we observed an
exponential rate κ = 0.23. Due to the exponential growth, a
numerical evaluation of the collapse statistics for 2000 collapse
events was only possible for a system size up to N = 45.
For N > 60 it is already very unlikely to observe even a
single collapse event within a time span that is amenable to
numerical simulation. Regardless, we can conclude that for all
values of N , the chimera states will eventually collapse to the
completely coherent state, and hence have to be considered
chaotic transients.

III. CONCLUSIONS

The observed exponential growth of the transient time with
the system size together with the chaotic Lyapunov spectrum
is typical for type-II supertransients in spatially extended
systems. In contrast to all earlier examples, the collapsing
spatiotemporal chaos appears here together with a regular
pattern in space. A further striking difference is the completely
trivial dynamics of the single elements, being identical phase
oscillators. A key role for both the appearance of the incoherent
motion and the spatial pattern is played by the nonlocal
coupling structure that seems to be essential for the chimera
phenomenon. Their transient nature shows that they constitute
a large chaotic saddle, introducing a fractal structure at the
basin boundary of the completely coherent state.

Our conclusions are based on system (1), which we have
chosen as the simplest equation where chimera states can
be observed. However, our results seem not to depend on
our specific choices, such as the piecewise constant coupling
function, the identical natural frequencies, or the coupling of
Kuramoto-Sakaguchi type. Instead, we have some indications
that our main findings-the collapse and the weakly chaotic
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Lyapunov spectra-can be observed similarly in other systems
that exhibit the chimera phenomenon.

Based on the thermodynamic limit N = ∞, several authors
have already calculated stability boundaries, e.g., saddle-node
bifurcations, for chimera states. It seems to be an open
question as to how these results should now be interpreted
for finite N chimeras, keeping in mind their transient

nature. In particular, the behavior of the average lifetime
when approaching the stability boundary is an interesting
open problem and will be addressed in a forthcoming
paper.

We thank Y. Maistrenko, A. Pikovsky, and A. Torcini for
fruitful discussions.
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