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Natural materials such as nacre exhibit a high resistance to crack propagation, inspiring the development of
artificial composites imitating the structure of these biological composites. We use a phase field approach to
study the role played by the elastic modulus mismatch between stiff and soft layers on crack propagation in such
bioinspired composites. Our simulations show that the introduction of a thin layer of a soft phase in a stiff matrix
can lead to arrest of a propagating crack and can also lead to crack branching. The crack branching observed in
the phase field model is analyzed using a cohesive zone approach. Further, we show that the toughness of such a
composite can be substantially higher than that of its constituents.
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Natural composites of a stiff mineral phase and soft organic
phase are ubiquitous in biological materials [1]. For example,
bone is a composite of the mineral hydroxyapatite, and the
protein collagen, which are arranged in a hierarchical manner
over length scales ranging from tens of nanometers to several
hundred microns [2]. Similarly, nacre, a constituent of some
sea shells, is a composite of the mineral aragonite and a
variety of biopolymers. A striking property of such materials
is that although the components are brittle, the composite may
have exceptional fracture resistance. A variety of toughening
mechanisms have been observed in such materials. In bone, for
example, crack deflection at weak interfaces, microcracking,
bridging due to uncracked ligaments, and bridging of collagen
fibrils have been suggested to contribute to the toughness
[3,4]. The spatially varying elastic modulus also has been
proposed to increase the toughness of these composites. For
example, crack arrest and crack kinking have been observed
and attributed to the different elastic moduli of different layers
in teeth [5]. Further, recent theoretical studies have found
that periodic variations of the modulus are enough to cause
a crack to arrest at a soft layer [6–8]. The understanding of
these toughening mechanisms in biocomposites has important
implications for engineering materials with superior resistance
to fracture.

By mimicking the layered structure of nacre, for instance,
researchers have successfully enhanced the fracture toughness
of artificial composites [9]. Toughening mechanisms in these
bioinspired composites may be distinct from those observed
in biological materials. For example, in natural biocomposites,
mineral grains are nanosized, making them insensitive to flaws
[8]. This is not necessarily true for bioinspired composites
(and composites in general) as the length scales are usually
larger. However, a feature common to both biocomposites
and bioinspired composites is the extreme modulus mismatch,
the disparity in the stiffness between the components. This
leads us to ask the following generic question: How will the
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propagation of a crack in the composite be influenced by the
presence of a thin, soft layer? In order to answer this question,
there is a need to develop a dynamical framework that can
describe the path of a crack in an inhomogeneous medium.

The phase field method has recently emerged as a powerful
technique to study the dynamics of fracture and crack
propagation in homogeneous brittle materials [10–12] as well
as composite systems [13,14]. In the phase field approach, an
order parameter that characterizes the degree of brokenness
of a material is coupled to elasticity via a phenomenological
Ginzburg–Landau-type energy function. This approach is well
suited to study crack propagation in composite materials
because no a priori assumption of the crack path is required.
The crack path is determined by the coupling between the
order parameter and the elastic stresses. Thus, the interaction
of a crack with a complex, inhomogeneous microstructure can
be studied in an unbiased manner.

In this paper, we apply the phase field method to study
crack propagation in a simple model system that contains some
basic features of bioinspired composites. A cohesive zone
model is used to phenomenologically explain the crack paths
predicted by the phase field model. We focus on the following
issue: What factors determine the crack path in the vicinity
of interfaces between stiff and soft materials? Further, we also
investigate the enhancement in toughness of the composite due
to the modulus mismatch between the constituents.

The present phase field model is formulated in terms
of an order parameter φ(�r), which describes the degree of
brokenness of the solid, i.e., φ(�r) = 1 corresponds to the
unbroken solid and φ(�r) = 0 inside the crack. The order
parameter is coupled to the elastic energy via a free energy
functional that can be expressed as

F =
∫

d�r
[
g(φ)(Eelas − Eth) + K

2
( �∇φ)2

]
. (1)

The function g(φ) = 4φ3 − 3φ4 is 0 inside the crack and
1 in the solid. The elastic energy density is given by Eelas =
λ(�r)ε2

kk/2 + μ(�r)εij εij , where εij = 0.5(∂ui/∂xj + ∂uj/∂xi)
is the linearized strain tensor, obtained from the displacement
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FIG. 1. (Color online) Schematic of the simulation domain
indicating the loading conditions and the geometry for simulations
of dynamic crack propagation. A macroscopic applied strain εapp is
applied to the top and bottom face.

field ui ; Eth represents a threshold strain energy density such
that the material will fail when Eelas > Eth; λ(�r) = Y (�r)ν/(1 +
ν)(1 − 2ν) and μ(�r) = Y (�r)/2(1 − ν), where Y (�r) is a position
dependent Young’s modulus and ν is Poisson’s ratio. The
gradient term K is related to the surface energy γ by
K = γ 2/Eth [10–12]. The dynamics of crack propagation
are simulated by solving coupled equations for the order
parameters and the displacement fields:

dφ

dt
= −M

δF

δφ
= −M[−K∇2φ + (Eelas − Eth) g′ (φ)], (2)

ρ
d2ui

dt2
= ∂σij

∂xj

+ η∇2 dui

dt
, (3)

where M is the mobility which sets the time scale of crack
propagation, ρ is the density, η is the viscosity, and σij =
(λδij εkk + 2μεij )g(φ) are the components of the stress tensor.

The objective of the present analysis is to explore the
underlying mechanisms of crack propagation in a generic,
rather than a specific material system. Thus, we introduce
a characteristic length scale given as δ = γ /Eth and a
characteristic time scale given by τ = 1/MEth. We choose the
following rescaled parameters in the present simulations, K ′ =
(K/Ethδ

2) = 4, ρ ′ = (ρ/Eth)(δ/τ )2 = 1, η′ = η/Ethτ = 2,
and γ ′ = γ /Ethδ = √

K ′.

Since the aim of this study is to understand the role played
by modulus mismatch on crack propagation, we consider
a very simple, two-dimensional model composite of two
components having different elastic moduli. By analogy to
nacre, we refer to the stiff component as the “mineral” and
the soft component as the “organic.” We study the fracture
of this composite while varying the Young’s modulus of the
organic layer, YO . This has the effect of altering the modulus
mismatch, YO/YM , where YM is the Young’s modulus of the
mineral component. The threshold energy density Eth and
Poisson’s ratio ν = 0.27 are taken to be the same for both
components.

We consider a sandwich structure consisting of a very thin,
soft organic layer placed between two thicker, stiff mineral
plates. One plate is precracked, with the crack terminating
at the mineral-organic interface, as shown in Fig. 1. This
geometry is taken to roughly reflect that of some recently
fabricated bioinspired materials [9]. The dynamic fracture of
this structure is analyzed by integrating Eqs. (2) and (3) using a
finite difference scheme with grid spacing x = y = δ and
time step t = 0.01τ . The simulation domain is a rectangular
grid of dimension Lx × Ly where Lx = 900δ, Ly = 300δ. The
width of the organic layer is W = 27δ. A precrack is initialized
by setting φ = 0 inside the crack and φ = 1 outside. A
macroscopic strain εapp is applied to the composite by imposing
uy = Lyεapp/2, σxy = 0 at the top face and uy = −Lyεapp/2,
σxy = 0 at the bottom face. A traction-free boundary condition
(σxx, σxy = 0) is applied to the left and right sides.

To simulate crack propagation, a fixed macroscopic strain
εapp is imposed and the evolution of the crack is monitored
until the cracks either stop evolving or reach the other end.
The simulations are repeated for different values of εapp and
YO/YM . Figure 2 depicts crack propagation in the composites
with YO/YM = 0.32, YO/YM = 0.10, and YO/YM = 0.01. For
the case of YO/YM = 0.32, the crack at the interface starts to
move into the organic layer for strains of εapp > 0.15. However,
the crack does not proceed all the way through the composite,
but instead arrests in the organic layer. Upon increasing the
load, the arrested crack moves deeper into the organic but
arrests again. The loading may be further increased until the
crack moves out of the organic at εapp > 0.26, causing the
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FIG. 2. Final crack patterns from the phase field simulations for different values of the macroscopic applied strain εapp. The ratio YO/YM

represents the Young’s modulus ratio of the soft organic layer (black region) and the stiff mineral layer (grey region).
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composite to fail. The path of the crack is straight and does
not show any branching. Crack arrest is also observed for
YO/YM = 0.10 but the strains required for crack initiation and
crack propagation are much higher compared to YO/YM =
0.32. In addition, for εapp > 0.35, we observe crack branching.
This can be clearly seen in Fig. 2 by examining the crack
profiles for YO/YM = 0.10. Increasing the strain further leads
to both branches growing until they exit the organic layer and
the composite fails. For the case of YO/YM = 0.01, the crack tip
arrests in the organic layer for strains up to εapp = 0.80. Upon
further increasing εapp, a second crack initiates in the mineral
plate that is ahead of the organic layer. The composite fails once
this crack merges with the first crack. The main observations
from these simulations are that for sufficiently large values
of the elastic modulus mismatch, (1) cracks can arrest in the
organic layer and require increasingly higher loads for the
cracks to move out of the organic layer, (2) cracks can branch at
higher strains, and (3) increasing the elastic modulus mismatch
increases the tendency of cracks to both arrest and branch.

Why does the crack arrest inside the organic layer? To
address this question, we calculate the driving force for straight
crack propagation inside the organic layer, G = −∂�/∂a. In
this expression, � = ∫

g(φ)Eelasd�r is the elastic energy and a

is the crack length. G is calculated by computing �obtained
from the phase field simulations for different values of initial
crack length a. The threshold energy density Eth is kept high
enough so that the crack does not propagate, even at high
strains. The critical driving force for crack propagation through
a homogeneous material is Gc = 2γ . Figure 3 plots G/Gc vs
a0/W for different values of YO/YM at a fixed value of εapp =
0.25. Here a0 denotes the length of the crack that is inside
the organic layer. For the homogeneous case, the driving force
remains constant as the crack advances. For the composite, we
observe that the driving force decreases as the crack propagates
inside the organic layer [7]. It is observed that G > Gc for all
crack lengths when YO/YM > 0.10. For YO/YM = 0.10, the
driving force falls below the critical driving force Gc when
the crack length exceeds a critical value. This explains why
cracks arrest in the middle of the organic layer as observed
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FIG. 3. (Color online) Normalized strain energy release rate
G/GC vs crack length a0/W for composites of different Young’s
modulus ratios. Here a0 is the crack length inside the organic
component, and W is the width of the organic layer. GC = 2γ is
the critical driving force for crack propagation.
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FIG. 4. (Color online) (a) Schematic for the cohesive zone model.
(b) Variation of circumferential stress σθθ with angle θ with (solid
line) and without (dashed line) the presence of the soft strip.

in Fig. 2. For the case with YO/YM < 0.10, we observe that
G < Gc for all crack lengths and hence the crack will not
propagate at this particular strain. This analysis shows that the
modulus mismatch can reduce the local driving force for crack
propagation, causing cracks to arrest in the soft layer.

In addition to, or in lieu of arresting, cracks may branch
as they pass through a soft layer. The branching illustrated in
Fig. 2 appears to be distinct from crack branching observed in
prior phase field studies [11]. Previous studies have attributed
branching to a dynamic mechanism associated with high speed
cracks in brittle materials [15,16], while we measure crack
speeds much smaller than that required for dynamic branching.
Instead, we find that the modulus mismatch leads to the
crack-tip stress field bifurcating. By analogy to Yoffe’s analysis
of high speed cracks, this bifurcation can lead to branching
[16]. The stress field bifurcation can be demonstrated with a
static calculation using a cohesive zone model. As illustrated
in Fig. 4(a), we consider a stationary, semi-infinite crack
subjected to a remote Mode I loading under plane strain
conditions in an isotropic elastic medium, with a soft strip
oriented normal to the crack plane and centered at the crack
tip. The soft strip is modeled as a cohesive zone of length 2L,
where the normal and shear tractions are, respectively, given
as N = 3ksδn and S = ksδs . δn and δs are the normal and slip
displacements and ks is the stiffness of the cohesive zone.
The cohesive zone is described as a continuous distribution
of infinitesimal dislocations [17]. Integral equations are set up
for the deformation in the soft strip and solved numerically.
In the calculation, the remote stress intensity factor is K∞

I =
1.0ksL

3/2 and the strip is ten times softer than the surrounding
medium. This sets YCZ

O /YCZ
M = 0.10, where the effective

modulus of the soft strip is YCZ
O = ksL and the plane strain

Young’s modulus of the matrix is YCZ
O . Figure 4(b) shows the

angular variation of the circumferential stress σθθ evaluated
at a distance r/L = 5.7 × 10−3 away from the crack tip, with
and without the presence of a soft strip. It is observed that
the orientation of maximum σθθ shifts from θ = 0◦ in the
homogeneous case to θ ≈ 75◦ in the presence of a soft strip,
which supports our phase field simulation results on crack
branching. It is interesting to note the similarity between
the results of the present cohesive zone solution and Yoffe’s
analysis of high speed cracks [16]. Both solutions predict a
shift in orientation of the maximum circumferential stress
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FIG. 5. (Color online) Normalized composite toughness �/�th vs
modulus mismatch YO/YM computed from phase field simulations.

from θ = 0◦ to θ ≈ 75◦. We believe that the bifurcation of
the crack-tip stress fields may have important implications for
the fracture behavior of bioinspired composites.

How does the modulus mismatch influence the toughness
of the composite? Although the Gc of each component is
not affected by the structure of the composite, the structural
features in the composite can still affect crack propagation.
For example, Figs. 2 and 3 clearly show that cracks can arrest
and branch in the soft layer. We characterize the toughness
�f of the composite as the elastic energy � evaluated at the
largest applied strain before fracture, εapp = εf , where εf ,
is the fracture strain. �f and εf are obtained by repeating the
phase field crack propagation simulations in Fig. 2 for different
values of εapp for each value of YO/YM . The maximum
toughness is taken as �th= Eth�, where � is the volume
of the sample. When �f = �th, the composite can fail even
in the absence of any defects (cracks). Figure 5 plots the

normalized toughness �f /�th for various values of YO/YM .
The normalized toughness �f /�th of the composite increases
rapidly as the modulus mismatch YO/YM decreases, approach-
ing the maximum value �th as YO/YM → 0. Remarkably,
the toughness for the YO/YM = 0.01 case is approximately
thirty times that of the pure mineral and ∼0.9 times the
maximum toughness �th. This means that when the organic
layer is very soft, the failure of a composite in the phase
field model is governed by the theoretical strength of its
constituents.

In summary, we have studied crack propagation in a
model composite system using a phase field approach. Our
simulations predict that propagating cracks can arrest inside
the soft layer and show a tendency to branch as they pass
through the soft layer. This branching behavior is consistent
with the predictions of a cohesive zone model. Estimates
of the toughness based on the phase field model show that
when the modulus of the soft layer is very low, the toughness
of the composite is limited by the theoretical strength of the
components. Artificial composites may be designed to take
advantage of our finding that very thin, soft layers can cause
branching and toughness enhancement. We end this paper with
the outlook that phase field fracture models can become an
extremely useful tool to help design composite materials with
superior mechanical properties.
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