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Elastic response of binary hard-sphere fluids
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We derive expressions for the high-frequency, wave-number-dependent elastic constants of a binary hard-sphere
fluid and employ Monte Carlo computer simulation to evaluate these constants in order to highlight the impact
of composition and relative sphere diameter on the elastic response of this system. It is found that the elastic
constant c11(k) exhibits oscillatory behavior as a function of k whereas the high-frequency shear modulus, for
example, does not. This behavior is shown to be dictated by the angular dependence (in �k space) of derivatives of
the interatomic force at contact. The results are related to recent measurements of the compressibility of colloidal
fluids in laser trapping experiments.
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I. INTRODUCTION

The determination of the mechanical properties of simple
liquids has been of interest for many years. In particular,
the calculation of these properties provides a testbed for the
machinery of the statistical mechanics of fluids, especially an-
alytical approximations to correlation functions. For example,
Venkatesh and Gopala Rao [1] have computed the interatomic
potential for liquid selenium employing the Percus-Yevick [2]
and hypernetted-chain equations with experimental diffraction
data as input. This potential was then used to obtain the elastic
constants of the liquid for comparison with other calculations
and experiment. In the same time period, Khajil [3] employed
an analytic pair potential that incorporates transition-metal
d-band effects to compute the elastic properties of liquid
platinum and chromium.

Recent experimental advances now permit the determina-
tion of the elastic response of fluids over a range of wavelengths
via laser trapping. Indeed, recent experiments on binary fluids
using optical traps have shown that one can determine the
dependence of the isothermal compressibility of confined
nanoparticles on their size and number density from measured
changes in the number of trapped particles [4]. The interpre-
tation of such compressibility data is difficult, however, given
limited information on the details of colloidal interaction.
The elastic constants of the fluid are, however, a probe of
depletion forces that are associated with effective, entropic
interactions that result from an imbalance in osmotic pressure
[5]. The first quantitative model of these interactions, based
on an excluded-volume model, was developed by Asakura and
Oosawa [6] and has been subsequently investigated and refined
by many others [7–9].

In this paper we compute the high-frequency, finite-
wavelength elastic constants of the fluid using relations
developed by Schofield linking stress correlations to partial
radial distribution functions [10]. Monte Carlo simulation is
employed to calculated the radial distribution functions and
the expressions for the elastic constants are used to quantify
the impact of composition and relative sphere diameter on the
bulk modulus over a range of wavelengths. For simplicity, we
focus here on the binary hard-sphere fluid, the quintessential
athermal system in which entropic interactions dictate struc-
ture and properties and can lead, in some cases, to entropic

phase transitions [11]. As will be seen below, one advantage
of employing a hard-sphere interaction is that analytical
expressions for the elastic constants can be developed for this
system that provide insight into its mechanical response over a
wide range of wavelengths. Such expressions will facilitate the
interpretation of experimental compressibility data. We note
that this system also serves as a model for the study of more
realistic and hence more complex mixtures, including colloidal
mixtures [12]. Nevertheless, despite its simplicity, the binary
hard-sphere fluid also embodies the essential ingredients of
the depletion interaction.

II. ELASTIC PROPERTIES

Consider first a monatomic fluid. Several years ago
Schofield derived expressions for the Fourier transform of the
high-frequency, local elastic constants of such a fluid [10].
Postulating a linear relationship between the components of
the stress rate σ̇αβ(�k) and the strain rate εμδ(�k) in reciprocal
(i.e., �k) space, he first defined the components of the
wavelength-dependent elastic constant tensor Cαβμδ(�k) via the
constitutive relation

σ̇αβ(�k) = Cαβμδ(�k)εμδ(�k) + σ̇ ′
αβ(�k), (1)

where the primed reference stress is orthogonal to the strain,
the overdot denotes a time derivative, and the Einstein sum-
mation convention is employed for notational convenience.
If the focus is on high-frequency elastic behavior, then
elastic constants can be defined in terms of static correlations
involving the radial distribution function. In particular, by
correlating Eq. (1) with the strain rate and employing the
stationary property of correlation functions, it can then be
shown that the elastic constants for a monatomic liquid having
a density ρ with interactions given by a pair potential u(r) are
given in terms of the radial distribution function g(r) by the
stress-stress correlation functions [13]

c11(k) = β〈σzz(�k)σzz(−�k)〉

= ρ

[
3

β
+ ρ

∫
d3r g(r)

∂2u

∂z2

(
1 − cos kz

k2

)]
,

c12(k) = β〈σzz(�k)σxx(−�k)〉
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where the angular brackets denote an equilibrium average, β is
the inverse temperature, the z axis is taken along the direction
of �k, and standard Voigt notation for the elastic constants (i.e.,
C1111 = c11, etc.) has been introduced. These expressions have
already been employed to determine the elastic constants of
a Lennard-Jones fluid using computer simulation [14]. Our
first aim here is to generalize these results to obtain tractable
expressions for the elastic constants of a binary, hard-sphere
fluid.

This generalization can be made by noting that the
relevant quantities for hard-sphere systems are related to
radial distribution functions at sphere contact. Thus the
integrals in Eqs. (2) can be written in terms of g(r)u′(r) =
−(1/β)y(r) d exp [−βu(r)]/dr , where y(r) is the cavity dis-
tribution function [15], prime denotes spatial differentiation,
and g(r)u′′. For the hard-sphere potential with sphere diameter
σ , one finds that g(r)u′(r) = −(1/β)y(σ+)δ(r − σ ) [15],
where δ(r) is the Dirac delta function, and that g(r)u′′(r) =
(−1/β)d[y(r)δ(r − σ )]/dr − y(r)w′(r)δ(r − σ ), where w(r)
is the potential of mean force. It should be noted that since
g(r) = exp [−βw(r)] = y(r) exp [−βu(r)], then, since y(r) is
continuous, y(σ ) = g(σ+).

Equations (2) can then be written in terms of g(σ+) and
w′(σ+) as

c̄11(k) = 3ρ̄ +
(

2πρ̄2

k̄2

)
g(σ+)

{
− I2(k̄) − 1

2
βσw′(σ+)I1(k̄)

+ [2I1(k̄) + k̄I ′
1(k̄)]

}
,

c̄12(k) = ρ̄ +
(

πρ̄2

k̄2

)
g(σ+)

{
− I4(k̄) − 1

2
βσw′(σ+)I2(k̄)

+ [2I2(k̄) + k̄I ′
2(k̄)]

}
,

c̄44(k) = ρ̄ +
(

πρ̄2

k̄2

)
g(σ+)

{
− I3(k̄) − 1

2
βσw′(σ+)I2(k̄)

+ [2I2(k̄) + k̄I ′
2(k̄)]

}
, (3)

where c̄ij = βcijσ
3, ρ̄ = ρσ 3, and k̄ = kσ ; the functions Ii

(i = 1,2,3,4) are evaluated in the Appendix. It should be
noted that, in general, the fluid is elastically isotropic only
for �k = �0, as evidenced by the vanishing of the anisotropy
parameter c̄11(k̄) − c̄12(k̄) − 2c̄44(k̄) in this limit [13]. Finally,
the corresponding expressions for a multicomponent fluid
can be obtained upon making the substitution [16] g(r) →∑

i,j xixjgij (rij ), where xi is the composition of the ith
component, gij (rij ) are the partial radial distribution functions

with species i and j separated by rij , and g(r) is then defined
as the total correlation function [17].

III. SIMULATION METHODOLOGY

In our Monte Carlo simulations of a binary, hard-sphere liq-
uid, two spherical particles α and β interacted via the additive
hard-sphere potential [18] in which dij = (dii + djj )/2 is the
hard-sphere diameter. For concreteness, take 1 (2) to denote
the larger (smaller) spheres. The simulations began with N

larger spheres, each having a diameter σ , located on the sites
of a face-centered-cubic lattice with M unit cells on a side,
each cell having a lattice parameter 
. The n smaller spheres,
each having a diameter ασ , were located at a fraction of the
octahedral interstices of the lattice. Thus d11 = σ , d12 = d21 =
σ (1 + α)/2, d22 = ασ , and d̄ij = dij /σ . The corresponding
reduced number density ρ̄ = ρσ 3 = (N + n)σ 3/M3
3 and
composition x = n/(N + n).

Given this starting configuration, the simulation procedure
is the standard Metropolis Monte Carlo algorithm applied to
hard spheres in a spatially periodic simulation cell. It should
be noted that for highly asymmetric systems (i.e., α � 0.1)
long runs may be needed to ensure proper sampling [12]. In
this work we restrict our attention to α > 0.3 and monitor
the displacements of the spheres to verify that particles
move several times σ over the course of a run. Simulation
runs consisting of from 1 × 105 to 2 × 105 Monte Carlo
steps were used to obtain pair-correlation functions that
are central to our calculations of finite-wavelength elastic
properties.

IV. SIMULATION RESULTS

Simulations were carried out in the liquid state, as de-
termined by previous calculations of the phase diagram for
particular values of the total pressure and x [12]. Consider first
the binary liquid for α = 0.414 for a range of compositions x.
In our simulations we used N = 500 large spheres and varied
n to achieve the desired composition.

Figure 1 shows the corresponding partial radial distribution
functions gij (r) (i,j = 1,2) for x = 0.34 and the calculated

FIG. 1. (Color online) Partial radial distribution functions g11 (r)
(solid curve), g22 (r) (dotted curve), and g12 (r) (dashed curve) for
α = 0.414, x = 0.339, and ρ̄ = 0.779. The corresponding values for
gij (dij ), calculated using the Carnahan-Starling result [19], are also
shown (dots).
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FIG. 2. (Color online) Normalized elastic constants c̄α(k) versus
normalized wave number kσ for a monocomponent hard-sphere
fluid with ρ̄ = 0.52. The curves, starting with the topmost curve,
correspond to α = 11 and 12, respectively. Note the oscillations in
c̄11 that are absent in the other constant.

values for gij (dij ) using a linear combination of solutions to
the Percus-Yevick equation, an approximation that was also
obtained by Carnahan and Starling [18,19]. As can be seen
from the figure, the agreement between the values for the
partial radial distribution functions at contact obtained via
simulation and theory is excellent. These distribution functions
were also used to verify that the total pressure of the system is
in good agreement with that calculated from the Percus-Yevick
equation.

The radial distribution function(s) can be employed to
calculate the elastic properties of the hard-sphere liquid.
For reference, consider first the finite-wavelength elastic
constants for a monocomponent hard-sphere fluid with a
density ρ̄ = 0.52, as calculated using Eqs. (3). For the
purposes of illustration, Fig. 2 shows the normalized elastic
constants c̄11(k) and c̄12(k) versus normalized wave number
kσ . As discussed below, a linear combination of these two
elastic constants yields the high-frequency bulk modulus that
is the focus of this study. [The remaining elastic constant
c̄44(k) is a high-frequency, wave-number-dependent shear
modulus whose zero-frequency counterpart vanishes [13].]
From the figure it is evident that c̄11(k) exhibits oscillatory
behavior and that the other does not. This behavior is due
largely to contributions from terms involving u′′(r) and, in
particular, the derivative I ′

1(k̄) More specifically, as discussed
in the Appendix, the oscillations occur due to the undamped
asymptotic dependence of the term k̄I ′

1(k̄) ∼ −2 cos k̄ found
in Eqs. (3). Thus, from Eq. (A2), the wavelength of the
(damped) oscillations is set by kσ ≈ π . Similar oscillatory
behavior for c̄11(k) has also been noted for the Lennard-Jones
fluid [14].

The elastic constants for a binary, hard-sphere fluid
can be calculated by replacing the pair-correlation func-
tion used in the monocomponent case with the total
(weighted) pair-correlation function, as described in Sec. II.
The resulting elastic constant curves are qualitatively sim-
ilar to those for the monocomponent case (see Fig. 2)
and so they will not be reproduced here. In particular,
c̄11(k) also exhibits oscillatory behavior for the binary
system, though the oscillations are somewhat less pro-

FIG. 3. (Color online) (a) The normalized, infinite-wavelength
bulk modulus, B̄(k), versus the normalized wavenumber, kσ , with
α = 0.414. The curves, from top to bottom, correspond to the
compositions x = 0.339, 0.178, 0.060, and 0.0, respectively. (b) The
normalized, infinite-wavelength bulk modulus, B̄(k̄ = 0)/B0, where
B0 is the corresponding modulus for x = 0, versus composition, x,
for a binary hard-sphere fluid with α = 0.414.

nounced than those found in the case of a monocompo-
nent fluid. In this case, the dependence of c̄11 on wave
number is dictated by the interplay of three normalized
wave numbers, namely, kσ , kσα, and kσ (1 + α)/2, cor-
responding to the three contact distances in this system.
The superposition of these oscillations therefore results in
some destructive interference and hence smaller amplitude
oscillations.

To understand the impact of composition on elastic
response, it is useful to focus on a single parameter,
namely, the (normalized) wave-number-dependent bulk mod-
ulus given by B̄(k̄) = [c̄11(k) + 2c̄12(k)]/3. In the afore-
mentioned laser trapping experiments [4], the dependence
of the long-wavelength bulk modulus on composition has

FIG. 4. (Color online) The normalized, infinite-wavelength bulk
modulus, B̄(k̄ = 0)/B1 for x = 0.178, where B1 is the corresponding
modulus for α = 0.3, versus the relative atomic diameter, α.
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been studied and analyzed in terms of hard-sphere and
other models. Thus we present in Fig. 3(a) the depen-
dence of B̄(k) on kσ . This quantity, which depends also
on c12(k), does not exhibit oscillatory behavior and indi-
cates that the compressibility is higher at shorter length
scales. Figure 3(b) shows the dependence of B̄(k̄ = 0) on
the composition x. Clearly, as the composition increases
B̄ increases as a greater excluded volume correlates with
increases in gij (dij ) and therefore a decrease in the at-
tendant compressibility. Finally, consider the dependence
of the bulk modulus on relative sphere diameter α, as
shown in Fig. 4. As is evident from the figure, the bulk
modulus increases upon increasing α, as would be expected
intuitively.

V. DISCUSSION

The foregoing development can aid in the interpretation
of the elastic properties of colloidal fluids obtained using
the laser trapping experiments mentioned above [4]. In these
experiments, elastic properties such as the compressibility
are determined by monitoring local fluctuations in particle
number. Thus an experimental determination of the depen-
dence of the compressibility (i.e., inverse bulk modulus)
on the composition and the relative ionic radii can be
compared with the results obtained above [see Figs. 3(b)
and 4] to ascertain over what range of composition a hard-
sphere model is appropriate. Moreover, as the expressions
obtained above Eqs. (3) permit one to define partial elastic
constants by including only some of the radial distribu-
tion functions, one can make contact with experimental
results involving fluctuations in the number of only one
species.

Our results also suggest some useful extensions of the
laser trapping experiments. For example, as one can calculate
the dependence of the bulk modulus on wave number, it
would be helpful to obtain k-dependent information from
the experiments in order to extract additional thermodynamic
information (e.g., potentials of mean force). This might be
accomplished by employing a range of trap sizes to probe the
small-k regime and thereby determine dB̄/dk and d2B̄/dk2.
Currently, typical particle radii in the experiments range
from about 0.1 to 0.2 μm and trap sizes are on the order
of 1 μm, and so kσ ≈ 0.6–1.2. It is also, of course,
possible to tune the reduced wave number by varying particle
size.

APPENDIX

The integrals required in Sec. II can be performed by
starting with a generating integral

J (kr) =
∫ π

0
dθ cos (kr cos θ ) sin θ = 2 sin kr

kr
= 2j0(kr),

(A1)

where j0(kr) is a spherical Bessel function. The integrals
needed in Sec. II, done with the generating integral above,
are given by

I1(kr) =
∫ π

0
dθ [1 − cos (kr cos θ )] sin θ cos2 θ

= 2

3
−

(
4 cos kr

k2r2
+ 2(k2r2 − 2) sin kr

k3r3

)
, (A2)

I2(kr) =
∫ π

0
dθ [1 − cos (kr cos θ )] sin3 θ

= 4

(
1

3
+ cos kr

k2r2
− sin kr

k3r3

)
, (A3)

I3(kr) =
∫ 2π

0

∫ π

0
dφ dθ [1 − cos (kr cos θ )]

× sin θ (1 − sin2 θ cos2 φ)

= 4π

(
2

3
− cos kr

k2r2
+ (1 − k2r2) sin kr

k3r3

)
, (A4)

I4(kr) =
∫ 2π

0

∫ π

0
dφ dθ [1 − cos (kr cos θ )]

× sin3 θ cos2 φ(1 + sec2 θ )

= 2π

3

[
4 −

(
3 + 6

k2r2

)
cos kr + 6 sin kr

k3r3

− 3 sin kr

kr
− 3kr Si(kr)

]
, (A5)

where Si is the sine integral. One finds that krI ′
1(kr) ∼

−2 cos kr and krI ′
2(kr) ∼ − sin kr/kr .
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