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Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients
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A Langevin equation with variable drift and diffusion coefficients separable in time and space and its
corresponding Fokker-Planck equation in the Stratonovich approach are considered. From this Fokker-Planck
equation a class of exact solutions with the same spatial drift and diffusion coefficients is obtained. Furthermore,
some details of this system are analyzed by using the spatial diffusion coefficient D(x) = √

D |x|−θ/2.
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I. INTRODUCTION

In the past two decades, anomalous diffusion proper-
ties have been extensively investigated using several ap-
proaches in order to model different kinds of probability
distributions such as long-range spatial or temporal corre-
lations [1,2]. These approaches have been used to describe
numerous systems in several contexts such as physics,
hydrology, chemistry, and biology. The diffusion process
is classified according to the mean square displacement
(MSD)

〈x2(t)〉 ∼ tα. (1)

In the case of normal diffusion, the MSD grows linearly with
time (α = 1). For 0 < α < 1 the process is called subdif-
fusive; for α > 1 the process is called superdiffusive. The
well-established property of the normal diffusion described
by the Gaussian distribution can be obtained by the usual
Fokker-Planck equation with a constant diffusion coefficient
(without the drift term) [3,4] or by an integro-differential
diffusion equation with the exponential function for the waiting
time probability distribution [5]. Anomalous diffusion regimes
can also be obtained by the usual Fokker-Planck equation;
however, they arise from a variable diffusion coefficient
that depends on time and/or space. In contrast, in terms
of the Langevin approach, the regime is associated with a
multiplicative noise term. In other approaches such as the
generalized Fokker-Planck equation (nonlinear) and fractional
equations, the equations can describe anomalous diffusion
regimes with a constant diffusion coefficient.

The Langevin equation is a very important tool for
describing systems out of equilibrium [3,4]. Moreover, this
equation has been extensively investigated; many properties
and analytical solutions of it have also been revealed. In
this work solutions of a class of the Langevin equation
with the deterministic drift and multiplicative noise terms in
time and space are presented. To do so, the corresponding
Fokker-Planck equation in terms of the Stratonovich definition
is obtained as well as its solution for the probability distribution
function (PDF).
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II. LANGEVIN EQUATION AND CORRESPONDING
FOKKER-PLANCK EQUATION

The following Langevin equation is considered in one-
dimensional space with a multiplicative noise term:

ξ̇ = h(ξ,t) + g(ξ,t)�(t), (2)

where ξ is a stochastic variable and �(t) is the Langevin
force. The averages 〈�(t)〉 = 0 and 〈�(t)�(t)〉 = 2δ(t − t) are
assumed [3]; h(ξ,t) is the deterministic drift. Physically, the
additive noise [for g(ξ,t) constant] may represent the heat
bath acting on the particle of the system and the multiplicative
noise term [for variable g(ξ,t)] may represent a fluctuating
barrier. For g = √

D and h(ξ,t) = 0, Eq. (2) describes the
Wiener process and the corresponding probability distribution
is described by a Gaussian function. In the case of g(ξ,t),
some specific functions have been employed to study, for
instance, turbulent flows (g(x,t) ∼ |x|a tb) [6–8]. By applying
the Stratonovich approach in a one-dimensional space [3], the
following dynamic equation for the PDF is obtained:

∂W (x,t)

∂t
= − ∂

∂x
[D1(x,t)W (x,t)] + ∂2

∂x2
[D2(x,t)W (x,t)],

(3)

where D1(x,t) and D2(x,t) are the drift and diffusion coeffi-
cients given by

D1(x,t) = h(x,t) + ∂g(x,t)

∂x
g(x,t) (4)

and

D2(x,t) = g2(x,t). (5)

Note that Eq. (3) has a spurious drift due to the Stratonovich
definition. Moreover, Eq. (3) can be written as

∂W (x,t)

∂t
= − ∂

∂x
[h(x,t)W (x,t)]

+ ∂

∂x

(
g(x,t)

∂g(x,t)W (x,t)

∂x

)
. (6)

For the case of h(x,t) = 0 and g(x,t) = T (t)D(x), the system
has been considered in Ref. [9]; the solution for W (x,t) is
given by

W (x,t) = B (t)
exp

(− x(x)2

4t(t)

)
D(x)

√
t (t)

, (7)
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where

dt

dt
= T 2(t), (8)

dx

dx
= 1

D(x)
, (9)

and B (t) is a normalization factor. Equation (7) can describe
interesting properties such as a non-Gaussian distribution,
a combination of behaviors such as Gaussian (for short
distances) and exponential (for long distances), and a com-
bination of behaviors such as Gaussian (for short distances)
and power-law decay (for long distances). Further, it can
describe many bimodal distributions for different forms of
g(x,t). For instance, if one considers D(x) = √

D |x|−θ/2, then
the probability distribution and MSD are given by

W (x,t) = |x|θ/2
exp

( − |x|2+θ

D(2+θ)2t

)
√

4πDt
(10)

and

〈x2(t)〉 =
[D2(2 + θ )4]1/(2+θ)�

(
6+θ

2(2+θ)

)
t

[2/(2+θ)](t)
√

π
, θ > −2.

(11)

Moreover, the PDF can also be obtained for θ = −2; in this
case the PDF gives a log-normal distribution. One can see
that the multiplicative noise term in space D(x) = √

D |x|−θ/2

produces non-Gaussian shapes for the PDF Eq. (10); it presents
a Gaussian shape only for θ = 0. It can also reproduce the
asymptotic behavior of the random-walk model and time
fractional dynamic equation for t = tβ(2+θ)/2 [9], where 0 <

β < 1. There are two interesting processes that can be obtained
from Eqs. (10) and (11) by taking θ > −2. The first one
considers a simple expression for T (t) given by

T (t) =
√

q√
t

(12)

for t � 1. Using Eq. (8) this yields

t(t) = q ln t. (13)

Equations (11) and (13) describe the ultraslow diffusion
processes. This kind of diffusion has been found, for instance,
in aperiodic environments [10].

The second process considers T (t):

T (t) =
√

αtα−1
√∑n

j=0 cjλj e
−λj tα

∑n
i=0 cie−λi tα

, (14)

where cj , λj , and α are constants. Using the function in
Eq. (14), one can obtain anomalous diffusion processes with
logarithmic oscillations. Note that the time behavior with
a logarithmic oscillation is ubiquitous; examples have been
observed, for instance, in epidemic spreading in fractal media
[11], the financial stock market [12], and diffusion-limited
aggregates [13]. In Fig. 1 the function T (t) Eq. (14) is
shown for λi = ai , ci = (a/b)i , a = 1/15, and b = 0.3; for

FIG. 1. Plots of the function T (t) Eq. (14). The dotted lines
correspond to α = 0.5, whereas the solid lines correspond to α = 1.

these values the curves present logarithmic oscillations with
different values of n and α. From Eq. (8) one obtains

t (t) = 1∑n
i=0 cie−λi tα

. (15)

Moreover, the PDF Eq. (10) presents unimodal states for
−2 < θ � 0 and bimodal states for θ > 0 (see Fig. 2) with
pronounced cusps. The numerical results show that the PDF
remains practically unchanged for n = 2 and 6. Figure 3 shows
the MSD Eq. (11) as a function of time t ; it presents anomalous
diffusion processes with logarithmic oscillations. It can be seen
that the MSD tends to display power-law behaviors, which
indicate subdiffusive regimes.

Consider now that the deterministic drift h(x,t) and
multiplicative noise term g(x,t) are separable in time and space
and are given by

h(x,t) = T1(t)D(x) (16)

FIG. 2. Plots of the PDF Eq. (10) for λi = ai , ci = (a/b)i , a =
1/15, b = 0.3, D = 1, θ = 0.5, and α = 1. The solid lines correspond
to n = 2, whereas the dotted lines correspond to n = 6.
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FIG. 3. Plots of the MSD Eq. (11) for λi = ai , ci = (a/b)i ,
a = 1/15, b = 0.3, D = 0.3746, and θ = 0.5. The solid line with
n = 4 corresponds to α = 0.5, whereas the solid line with n = 6
corresponds to α = 1. The dotted lines correspond to the power-law
functions.

and

g(x,t) = T (t)D(x). (17)

Thus Eq. (3) reduces to

∂W (x,t)

∂t
= −T1(t)

∂

∂x
[D(x)W (x,t)]

+ T 2(t)
∂

∂x

(
D(x)

∂D(x)W (x,t)

∂x

)
. (18)

Note that the coefficients h(x,t) and g(x,t) given by h(x,t) =
g(x,t) = D(x) have been used to study Brownian pump-
ing in nonequilibrium transport processes [14]. By suitable
transformations of variables it can be shown that Eq. (18)
can be reduced to the constant-diffusion equation without
the drift coefficient term. To do so, one takes the following
transformations:

ρ(x,t) = D(x)W (x,t), (19)
dt∗

dt
= T 2(t), (20)

and

x∗ =
∫

dx

D(x)
−

∫
dt T1(t) + A, (21)

where A is a constant, thus reducing Eq. (18) to

∂ρ (t∗,x∗)

∂t∗
= ∂2ρ (t∗,x∗)

∂x∗2
. (22)

Equations (20) and (21) give the time and space scaling
factors that connect Eq. (18) to the ordinary diffusion
equation (22). Equation (22) can be solved; the solution with
a natural boundary condition is given by

ρ(t∗,x∗) = C
exp

( − x∗2

4t∗
)

√
t∗

, (23)

where C is a normalization factor. Equations (19) and (23)
show that the time-dependent coefficients T (t) and T1(t) do

not change the Gaussian form; however, the coefficient D(x)
can produce different forms for the distribution W (x,t) [9].
Note that for D(x) = √

D, T (t) = 1, and T1(t) = 0 the Wiener
process is recovered.

In order to investigate details of the solution of Eq. (23)
one takes D(x) = √

D |x|−θ/2. Using Eqs. (19) and (21), with
A = 0, yields

W (x,t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−x)θ/2√
4πDt∗(t)

exp

(
−

(
(−x)(2+θ )/2+

√
D(2+θ )

2 H (t)
)2

D(2+θ)2t∗(t)

)
,

x < 0

W (x,t) = xθ/2√
4πDt∗(t)

exp

(
−

(
x(2+θ )/2−

√
D(2+θ )

2 H (t)
)2

D(2+θ)2t∗(t)

)
,

x > 0,

(24)

where H (t) = ∫
dt T1(t) and θ > −2. Equation (24) shows

that the drift term produces an asymmetric PDF with respect
to the coordinate x. For T1(t) = 0 the PDF Eq. (24) reduces to
the solution in Eq. (10) without the presence of the drift term
and the symmetric PDF is recovered. In this case, the drift term
T1(t) gives the duration of this asymmetry. Figure 4 shows the
asymmetric PDF Eq. (24) for t = 0.2. The asymmetry of the
PDF with θ = −0.1 is more pronounced than the PDF with
θ = −0.5. From Eq. (24) one obtains

〈x2(t)〉 =
�

(
6+θ

2(2+θ)

)
√

π
[D(2 + θ )2t∗(t)]2/(2+θ)

× e−H 2(t)/t∗(t)
1F1

(
6 + θ

2 (2 + θ )
,
1

2
,
H 2(t)

t∗(t)

)
, (25)

where 1F1(a,b,z) is the Kummer confluent hypergeometric
function [15]. For H (t) = 0, without the drift term, the result
in Eq. (11) is recovered. Moreover, Eqs. (24) and (25) also
present interesting results: For H 2(t)/t∗(t) proportional to a
constant they give results similar to Eqs. (10) and (11), without

FIG. 4. Plots of the PDF Eq. (24) for D = 1, t∗(t) = t , and
H (t) = t . The dotted line corresponds to θ = −0.5, whereas the solid
line corresponds to θ = −0.1.
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the drift term. In this case, the drift term only contributes an
additional constant to the overall behavior of the system.

It should be noted that the solutions in Eqs. (19) and (23)
can work adequately for positive D(x). For negative D(x) one
should take ρ(x,t) = −D(x)W (x,t). Consider, for example,
D(x) = x. Taking

ρ(x,t) = −xW (x,t), x < 0 (26)

and

ρ(x,t) = xW (x,t), x > 0, (27)

from Eq. (21) one obtains

x∗ = ln |x| − H (t) − ln |x0| (28)

and

W (x,t) =
exp

( − [ln|x|−H (t)−ln|x0|]2

4t∗(t)

)
4
√

πt∗(t) |x| . (29)

This is the log-normal distribution, which is the same as the
one given in Ref. [16] for t∗(t) = t , which has been obtained

using the method of characteristics. It is worth mentioning that
the coefficients h(x,t) and g(x,t), given by h(x,t) ∼ x and
g(x,t) ∼ x, might be used to investigate the barrier crossing
problem in heavy-ion fusion reactions [17] as well as a limiting
case of the Langevin equation for describing the tumor cell
growth system [18].

III. CONCLUSION

When a multiplicative noise term is introduced into the
simple Langevin equation (2), even separable in time and
space, the system can exhibit complex behaviors and a rich
variety of processes. A class of these processes has been
presented analytically. It is hoped that they can be used to
mimic a wide class of natural systems.
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